
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 2310–2326

June 16-21, 2024 ©2024 Association for Computational Linguistics

First Tragedy, then Parse:
History Repeats Itself in the New Era of Large Language Models

Naomi Saphra
Kempner Institute at Harvard University

nsaphra@fas.harvard.edu

Eve Fleisig
University of California - Berkeley

efleisig@berkeley.edu

Kyunghyun Cho
New York University & Genentech

kyunghyun.cho@nyu.edu

Adam Lopez
University of Edinburgh
alopez@inf.ed.ac.uk

Abstract
Many NLP researchers are experiencing an ex-
istential crisis triggered by the astonishing suc-
cess of ChatGPT and other systems based on
large language models (LLMs). After such a
disruptive change to our understanding of the
field, what is left to do? Taking a historical
lens, we look for guidance from the first era
of LLMs, which began in 2005 with large n-
gram models for machine translation (MT). We
identify durable lessons from the first era, and
more importantly, we identify evergreen prob-
lems where NLP researchers can continue to
make meaningful contributions in areas where
LLMs are ascendant. We argue that disparities
in scale are transient and researchers can work
to reduce them; that data, rather than hardware,
is still a bottleneck for many applications; that
meaningful realistic evaluation is still an open
problem; and that there is still room for specu-
lative approaches.

1 Introduction

Picture this scene: A renowned NLP researcher at
a hot seven-year-old startup steps onstage to deliver
a keynote. The speaker describes an ambitious new
system to the packed room, building up to the re-
sults slide: a bar chart in which the x-axis shows
the number of training words, and the y-axis shows
system accuracy. As each data point is revealed,
performance rises relentlessly, culminating in a sys-
tem trained on well over a trillion words using over
a thousand processor cores. It smashes the state of
the art by a margin previously thought impossible.

Attendees are visibly shaken as they realize, over
the course of a minute, that years of research have
just been rendered utterly inconsequential. Estab-
lished academics panic, anticipating the whole-
sale rejection of already-submitted grant applica-
tions. PhD students despair, contemplating the
irrelevance of their unfinished dissertations. Many
ponder an exit to industry or a change of fields.
They will speak of little else this week.

Figure 1: Results slide (reproduced from Och, 2005) of
Franz Och’s keynote talk at the 2005 ACL Workshop
on Building and Using Parallel Texts, a predecessor to
the Conference on Machine Translation.

Does this scene sound like one that might have
happened in the past year? In fact, it happened 19
years ago, in 2005, launching the first era of Large
Language Models (LLMs): the Statistical Ma-
chine Translation (SMT) era. The speaker, Franz
Och, had co-invented key methods in SMT (Och
and Ney, 2003; Koehn et al., 2003; Och, 2003), but
had not published new work since joining Google
in 2004, instead revealing it in an invited talk prior
to the launch of a new Google Translate (Och,
2006).1 The provocative results slide from that talk
(Figure 1) shows how Google improved its SMT
system simply by expanding the training corpus
of a phrase-based language model (Brants et al.,
2007).2

1The description of the talk and its aftermath is based on
the vivid recollections of one of the authors, who was present.

2By language model (LM), we mean a generative proba-
bilistic model Pr(x) of a string x. MT requires a conditional
LM Pr(y | x) of target string y given source string x. In SMT
it was originally modeled using the noisy channel formula-
tion as Pr(y | x) ∝ Pr(y) × Pr(x | y) (Brown et al., 1993).
The translation model Pr(x | y) must be trained on a cor-
pus of example translations, but the LM Pr(y) can be trained
on any data in the target language, making it amenable to
scaling. Like modern LLMs, LMs of the SMT era were gener-
ative probabilistic models, albeit based on n-grams (Shannon,
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The first era of LLMs initially provoked great
anxiety among MT researchers about the state of
their field, but MT research has continued to flour-
ish in academia, industry, and government. Even in
the modern era of deep learning, MT has been a lo-
cus of innovations that have fundamentally altered
NLP and all of machine learning (Bahdanau et al.,
2015; Vaswani et al., 2017; Sutskever et al., 2014).

We believe that this history offers lessons for the
current era of LLMs, an era during which massive
proprietary models have become a de facto baseline
for many tasks (Rogers, 2023). The expense of
state-of-the-art research has led many to question
the role of smaller and publicly funded groups in
AI (Lee et al., 2023), a phenomenon we will call
the scale crisis.3 Researchers without direct access
to LLMs have publicly fretted over their research
directions, with Togelius and Yannakakis (2023)
suggesting pivots in research direction to sidestep
scale, and Ignat et al. (2023) sketching research
areas that are “not within the purview of LLMs.”
But what should researchers do if they care about
problems that are within the purview of LLMs?
To answer this question, we look to the first era of
LLMs. What were the durable lessons of that time
and evergreen research problems that still matter
today? We arrive at several recurrent lessons:

Scale is supreme (Section 2). We argue that,
for areas where data is plentiful, NLP researchers
cannot escape the Bitter Lesson (Sutton, 2019)
that general purpose methods exploiting scale will
outperform methods that leverage informed priors.
We recommend that researchers take advantage of
improvements in hardware as they enable scale
at affordable budgets (Section 2.1) and that they
remember small-scale problems (Section 2.2).

Evaluation is a bottleneck (Section 3). The
Bitter Lesson favors generic methods, which re-
quire evaluation metrics to optimize over. But
improved models create an evaluation bottleneck,
since error detection becomes harder when most
remaining mistakes are subtle or associated with

1948) rather than neural networks. Early LMs were widely
used across applications, beginning in speech recognition (Je-
linek et al., 1975), though, unlike contemporary LLMs, they
were rarely end products themselves. Although the LM of
Brants et al. (2007) had a very different architecture from
contemporary LLMs, it was an LLM in an important sense: it
was trained on 2 trillion tokens, which is comparable to the
training data size of modern LLMs.

3We use the term crisis deliberately since others have done
so. For example, following the announcement of GPT-4 (Ope-
nAI, 2023), @andriy_mulyar (2023) posted on Twitter that his
feed was “full of ph.d. students having an existential crisis.”

edge cases. At scale, automated metrics show their
flaws. We recommend that researchers work on
improving metrics (Section 3.1).

There is no gold standard (Section 4). When
one can afford the annotation costs, it may be tempt-
ing to consider human feedback as the ideal solu-
tion to the evaluation problem. Unfortunately, his-
tory has repeatedly shown that naïve methods of so-
liciting human preferences result in poor feedback,
prioritizing superficial properties of model outputs.
This lesson may serve as a counterpoint to the im-
pulse to collect massive quantities of low-quality
data in response to the Bitter Lesson. Instead, we
recommend grounding performance measurement
in concrete downstream tasks (Section 4.1).

Progress is not continuous (Section 5). The
ascent of neural MT abruptly ended SMT’s decade
of seemingly unbeatable growth. This change in
directions was enabled by new hardware-based
paradigms, so we recommend that researchers con-
tinue exploring new methods that might scale well
on future hardware (Section 5.1).

We conclude with a simple message: Do re-
search (Section 6). We remind the reader that
engineering achievements do not render scientific
achievements insignificant, and we encourage the
NLP community to renew their commitment to
foundational scientific research even in areas where
scale is currently a dominant factor.

2 Scale is supreme.

The first lesson offered by the history of SMT is
that data and compute scale are the dominant fac-
tors in system performance. In all eras of MT,
improvements in BLEU are logarithmic in training
data size (Brants et al., 2007; Koehn and Knowles,
2017). This is immediately obvious from Figure 1:
in order to achieve each linear step of improvement
in accuracy (y axis), training data size must dou-
ble (x axis). Figure 2 (reproduced from Kaplan
et al., 2020) shows a strikingly similar log-linear
relationship between training data size and system
performance for LLMs. Indeed, such relationships
are observed across many application areas of ma-
chine learning, including vision (Mahajan et al.,
2018) and speech (Moore, 2003).

In a research landscape centered on performance
metrics, scale will dominate. Sutton (2019) named
the resulting malaise the “Bitter Lesson”: “General
methods that leverage computation are ultimately
the most effective, and by a large margin.” Both
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Figure 2: Figure from Kaplan et al. (2020) illustrating
a power law relationship between dataset size and test
loss for LLMs with varying numbers of parameters.

SMT and LLMs exemplify this lesson, and in fact
Sutton explicitly references natural language pro-
cessing. Many NLP researchers accordingly feel
lost without access to large-scale systems. How-
ever, there are limits to scale, and as we will show
by reviewing the history of the SMT era, its dispar-
ities are often transient. The scale crisis is not a
permanent state.

2.1 Follow the hardware.
For several years following the release of Google
Translate, large-scale commercial systems dom-
inated the rankings of translation into English,
where data was plentiful (NIST, 2008; Callison-
Burch et al., 2009, 2010, 2011, 2012). Open source
tools such as Moses (Koehn et al., 2007) and col-
laborations that pooled the resources of small labs
narrowed the gap but did not close it until 2013,
when translation into English was convincingly
won by an academic group using modest hardware
(Bojar et al., 2013). The decisive tool was KenLM,
an efficient language modeling library (Heafield,
2011; Heafield et al., 2013) that demonstrated how,
with the right software, contemporary hardware
had made LLM training widely accessible. This
end to the SMT scale crisis was the outcome of
trends in hardware and software advancement.

The advent of LLMs in the SMT era and their
later academic availability were both consequences
of Moore’s law, a six-decade trend in which com-
puting power has doubled biannually: as Sutton
(2019) observes, ”over a slightly longer time than
a typical research project, massively more com-
putation inevitably becomes available.” SMT-era
LLMs arrived when researchers noticed that they
had ignored Moore’s law for too long. They
rapidly closed the gap: Brants et al. (2007) ended a
brief race to scale n-gram models to web-scale

data (Zhang et al., 2006; Emami et al., 2007).
But once the gap was closed, further incremen-
tal improvements—which required doubling the
training data—necessarily required doubling the
hardware cost or waiting for its capacity to double.
Well-funded research sought more immediate gains
elsewhere, while researchers with longer horizons
rode Moore’s law towards parity through collabo-
ration and algorithmic advances. The new era of
LLMs has already followed the first part of this
pattern: computational requirements of LLMs have
been doubling at a rate of less than a year or perhaps
faster (Sevilla et al., 2022; Amodei and Hernandez,
May 16, 2018), much faster than Moore’s law.

The end of the SMT scale crisis was by no means
inevitable or foreseeable at the beginning of the first
era of LLMs in 2005: it resulted from the efforts
of many researchers. We are encouraged to see a
similar trajectory forming now. Already, startups
advertise cheap large-scale training to the public
(Portes et al., 2023). Like the groups that competed
with commercial translation software in the SMT
era, large cross-institutional collaborations are cur-
rently pooling resources to build public models
(Scao et al., 2022). A community has developed
around efficient ML, spawning new publication
venues like MLSys and developing algorithms al-
ready employed in many LLMs (Hernandez and
Brown, 2023). BERT (Devlin et al., 2019), re-
garded as inaccessible to many small academic
labs at its release, now runs on a consumer-grade
M1 MacBook laptop (Roesch and Mazenett, 2021).

In short, small labs do not need to abandon their
entire research direction if they are interested in
working with state-of-the-art models. Algorithmic
efficiency guarantees usually hold across different
resource scales, so a method developed on inexpen-
sive hardware can be directly applied at industrial
scale. Therefore, all researchers can seek opportu-
nities to collaborate and develop better algorithms.

2.2 Remember small-scale problems.
While directly tackling scale is one strategy, we
also recommend pursuing research on problems
where data, not compute, is the bottleneck.

Small-scale settings provide a fertile ground for
innovation in data-driven methods; in the previous
era of LLMs, SMT researchers often used linguis-
tic structure to improve performance when using
smaller data. When such methods showed promise
in these development settings, Google Translate
inevitably tested them at industrial scale. Nonethe-
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less, at the end of its lifespan, Google Translate’s
SMT system remained a phrase-based lookup table.
The exploration of classical SMT researchers led to
no lasting inventions based on syntax or semantics,
and so the assumption that resulting improvements
could transfer to large scale settings may have been
based on unfounded optimism. Unlike their pre-
decessors, modern NLP researchers preemptively
recognize the futility of scaling up data-informed
methods, because many of the improvements they
offer are already provided by scale. But by lean-
ing too far into the bitter lesson’s pessimism now,
we risk neglecting settings where, for practical or
financial reasons, we must learn from limited data.

When Google Translate launched the first era
of LLMs, it was only available between Arabic
and English (Och, 2006). Data was the bottle-
neck that stood between SMT and its application
to many meaningful problems, including, most ob-
viously, the translation between many other lan-
guage pairs. Solving this bottleneck required such
diverse efforts as the collection of the Europarl cor-
pus (Koehn, 2005), the OPUS corpus (Tiedemann
and Thottingal, 2020), the JHU Bible Corpus (Mc-
Carthy et al., 2020) and the Nunavut Hansard (Mar-
tin et al., 2003); the rapid development of a Haitian
Creole corpus in the aftermath of the Haiti earth-
quake (Lewis, 2010); the crowdsourcing of corpora
for many Arabic dialects (Zbib et al., 2012); and
the development of open-source web crawlers for
parallel text (Smith et al., 2013). It is ongoing today
in projects led by groups like Masakhane (Adelani
et al., 2022; Nekoto et al., 2020; Emezue and Dos-
sou, 2021) and No Language Left Behind (NLLB
team et al., 2022). And yet, MT is still impossible
for the vast majority of the world’s estimated 7,000
languages.

Just as no one would have claimed in 2006 that
Google had solved all translation problems, no one
should claim now that LLMs have solved all NLP
problems.4 An identical bottleneck persists in the
current era of LLMs, dominated by anglophone
systems like ChatGPT. While these models can
handle many languages to some degree due to the

4While we focus on data scarcity in underserved languages,
some settings may provide limited data even in English. Such
data scarcity may be due to practical hurdles to data collection
(e.g., legally protected medical data) or an insufficient profit
incentive (e.g. data for speakers of English from lower socioe-
conomic classes; Curry et al., 2024) While we cannot say the
degree to which pure scale can solve problems like robustness
or handling longer contexts, we can identify many problems
where data is not collected at scale.

incidental multilinguality of any large training cor-
pus (Blevins and Zettlemoyer, 2022), the training
data is overwhelmingly English, and supervision
data for learning from human feedback is over-
whelmingly from English-speaking Kenyans (Per-
rigo, 2023). The hegemony of English has made
it a presumed default, inciting the creation of the
Bender Rule: “Always name the language(s) you’re
working on” (Bender, 2019).

Just as MT researchers have done since the SMT
era, LM researchers today develop tools which
rely less on scale (Alabi et al., 2022; Meyer et al.,
2022; Park et al., 2021) for underserved languages.
Researchers can leverage international collabora-
tions with local linguists, incentives outside a profit
model, and noncommercial resources to broaden
the population that has access to technology in their
own language. Furthermore, as compute costs con-
tinue to decline, even English corpora will become
relatively “low resource” for future highly overpa-
rameterized models. To exploit these datasets more
effectively, we turn to a perennial need across AI:
quality evaluation metrics.

3 Evaluation is a bottleneck.

The next lesson offered by reflection on the SMT
scale era is that the quality of evaluation methods
makes a substantial difference in the effectiveness
of training because a good evaluation can be used as
a training signal. In SMT, this epiphany was deliv-
ered by minimum error rate training, which trained
directly on target metrics like BLEU (Och, 2003).
Likewise, train-time feedback metrics are often
adapted for test-time evaluation: language model-
ing work may present validation loss, or equiva-
lently perplexity, as the direct measurement of lan-
guage modeling performance. It is therefore easy
to use symmetric evaluations, applying the same
metric for training feedback and test-time perfor-
mance assessment. Like model evaluation, training
can be based on comparison with a ground truth, as
in conventional training; quality estimation based
on output alone, as used often in Reinforcement
Learning (RL) settings (Konda and Tsitsiklis, 1999;
Silver et al., 2014; Bai et al., 2022b); or direct feed-
back, as provided by RL from Human Feedback
(RLHF) and related methods of human assessment
(Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Bai et al., 2022a). The evaluation met-
ric then becomes a crucial lever to improve model
quality.
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With large scientific projects in both industry
(StabilityAI, 2021; Thoppilan et al., 2022) and non-
profit sectors (Biderman et al., 2023; Scao et al.,
2022) spending millions on training LLMs, it may
be surprising to point away from scale to other bot-
tlenecks in system performance. The focus on scale
bottlenecks is reasonable, as for any given compute
budget, there is an optimal quantity of training data
that yields the most accurate model (Hoffmann
et al., 2022). Either compute or data size, therefore,
can become a limiting factor, and there are still
financial barriers to compute (Lee et al., 2023) and
limits on how much unstructured natural language
data is available (Villalobos et al., 2022). However,
training requires data and compute resources to be
connected by evaluation feedback; this connection
determines the effectiveness of training.

Unfortunately for efficient automatic approaches
to evaluation, automatic metrics often fail to pre-
dict human evaluation, as shown for language mod-
eling loss (Liu et al., 2023) and BLEU (Reiter,
2018). Even a metric that mirrors the training ob-
jective slightly can artificially inflate model perfor-
mance; for example, it was observed early on that
a phrase-based evaluation metric like BLEU might
favor phrase-based SMT (Riezler and Maxwell III,
2005). Identifying good metrics is challenging and
becomes more difficult with each improvement, as
the remaining errors become increasingly subtle or
complex. This challenge was also recognized early
in SMT, with calls for a “BLEU++” (Och, 2005).

Evaluation, therefore, has become a crucial goal
for modern LLM research. While training of-
ten relies on cross-entropy loss or other simple
comparisons between each token in a sequence,
benchmarking a trained LLM typically uses differ-
ent evaluation criteria, such as checking the final
answer in a word problem or the accuracy of a
prompt-based classifier (Laskar et al., 2023). How-
ever, these tests are plagued by data contamination:
benchmark exposure during training has created
illusory gains in tasks ranging from code genera-
tion (Khan et al., 2023) to theory-of-mind puzzles
(Ullman, 2023). Clearly language models are im-
proving, but we cannot say precisely how, or by
how much.

3.1 Improve the metrics.
Because evaluation is a bottleneck, we recommend
greater focus on improving metrics, a goal which
can yield rewards even with limited access to scale.
Straightforward increases in computational infras-

tructure and raw data collection yield predictably
diminishing returns on investment. Evaluation, by
contrast, provides a conceptual space that can re-
ward innovation and careful work with new insights
and unknown improvements in system capabilities.
What are the fundamental problems in this space,
and how might we approach them?

One argument for why automatic metrics and
static benchmarks are poor methods of evalua-
tion is that they fail at measurement modeling;
that is, these metrics do not actually measure
what they purport to measure. This concern is
reflected in objections to benchmarks and metrics
that fail to reflect human evaluation (Liu et al.,
2016; Novikova et al., 2017) or improvement on
natural language understanding more broadly (Raji
et al., 2021). These discussions parallel the un-
ease in the MT community when studies found that
automated metrics such as BLEU did not always
correlate with human judgments (Callison-Burch
et al., 2006). In response, SMT saw a flurry of in-
crementally improved bitext-based metrics (Stano-
jević and Sima’an, 2014; Popović, 2015; Mutton
et al., 2007). In a scale crisis, improving evaluation
metrics that leverage naturally available data like
bitext can be a worthwhile focus.

Unfortunately, the naturally available data used
in evaluation can still contaminate training corpora.
Furthermore, automated metrics that rely on a static
ground truth cannot reflect general quality (Raji
et al., 2021), model conditions under interactive
deployment, or provide on-policy reward feedback
for reinforcement learning. These issues motivate
automated metrics that do not require ground truth,
although proposals based on AI supervision are
themselves difficult to evaluate due to the same
issues of dataset bias and contamination.

Despite a research community strongly moti-
vated to improve them, even the best automated
metrics are far from perfect. As automated met-
rics and static benchmarks fail, researchers with
resources are increasingly hiring humans to assess
model outputs. Facing similar challenges in SMT,
researchers also called for human evaluation to
be prioritized, both for benchmarking (Callison-
Burch et al., 2006, 2007) and for training (Hopkins
and May, 2011). However, human evaluation does
not intrinsically solve problems with measurement
modeling, and raises challenges of its own.
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4 There is no gold standard.

Language evolved to be interpreted by humans.
This fact leads us to a tempting myth: that we can
easily evaluate synthetic natural language outputs
by simply asking a human for their opinion. To the
contrary, the next lesson we discuss from the SMT
era is that human annotation cannot provide a uni-
versal “gold standard” of quality feedback. When
MT competitions proudly turned to human evalua-
tion as the highest-quality and most reliable option
for choosing a winner, critics pointed out that these
evaluations failed the basic expectations of consis-
tency needed for a fair ranking (Bojar et al., 2011;
Lopez, 2012). Even soliciting useful, let alone per-
fect, evaluations from humans turned out to require
careful thought and trade-off decisions.

Practitioners often rely on naive methods of so-
liciting human feedback on LLM outputs, such as
single rating scales or ranking model outputs by
quality, which do not distinguish why annotators
prefer a particular model output and thus offers
limited guidance. For example, OpenAI’s Chat-
GPT annotator interface asks the user to rank out-
puts from “best” to “worst” (Ouyang et al., 2022).
Anthropic adds extra dimensions but with limited
guidance, as annotators evaluate the extent to which
generated text is “helpful” and “harmful,” claim-
ing that the vagueness of these guidelines permits
versatile human preferences (Bai et al., 2022a). Re-
cent work goes even further by using freeform text
feedback, rather than predefined numerical axes
(Shuster et al., 2022; Andreas et al., 2022; Scheurer
et al., 2022, 2023), although how best to incorpo-
rate these explanations remains an unsolved prob-
lem.

The NLP community, however, is rediscover-
ing that eliciting human preferences without clear
guidance produces data that is not only noisy, but
introduces systematic errors in models trained on
the data. When many dimensions of quality are
collapsed into a single preference scale, outputs
that are worse along some dimensions may have
higher ratings because they perform well along oth-
ers. In these cases, annotators prioritize fluency
over other aspects of the text, such as factuality
or consistency (Clark et al., 2021). LLMs conse-
quently prioritize fluency of large language model
outputs over factuality (Ji et al., 2023), mirroring
concerns from the SMT era that models prioritized
fluency over the faithfulness of translations (Dorr
et al., 2011)—concerns that have since been empir-

ically confirmed (Martindale and Carpuat, 2018).
Belz and Hastie (2014) and van der Lee et al. (2021)
note that overall quality of generated text is often
“too abstract” to be measured and both recommend
the use of separate criteria for different dimensions
of the text to distinguish what specific issues are
present in a model output. Gehrmann et al. (2023)
and van der Lee et al. (2021) warn that vague anno-
tation guidelines can exacerbate annotator confu-
sion, underscoring the importance of clearly defin-
ing the different dimensions on which to rate text
quality.

Even after these refinements to the evaluation
process, human evaluation for MT has encountered
issues that remain unsolved, and current research
suggests that evaluation of current models will in-
creasingly encounter similar issues, including the
following challenges.

Specifying evaluation criteria is hard. Even
when evaluation criteria are separated into several
axes, these scores are correlated, suggesting that
human evaluators have difficulty in separating out
criteria such as adequacy and fluency (Novikova
et al., 2018). In addition, many studies fail to de-
fine their axes (van der Lee et al., 2021), permitting
evaluators to differ even more in their interpretation
of the task and thus increasing variation among an-
notators. That is, separating out axes of evaluation
is necessary but not sufficient to identify multiple
desirable traits of model output, a recurring prob-
lem in the history of MT evaluation (Chatzikoumi,
2019). Even when evaluation criteria can be de-
fined clearly, crowdsourced annotators often lack
the necessary expertise to follow them. Crowd-
workers therefore align poorly with expert annota-
tors, even underperforming against automatic eval-
uation metrics (Freitag et al., 2021). Some prob-
lems with objective specification can be resolved by
defining multiple objectives and consulting expert
annotators rather than crowdworkers.

Individual preferences are inconsistent. Clas-
sic SMT results reveal another fundamental prob-
lem in human evaluation: pairwise human rank-
ings often fail to produce a consistent order (Bojar
et al., 2011; Lopez, 2012). Any approach based on
comparing outputs therefore reflects an unrealistic
expectation of consistency in human preferences.
The signal provided by ranking is noisy.

Disagreement isn’t just noise. When human
evaluators disagree on the quality of text, this
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does not necessarily reflect “noise” or “random
variation” but rather genuine differences in opin-
ion among evaluators (Larimore et al., 2021; Pat-
ton et al., 2019; Prabhakaran et al., 2021; Pavlick
and Kwiatkowski, 2019; Basile et al., 2021; Plank,
2022), a problem that has long plagued MT eval-
uation (Lommel et al., 2014). The management
of diverse annotator preferences is only exacer-
bated when benchmarking and training on freeform
text from varied sources (Giulianelli et al., 2023).
Furthermore, aggregation of annotator judgments
obscures the opinions of underrepresented groups
(Prabhakaran et al., 2021; Fleisig et al., 2023), and
use of inter-annotator agreement as a quality metric
causes additional erasure of perspectives by deny-
ing that these priorities are contested (Blodgett,
2021).

These issues collectively prevent human eval-
uation from providing clear feedback on model
outputs. The fact that they have remained major
concerns in MT despite decades of research sug-
gests that current researchers would do well not
to underestimate the challenges posed by these is-
sues. Furthermore, issues of both task specification
and disagreement may be even more central to the
evaluation of current models that can handle more
varied tasks. Whereas fluency and faithfulness to
a source text might cover major concerns in MT,
there is a broader range of criteria that generated
text must fulfill, such as informativeness and coher-
ence (van der Lee et al., 2021). These requirements,
along with increased freedom to produce text on
topics where there is real-world disagreement, in-
cluding social, ethical, and political concerns (Abid
et al., 2021; Blodgett et al., 2020; Liu et al., 2021;
Zhao et al., 2021), mean that human evaluation
issues will be pressing problems for the NLP com-
munity to solve.

4.1 Focus on concrete tasks.

Due to the inherent flaws of evaluation based on
human assessment, we recommend measuring con-
crete tasks under deployment conditions. Extrin-
sic evaluations (Belz and Reiter, 2006), wherein
model output quality is evaluated based on utility
for specific downstream applications, are still un-
common in evaluation of text generation (van der
Lee et al., 2021). However, they may be more use-
ful for evaluating the quality of content or meaning
(Reiter and Belz, 2009; Reiter, 2023) because hu-
man assessment often fails to predict performance

on downstream applications (Kunz et al., 2022).
In MT, concrete downstream objectives have

long been used in evaluation. Snover et al. (2006)
examined how many manual edits human trans-
lators had to make to model output, reflecting
the desiderata of human-AI collaboration settings.
Other metrics rely on the user’s ability to accom-
plish specific tasks using model output, such as
answering reading comprehension questions based
on translations (Jones et al., 2005; Callison-Burch,
2009; Scarton and Specia, 2016) or summaries
(Wang et al., 2020). A recent and growing body of
research attempts to measure the effectiveness of
MT in second language education (Lee, 2023).

In general, the best evaluations are likely to rely
on realistic assessment of what LLMs enable hu-
mans to do. In modern LLMs, work on the chal-
lenges of evaluation is likely to draw on insights
from human-computer interaction.5 Good user tri-
als require careful study design and consideration
of human variety, as well as an understanding of
individual psychology.

5 Progress is not continuous.

Our final lesson is that new paradigms can unlock
new orders of scale and even new scaling coef-
ficients, leading to abrupt improvements in per-
formance. The SMT era, fueled by large n-gram
models, lasted for over a decade, with scale pro-
viding increasing improvements over time. But
Moore’s law was threatened during this era due to
the breakdown of Dennard scaling, the observation
that smaller transistors require commensurately
less power, meaning that they can be miniaturized
while keeping power consumption constant. To
drive continued improvement, hardware manufac-
turers turned to parallelization. Graphical process-
ing units (GPUs), which favor high parallelization
of code with minimal branching—and thus simpler
and smaller processors—were soon being repur-
posed to train neural networks (Hooker, 2020).

Neural networks had been investigated in SMT
for years. Indeed their earliest use in SMT was
as n-gram language models, when Schwenk et al.
(2006) built an SMT decoder using the neural n-
gram model of Bengio et al. (2003)—an idea that
only began to gain traction almost a decade later

5Interdisciplinarity between machine learning applications
and HCI is a perennial concern. HCI researchers are periodi-
cally invited to speak at ML and ML applications conferences,
e.g., NeurIPS hosted HCI-centered keynotes from Deborah
Estrin in 2013 and Juho Kim in 2023.
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when revisited by Devlin et al. (2014), whose ACL
best paper award marked a shift in NLP establish-
ment attitudes towards neural networks. The in-
creasing power of GPUs and their use in train-
ing neural networks fueled new research in end-
to-end neural MT (NMT), enabling Kalchbrenner
and Blunsom (2013) to revive the even older idea
of an encoder-decoder architecture (Ñeco and For-
cada, 1997). Advances such as attention (Bahdanau
et al., 2015), seq2seq (Sutskever et al., 2014), and
transformers (Vaswani et al., 2017) followed in a
flurry of activity. Within two years, NMT swept
the annual shared tasks (Jean et al., 2015; Chung
et al., 2016; Bojar et al., 2016), and in 2016, Google
Translate announced that it had switched to NMT
(Wu et al., 2016; Turovsky, 2016). Research on
SMT quickly faded.

GPUs effectively introduced a new dominant
paradigm by creating conditions that favored deep
learning. Kuhn (1962) described scientific advance-
ment as a cycle of scientific revolutions in which
paradigms such as phrase-based SMT or deep learn-
ing emerge, followed by periods of normal science
when researchers aim to apply, articulate, and ex-
pand the fact base of the paradigm. Often, scientific
revolutions result from the availability of new tools.
Hooker (2020) drew on this framework of scientific
revolution to analyze the landscape of AI research,
identifying the Hardware Lottery as a situation
in which hardware dictates methods.6 Under the
Hardware Lottery, GPUs offered a winning ticket
for deep learning to reshape MT. What research
objectives are recommended by the resulting NMT
revolution?

5.1 Shape the hardware.

The Hardware Lottery tells us that hardware guides
the direction of research, but researchers can
also direct the design of hardware. While these
new tools may enable scientific revolutions, Kuhn
(1962) pointed out that the development of new
tools is itself shaped by the reigning paradigm and
by the normal scientific process. Hardware design
itself is an example, having been driven for many
years by incremental improvements to a paradigm
of miniaturization and parallelization of transis-
tors. But hardware manufacturers are approach-

6Gururaja et al. (2023), whose oral history of NLP—
including comments on the current scale crisis and the
cyclic nature of what they call exploit-explore incentives—
complements our work, also point to similar paradigm shifts
in NLP emerging from a software lottery.

ing the physical limits of miniaturization, and the
path forward is again uncertain (Lundstrom and
Alam, 2022), as it was at the end of Dennard scal-
ing . Therefore, we recommend that researchers
focus not only on developing and using new hard-
ware, but on anticipating potential hardware devel-
opments and developing algorithms for platforms
before they are widely available.

By creating software tools and algorithms that
can take advantage of hardware designed for spar-
sity (Krashinsky et al., 2020) or new sources of
parallelism (Launay et al., 2020), researchers can
develop techniques preemptively for future tech-
nologies. At the same time, they also create a
market to motivate the development of new hard-
ware that can enable the next revolutionary devel-
opment. Researchers may even co-design hardware
and software jointly, a strategy likely to drive fu-
ture computing advances (Leiserson et al., 2020;
Lundstrom and Alam, 2022). It is the possibility of
reshaping tools for the future that makes alternative
paradigms worth exploring under a scale crisis.

6 Conclusion: Do research.

As pure engineering efforts and institutional wealth
outstrip novel scientific work, some in the AI com-
munity are pessimistic about the prospects of foun-
dational research. Our position, articulated over the
course of this paper, is that there is much exciting,
timely work yet to be done.

These lessons are not particular to LLMs, but
apply to any field subject to the Bitter Lesson. For
example, issues in human evaluation plague many
disciplines in machine learning. In computer vi-
sion, annotator idiosyncrasies account for many of
the remaining inaccuracies of modern ImageNet
models (Shankar et al., 2020). If a constrained la-
beling task such as image classification is subject to
varied human judgment (Parrish et al., 2023), how
much harder is it to annotate free text generation?

Beyond our specific recommendations for re-
searchers interested in improving the capabilities
of language models, we would also point to sci-
entific opportunities across related fields. From
interpretability to empirical training analysis to
public policy, many research areas only become
more relevant and complex as models rapidly im-
prove. Furthermore, while novel modeling work
suffers in a scale crisis, we can focus on new ar-
chitectures and algorithms that take advantage of
existing hardware and even anticipate future tools.
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Some speculative alternatives to phrase-based
SMT, such as explicitly modeling syntax (Galley
et al., 2004; Collins et al., 2005; Chiang, 2007) and
semantics (Jones et al., 2012), were obviated by
the Bitter Lesson and its expression in NMT. How-
ever, other proposals formed the basis of the NMT
era. Many enduring careers in NLP research were
forged in areas that are now forgotten, and without
risky exploration of unproven directions, the field
could not have achieved many breakthroughs. Our
anxieties should not discourage us from seizing the
opportunities presented by a new era of LLMs.

Limitations

The positions taken in this paper are based on both
experience and reading of historical trends in nat-
ural language processing. While we believe that
the lessons we identify in this paper are durable,
history does not always repeat, and our oracular
powers are otherwise limited. Even after consider-
ing our position, researchers should use their own
best judgement on directions to pursue.
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