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Abstract
Large language models (LLMs) exhibit posi-
tional bias in how they use context, which es-
pecially affects listwise ranking. To address
this, we propose permutation self-consistency,
a form of self-consistency over the ranking list
outputs of black-box LLMs. Our key idea is
to marginalize out different list orders in the
prompt to produce an order-independent rank-
ing with less positional bias. First, given some
input prompt, we repeatedly shuffle the list in
the prompt and pass it through the LLM while
holding the instructions the same. Next, we
aggregate the resulting sample of rankings by
computing the central ranking closest in dis-
tance to all of them, marginalizing out prompt
order biases in the process. Theoretically, we
prove the robustness of our method, showing
convergence to the true ranking under random
perturbations. Empirically, on five datasets in
sorting and passage reranking, our approach im-
proves scores from conventional inference by
up to 34–52% for Mistral, 7–18% for GPT-3.5,
8–16% for LLaMA v2 (70B). Our code is at
https://github.com/castorini/perm-sc.

1 Introduction

Large language models (LLMs) respond cogently
to free-form textual prompts and represent the state
of the art across many tasks (Zhao et al., 2023).
Their quality, however, varies with nuisance posi-
tional factors such as prompt order and input length.
As a descriptive example, consider this prompt:

Arrange the following passages in decreasing
relevance to the query, “what are shrews?”
(1) Cats hunt small mammals, such as shrews ...
(2) Shrews are mole-like mammals, widely ...
(3) Shrews use their noses to find prey and ...

The correct output order is (2, 3, 1), from most to
least relevant, but several positional biases may
interfere with the model. Liu et al. (2023) demon-
strate that LLMs tend to get “lost in the middle” of
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Figure 1: The conventional decoding process for list-
wise ranking with input prompt (a), language model (c),
and output ranking (d). The grey item (b) is “lost in the
middle” by the LLM, resulting in its misranking (e).
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Figure 2: Our permutation self-consistency process.
With the instruction fixed, we shuffle the input list for
prompts (a), producing outputs with different mistakes.
We aggregate (b) these output rankings into one (c).

a long context and use the middle portion poorly,
which suggests that the middle passage (2) in the
example may get misranked (e.g., 3, 1, 2). Wang
et al. (2023a) find prompt order to affect quality,
with some orders outperforming others; if items 1
and 3 were swapped in the prompt, the LLM would
perhaps generate the mistaken ranking (2, 1, 3).

In this paper, we mitigate positional biases for
listwise-ranking LLMs. We propose permutation
self-consistency, a novel decoding strategy for im-
proving the quality, consistency, and prompt-order
invariance of black-box LLMs. First, we construct
prompts with randomly permuted input lists, then
feed them into an LLM to generate a set of output
rankings. Then, we aggregate these outputs into
the central ranking that minimizes the Kendall tau
distance to all of them, marginalizing out prompt
order as a factor; see Figures 1 and 2. As related
work, Stoehr et al. (2023) train direction-unaware
probes on the representations of language models
to detect order consistency, but their evaluation re-
veals the ranking direction of test examples to the
model, deviating from standard practices.
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Next, we assess the effectiveness of permutation
self-consistency, both theoretically and empirically.
Theoretically, we prove in Section 2.3 that it re-
covers the true ranking under arbitrary noise distri-
butions with enough observations and at least one
correctly ordered pair in each observation. Exper-
imentally, we apply our method to tasks in math
and word sorting, sentence ordering, and passage
reranking (Craswell et al., 2020, 2021), consis-
tently increasing the scores of GPT-3.5, GPT-4,
and LLaMA v2 (70B; Touvron et al., 2023) by up
to 4–17%, 9–24%, and 8–16%, respectively. We
achieve similar gains for Mistral (Jiang et al., 2023)
and Zephyr (Tunstall et al., 2023). We conclude
that permutation self-consistency improves listwise
ranking in LLMs. In line with our premises, we
observe positional bias, as shown in Section 3.2.

Finally, we conduct auxiliary analyses to justify
our design choices. In Section 4.1, our hyperparam-
eter study finds that quality quickly rises with the
number of aggregated output rankings: the score
improvement from using five aggregated rankings
reaches 67% of twenty, on average, suggesting that
a few suffice for quality gain. We further demon-
strate that sampling temperature is ineffective for
us, unlike the original self-consistency work (Wang
et al., 2023b) in chain-of-thought reasoning, likely
because listwise ranking does not require explo-
ration of various reasoning paths.

Our contributions are as follows: (1) we pro-
pose a novel decoding technique for improving
the quality, consistency, and position invariance
of black-box, listwise-ranking LLMs; (2) we em-
pirically establish the validity of our method in
sorting and passage reranking on seven models
and five datasets, and we theoretically prove the
robustness of our method to certain classes of rank-
ing noise, including “lost-in-the-middle” type ones;
and (3) we provide new analyses on positional bi-
ases in listwise-ranking LLMs, finding that biases
depend on pairwise positions of items in the list.

2 Our Approach

2.1 Preliminaries

Notation. We define an n-ranking as a permu-
tation σ : {1, . . . , n} 7→ {1, . . . , n}. For some
sequence X := {Xi}ni=1, define X[σ] as the per-
muted sequence of X transformed by σ, where
X[σ]i := Xσ(i). Let the inversion vector of σ be

inv(σ)i := #{j : σ(j) > σ(i), j < i}. (1)

To quantify dissimilarity, the Kendall tau dis-
tance between two rankings σ1 and σ2 is the num-
ber of inversions in σ−1

1 ◦ σ2:

dκ (σ1, σ2) :=

n∑

i=1

inv(σ−1
1 ◦ σ2)i. (2)

In other words, it is the number of pairwise dis-
agreements, or discordant pairs, in the permutation
ordering. The distance is one affine transform away
from the Kendall tau correlation, used to measure
list order similarity (Kendall, 1948):

τ(σ1, σ2) := 1− 2dκ(σ1, σ2)(
n
2

) . (3)

In the extreme, τ = 1 ⇐⇒ σ1 = σ2, and τ = −1
implies that one is the other’s reverse.

2.2 Permutation Self-Consistency
How do we mitigate positional biases in listwise-
ranking LLMs? We find inspiration in the self-
consistency framework (Wang et al., 2023b), which
improves quality and consistency in chain-of-
thought prompting (Wei et al., 2022). The approach
has two main stages: first, it samples multiple an-
swers for an input prompt; then, it aggregates the
sampled answers into a single, high-quality one,
hence “marginalizing out” separate reasoning paths
from the language model.

Unfortunately, self-consistency does not readily
generalize to listwise ranking for a few reasons.
For one, it is limited to point predictions, greatly
simplifying the aggregation procedure to taking
the majority vote. For another, sampling tempera-
ture, the method’s mainstay of generating diverse
samples for aggregation, has little effect on (and
at times harming) the quality of aggregated predic-
tions in listwise ranking, as shown in Section 4.1.
Lastly, self-consistency does not explicitly address
positional bias, the central issue of our paper.

Nevertheless, its shuffle–aggregate paradigm is
still a useful template. With it, we propose permu-
tation self-consistency: for the first sample step, we
randomly shuffle the list in the prompt to curate a
diverse set of rankings, each with different position
biases. For the next aggregate step, we compute the
central ranking closest in Kendall tau distance to all
the sampled rankings, which, like self-consistency,
marginalizes out the independent variable (in the
original, reasoning paths; in ours, prompt order).
Intuitively, we intervene on list order, collect output
rankings, then aggregate, breaking the association
between individual list order and output rankings.
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Task Example Input Prompt

Math Sorting Sort these expressions: 3 / 2, 1 - 5, ...

Sentence Ordering Order the shuffled sentences: [1] The...

Passage Ranking Order these by relevance to the query,
“what are shrews?”: [1] Cats hunt...

Table 1: Listwise-ranking input prompt examples.

Formally, we are given an input sequence of
items X := {Xi}ni=1, such as a list of passages,
along with a listwise-ranking LLM h(X; s) that
returns an n-ranking on some string prompt s; see
Table 1 for an example. First, we construct a di-
verse set of output rankings by randomly permuting
X and passing it through the LLM, like how self-
consistency uses temperature to vary their output.
Specifically, we sample a sequence

σ̂i := h(X[πi]; s) for 1 ≤ i ≤ m, (4)

where πi is drawn uniformly at random from the
set of all possible n-rankings. As noted previously,
each output ranking has positional bias, but mis-
takes are expected to differ among the outputs be-
cause of our input order randomization. We then
“marginalize out” these individual biases by aggre-
gating the output rankings into a single central
ranking. One method with attractive theoretical
properties is the Kemeny–Young (Kemeny, 1959)
optimal ranking of the outputs—that is, the central
ranking that minimizes the sum of its Kendall tau
distances to every output ranking:

σ̄ := argmin
σ

∑

1≤i≤m

dκ(σ̂i, σ). (5)

Our approach returns σ̄ as the prediction for X
and terminates. Although this calculation is NP-
hard, fast exact and approximate algorithms ex-
ist (Conitzer et al., 2006; Ali and Meilă, 2012),
many implemented in our codebase.
Passage reranking. The task of passage ranking
is to rank a set of provided passages in order of
relevance to a given query. The use of permu-
tation self-consistency for this case deserves spe-
cial attention. Due to the LLM input length con-
straint, predominant LLM-based approaches such
as RankGPT (Sun et al., 2023), LRL (Ma et al.,
2023b), and RankVicuna (Pradeep et al., 2023)
stride the LLM across fixed windows of items from
the back of the list to the front, rather than output
a ranking in a single pass. In this case, we apply
permutation self-consistency to each window.

2.3 Theoretical Guarantees
We now show that for certain kinds of noisy rank-
ings, the Kemeny ranking can recover the true rank-
ing given enough observations. For example, if
there always exists some random pair of items that
is correctly ranked among randomly ordered obser-
vations, we will converge to the true ranking.

Definition 2.1. For two rankings σ1 and σ2, the
concordant subset is a set S′ where ∀i and j ∈
S′, σ1(i) < σ1(j) ∧ σ2(i) < σ2(j) or σ1(i) >
σ1(j) ∧ σ2(i) > σ2(j).

Proposition 2.1. Let there be a true ranking σ and
a sequence of i.i.d. uniformly noisy rankings σ̂ :=
{σ̂i}mi=1. Suppose each noisy ranking σ̂k has a
uniformly random, nonempty concordant subset S′

k

with σ, and the remaining rank elements not in S′
k

represent a random permutation. Then the Kemeny–
Young ranking σ̄ of σ̂ converges in probability to
σ, i.e., it is a consistent estimator.

Proof sketch. Let Aij be the event that the sum
of discordant pairs indexed by i and j between σ̂
and σ is greater than the number of concordant
ones. P(Aij) is upper-bounded by exp(−O(m)).
The union bound of P(

⋂
i,j Aij) shows that the

probability of the sum of discordant pairs being
greater than that of the concordant pairs vanishes
for any pair as m approaches infinity. Thus, the
Kemeny-optimal ranking will always approach σ
for m → ∞, concluding our proof.

To extend this, we prove that, in the presence of
ranking noise, characterized empirically in Sec-
tion 3.2, our approach yields a consistent estimator
for the true ranking, given that at least one possibly
nonrandom pair of items is always concordant:

Proposition 2.2. Let there be a true ranking σ and
a distribution of noisy rankings P(σnoise), where
σnoise ◦ π always has a uniform, non-empty con-
cordant subset S with σ for any input ranking π,
and the elements not in S are uniformly random.
Then the permutation self-consistency procedure
is a consistent estimator of σ when applied to the
input π and the “LLM” characterized by P(σnoise).

Proof sketch. Observe that the first shuffling stage
of permutation self-consistency transforms the
premises into those of Proposition 2.1. Since
the next stage of the method involves the same
Kemeny–Young ranking as the proposition does,
the rest of the proof quickly follows.

Full proofs are in Appendix A.
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1. MathSort: Sort ten arithmetic expressions by value.

Example: 3 / 5, 2 - 9, 6 * 5, 2 * 1, 3 / 1, 9 * 9, 1
- 9, 9 + 8, 3 / 5, 1 / 9.

2. WordSort: Order ten words alphabetically.

Example: aaron, roam, aardvark, nexus, [...].

3. GSM8KSort: Unscramble sentences from GSM8K.

Example: Order the scrambled sentences logically:
- She took 1 hour to walk the first 4 miles [...]
- Marissa is hiking a 12-mile trail.
- If she wants her average speed to be 4 [...]

Table 2: Example prompts for our three sorting tasks.

3 Experiments

We experiment on sorting and passage ranking, two
distinct types of problems in listwise ranking.

3.1 Sorting Tasks

Setup. We build three functionally distinct datasets
called MathSort, WordSort, and GSM8KSort, cor-
responding to numerical sorting, alphabetical order-
ing, and sentence arrangement, respectively. For
MathSort, the task is to sort ten random mathe-
matical expressions of the form digit op digit,
where digit is a single digit and op is one of +, -,
*, or /. In WordSort, the goal is to order ten random
English words alphabetically. Finally, GSM8KSort
is a sentence-unscrambling task over the test set of
the GSM8K reasoning dataset (Cobbe et al., 2021).
For consistency and tractability, we use 100 exam-
ples in each dataset; see Table 2 for prompts.

These synthetic sorting datasets have certain ben-
efits. The items are intrinsically comparable, espe-
cially in MathSort and WordSort, whose elements
have unequivocal order (e.g., “aardvark” must pre-
cede “abacus” in WordSort). On the other hand,
passage ranking relies on human judgment, where
label noise may confound findings. Synthetic con-
struction also enables control of item length: Math-
Sort examples are fixed at three tokens, WordSort
at a single word, and GSM8K one sentence.

For our LLMs, we choose the open families of
LLaMA v2 models (Touvron et al., 2023), Mistral-
7B Instruct (Jiang et al., 2023), and Zephyrβ-
7B (Tunstall et al., 2023), along with the closed
GPT-3.5 (Turbo, the “0613” version) and GPT-4
from OpenAI, both the state of the art. We apply
permutation self-consistency with m = 20 output
rankings, resulting in 20 parallel calls to the LLM
per example. Detailed settings are in Appendix B.2.

Method MATHSORT WORDSORT GSM8KSORT

Orig. PSC Orig. PSC Orig. PSC

Mistral-7B 34.7 52.9 55.3 74.2 46.7 65.3
Zephyrβ-7B 13.2 32.2 30.7 60.8 34.5 61.6
LLaMA2-7B 8.7 24.2 41.3 59.9 6.1 21.3
LLaMA2-13B 16.7 26.0 65.4 78.8 42.7 46.8
LLaMA2-70B 27.9 31.3 74.6 81.0 61.1 71.2
GPT-3.5 64.0 75.2 85.9 88.1 82.1 88.4
GPT-4 83.5 89.6 89.9 92.0 88.4 90.5

Table 3: Kendall tau correlation scores on our sorting
tasks. Original scores are the median across 20 single
runs, and PSC aggregates those 20. Underline indicates
improvement from PSC and bold denotes best.

60 70 80 90
Tau Score

MathSort

WordSort

GSM8KSort
Ta

sk

Individual Score Distribution vs. PSC

Our PSC
GPT-3.5
GPT-4

Figure 3: The distribution of sorting task scores from
twenty individual runs plotted against our PSC score.
Our PSC outperforms the best of any individual run.

Results. We present our main results in Table 3,
naming our method “PSC” for short. PSC consis-
tently outperforms conventional inference on all
three datasets and seven models by an average of
51% in Kendall tau correlation, skewed toward
the smaller variants. Specifically, LLaMA2-7B,
13B, and 70B attain average score increases of
157%, 28%, and 12%, respectively, Mistral and
Zephyr improve by 42% and 106%, and GPT-3.5
and GPT-4 by 3–18% and 2–7%. We attribute this
to the already high quality of the larger 70B and
GPT models, which leave less room for improve-
ment. Task-wise, we improve MathSort, Word-
Sort, and GSM8KSort by 67%, 30%, and 58%,
and gains negatively correlate with original quality
(r = −0.72). We conclude that PSC improves list-
wise ranking on sorting tasks, with higher gains on
smaller models and more difficult tasks.

One foreseeable question is whether any indi-
vidual runs surpass PSC, which would weaken the
case for rank aggregation. To answer this, we plot
the distribution of the individual scores against PSC
in Figure 3. We observe that PSC reliably beats all
individual runs by 1–12%, improving the most on
tasks and models with lower baseline quality, such
as MathSort and GPT-3.5. These findings bolster
the necessity of the aggregation step.
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First Stage Top-k Method
TREC-DL19 TREC-DL20

Original Our PSC Original Our PSC

None All (1) BM25 50.58 – 47.96 –
All (2) SPLADE++ ED 73.08 – 71.97 –

Supervised Approaches

BM25 100 (3) MonoT5 (T5-3B) 71.83 – 68.89 –
100 (4) RankT5 (T5-3B) 71.22 – 69.49 –
100 (5) RankLLaMA (13B) 73.22 – 70.38 –

Unsupervised Approaches

BM25 100 (6) PRP-Best (FLAN-T5-XXL) 69.87 – 69.85 –
100 (7) PRP-Best (FLAN-UL2) 72.65 – 70.68 –
100 (8) RankVicuna 66.83 68.70 65.49 65.68
20 (9) Single (GPT-3.5) 60.95 (60.96) 61.49 57.64 (57.68) 59.62
20 (10) Single (GPT-4) 60.88 (60.92) 64.88 57.78 (57.89) 62.49
100 (11) RankGPT (GPT-3.5) 68.00 (68.13) 70.77 62.08 (63.20) 62.70
100 (12) RankGPT (GPT-4) 75.00 (75.59) 75.66 70.36 (70.56) 71.00

SPLADE++ ED 100 (13) RankVicuna 74.59 74.13 74.73 74.06
20 (14) Single (GPT-4) 73.21 (73.36) 76.87 71.97 (73.63) 78.52
100 (15) RankGPT (GPT-4) 74.64 (74.93) 76.01 70.76 (71.08) 75.14

Table 4: nDCG@10 results on DL19 and 20. The maximum across three runs are in parentheses, while those outside
the median. Improvements from PSC are underlined and best per section are bolded. On the one-tailed signed-rank
test, paired differences between the original and PSC are significant at the 99% confidence level (p < 0.01).

3.2 Passage Reranking Task
For a longer-context task, we evaluate our method
on passage reranking. For a query and an initial
list of relevant documents from a fast, first-stage
retriever, we must reorder the documents so that
more relevant ones come first.
Setup. We select the passage retrieval test sets
from the TREC Deep Learning Tracks DL19 and
DL20 (Craswell et al., 2020, 2021), both canon in
the literature (Qin et al., 2023). These datasets are
built on the MS MARCO v1 corpus (Bajaj et al.,
2016), which contains 8.8 million passages. As is
standard, we rerank the top-100 passages retrieved
by the first-stage BM25 (Robertson et al., 2009)
or SPLADE++ EnsembleDistill (ED; Formal et al.,
2021), reporting nDCG@10 scores for quality.

Like sorting, we pick an open LLM, RankVi-
cuna (Pradeep et al., 2023), fine-tuned from Vi-
cuna (Chiang et al., 2023), and a closed family,
GPT-3.5 and GPT-4—all models match state of the
art. RankVicuna and GPT-3.5 have context lengths
of 4096, half of GPT-4’s 8192. We similarly apply
permutation self-consistency with m = 20 runs.
Furthermore, for three of our variants named “sin-
gle,” we reduce the top-100 to 20 and discard the
windowing strategy used in RankGPT and RankVi-
cuna, described in Section 2.2. This allows us to
fit all passages in a single call and thus remove po-
tentially confounding interactions between the win-
dowing method and permutation self-consistency.

For our supervised baselines, we report results
from the MonoT5 (Nogueira et al., 2020) and
RankT5 (Zhuang et al., 2023) models, based on
the T5 language model (Raffel et al., 2020). We
also run RankLLaMA (Ma et al., 2023a), the cur-
rent pointwise state of the art. For the unsupervised
baselines, we copy figures from the state-of-the-art
pairwise ranking results across the variants in Qin
et al. (2023), which we name PRP-Best for short.

Results. We present our results in Table 4. Our
PSC outperforms all conventional inference base-
lines: first, RankGPT with PSC on DL19 (row 12)
edges ahead by 0.07 points (same row); second,
the same for DL20 (row 12), leading PRP by 0.32
points (row 7); third, the overall top result on DL19
of 76.87 from SPLADE++ (row 14), outperforming
the previous by 1.28 (row 12); and fourth, 78.52 on
DL20 (row 14), a 3.79-point increase over RankVi-
cuna (row 13), the best single-call baseline model.
For qualitative examples, see Appendix C.

Overall, our PSC approach consistently im-
proves ordinary decoding and beats the maximum
individual score across three runs (see scores in
parentheses), yielding gains on 13 out of 16 model–
dataset combinations (see PSC columns in rows
7–14). On average, RankVicuna, GPT-3.5, and
GPT-4 see relative score increases of 0.4%, 2%,
and 5% with PSC. Mixed results on RankVicuna
likely result from its inherent robustness to posi-
tional bias, instilled by its training process that uses
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(a) Single (GPT-3.5) on DL19 and DL20.

5 10 15 20
Position of the Second Item, i(b)

5

10

15

20Po
sit

io
n 

of
 th

e 
Fi

rs
t I

te
m

, 
i(a

)

[GPT-3.5] DL19
3

4

5

6

7

8

5 10 15 20
Position of the Second Item, i(b)

5

10

15

20Po
sit

io
n 

of
 th

e 
Fi

rs
t I

te
m

, 
i(a

)

[GPT-3.5] DL20

4

5

6

7

8

9

10

5 10 15 20
Position of the Second Item, i(b)

5

10

15

20Po
sit

io
n 

of
 th

e 
Fi

rs
t I

te
m

, 
i(a

)

[GPT-4] DL19

6

7

8

9

10

5 10 15 20
Position of the Second Item, i(b)

5

10

15

20Po
sit

io
n 

of
 th

e 
Fi

rs
t I

te
m

, 
i(a

)

[GPT-4] DL20
6

7

8

9

10

(b) Single (GPT-4) on DL19 and DL20.

Figure 4: Distribution of “reversions” after reranking. Blues are below the observed dataset average and reds above
the average. For two input list positions i ∈ [1, 20] and j ∈ (i, 20], i indexes the rows and j the columns. For
example, the cell at (1, 2) is the reversion of the first two input items across the dataset. Note that highly saturated
colors indicate over- and under-reversion relative to other pairs in the dataset rather than in the absolute sense.

random shuffling as part of data augmentation; thus,
the shuffling step from PSC has less of an effect on
the output variation.

The choice of the first-stage reranker has a clear
impact, with SPLADE++ adding an average of 7.26
points over the corresponding BM25 models. In
fact, reranking the top-20 SPLADE items (row 13)
in a single call outperforms doing the top-100 (row
14) using a sliding call window. We conjecture that
this results from imperfections in the RankGPT
windowing algorithm, which shows especially for
strong retrievers, where the top-20 already contains
many relevant documents.

Finally, we note one particularly intriguing phe-
nomenon: in the top-20 single-call setting, GPT-3.5
and GPT-4 have similar baseline quality without
PSC (rows 8 and 9, first column in each group),
but PSC boosts GPT-4 more than GPT-3.5 (row 9,
second columns). As we explore in depth next, this
possibly results from GPT-4 being more “equally
biased” across the item positions and hence provid-
ing PSC more useful rankings for aggregation.

Positional bias analysis. We analyze how list or-
der bias varies with the input positions on the “sin-
gle” GPT models for BM25 (from Table 3, rows 8
and 9), which avoids confounds from RankGPT’s
window strategy. The design of our analysis is as
follows, mirroring Section 2.2’s notation: consider
the item pair (Xa, Xb) with input list positions
(πi(a), πi(b)), where πi(a) < πi(b) for some ran-
dom permutation πi. If the output positions satisfy
σ̂i(a) > σ̂i(b) after reranking, we say the order is
reversed, and we call the sum of reversed pairs per
data point “reversions.” In Figure 4, we visualize
the distribution of reversions by input position pair,
with πi(a) as the y-axis and πi(b) as the x-axis,

whose positions range from 1–20 for each of the
top-20 passages. For cross-model comparability,
we normalize by dataset.

Under the null hypothesis of there being no posi-
tional bias, the distribution of reversions should be
uniform because the input lists are randomly per-
muted, which severs any association between input
order and output ranking. However, Figure 4 con-
tradicts this. Prominently, the center of Figure 4a
is redder than the edges, indicating that pairs with
both items closer to the middle are reversed more
often by GPT-3.5 than those at the beginning and
the end of the input lists are. In Figure 4b, bot-
tom areas are also deeper red than the top, showing
that pairs with items at the end of the list are more
frequently reversed by GPT-4 than pairs at the start.

Other subtle patterns emerge upon closer exam-
ination. First, in Figure 4a, a dark block appears
after column 15, suggesting that GPT-3.5 does not
focus well on items past the fifteenth. Second,
the colors interleave in a grid pattern across both
columns and rows—possibly an artifact of its pre-
training. From this evidence, we conclude that
different positional biases exist in reranking LLMs,
varying by model and dataset.

The analysis also helps to explain our quality
results. Comparing Figure 4a and 4b, we observe
that GPT-4 generally reverses more pairs than GPT-
3.5 and is closer to the optimal number of rever-
sals, thus providing higher quality to the aggregated
rankings. This may explain why PSC benefits GPT-
4 (single) more than it does GPT-3.5 (single), i.e.
row 9 vs. row 8 in Table 4. Similarly, both models
tend to reverse more pairs on DL20 than on DL19,
and results also indicate that PSC improves DL20
more than it does DL19.
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(a) Quality vs. number of output rankings (ρ = 0.17).
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(b) Quality vs. text generation temperature (ρ = −0.078).

Figure 5: Quality for all datasets for various aggregate sizes and temperatures. For output rankings, we use m = 20
as our frame of reference; for temperature, 0.0. In the subfigure captions, ρ denotes Spearman’s rank correlation.

4 Sensitivity Analyses

In this section, we investigate and characterize each
component of permutation self-consistency to jus-
tify our modeling choices.

4.1 Hyperparameter Studies

Output rankings. Throughout the paper, we es-
poused aggregating over m = 20 output rankings,
but is more actually better? If, say, five outper-
formed twenty, we could decrease the number of
parallel calls to the model, conceivably saving cost.
To answer this question, we sweep the aggregate
size between one and twenty across all datasets,
plotting the resulting score differences from using
the default twenty. We pick GPT-3.5 and GPT-4 as
our target models, as they are used in all tasks.

We plot our results in Figure 5a. On both models,
we find that output quality rapidly converges to
that of using the full twenty, five being 67% as
effective on average. The score averages increase
monotonically with the number of rankings (ρ =
0.17), with GSM8KSort on GPT-3.5 as an outlier
(left subplot), possibly because of output variance—
the next study on sampling temperature shows that
it is highly sensitive to randomness. We conclude
that picking m = 20 output rankings is effective,
though returns sharply diminish after 5–10.

Sampling temperature. Self-consistency (Wang
et al., 2023b) uses temperature as their sampling
strategy to produce different outputs to aggregate
over, but it is ineffective for us, perhaps because
listwise ranking does not admit multiple reasoning
paths like chain-of-thought prompting does. To
assess this rigorously, we vary the temperature be-
tween 0 and 0.75, following the original method’s
0.5–0.7 (Wang et al., 2023b). For consistency, we
use the same setup from before and fix m = 20.
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Figure 6: Scores for the alternative reciprocal rank fu-
sion (RRF) and our Kemeny rank aggregation method.

We plot our results in Figure 5b. Temperature
has little effect on the quality (ρ = −0.078), again
with GSM8KSort as an outlier, where the extra ran-
domness drastically hurts quality on both models.
This sensitivity to randomness is also evident in
Figure 3, where GSM8K has the widest interquar-
tile range of the tasks. In conclusion, this evidence
grounds our choice of not using temperature.

4.2 Rank Aggregation Comparison
Reciprocal rank fusion (RRF; Cormack et al., 2009)
is a state-of-the-art alternative to our chosen Ke-
meny ranking method. It sorts items by the score

RRFScore(Xj) :=
∑

1≤i≤m

1

k + σ̂i(j)
(6)

for each item Xj , rankings σ̂i, and k = 60. RRF
had been under our consideration, but we picked
Kemeny ranking for its theoretical robustness and
empirical effectiveness. Shown in Figure 6, Ke-
meny beats RRF (p < 0.05) on 8 out of 10 compar-
isons by a mean of 0.23 points; on average, RRF
reaches only 93.5% of the boost that Kemeny does.
Its only outperformance on DL19 possibly results
from it being suited for information retrieval, its
field of origin, but this may also be statistical noise.
Overall, these results further support our decision
to select Kemeny ranking for the aggregation step.
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5 Related Work and Future Directions

The holistic direction of our work is in enhancing
the ranking ability of large language models. Along
a similar vein, contrast-consistent ranking (Stoehr
et al., 2023) proposes to train order-unaware probes
on the latent vectors of large language models for
detecting nondirectional rank consistency. Their
evaluation reveals the ranking direction of test ex-
amples to the models, deviating from standard prac-
tices, as their purpose is not to increase ranking
quality but rather to detect consistency. Another
related work is Hou et al. (2023), which uses a
different rank aggregation algorithm from ours. In
contrast to their heuristic bootstrapping method
(i.e., Borda count) of summing up the ranks of each
ranking, our approach is theoretically optimal in
that it finds the best central ranking to all individual
rankings in terms of the tau distance.

The specific empirical tasks in this paper have
also seen recent progress. For passage ranking us-
ing language models, BERT-based (Devlin et al.,
2019; Nogueira et al., 2020) and T5-tuned (Zhuang
et al., 2023; Raffel et al., 2020) approaches repre-
sent the earliest language models for passage rank-
ing. RankGPT (Sun et al., 2023) and LRL (Ma
et al., 2023b) spearheaded much of the post-
ChatGPT work, beating the supervised state of the
art with an unsupervised LLM for the first time.
Along a non-listwise direction, PRP (Qin et al.,
2023) is a pairwise method leveraging open-source
large language models comparing two items at a
time, as reported in Table 4. One possible future
work is to reformulate our PSC method to be dif-
ferentiable, enabling training-time application in
LLMs such as RankVicuna (Pradeep et al., 2023).

Our sorting tasks for LLMs have had attention as
well, mostly in the context of evaluation, with Big-
Bench (Suzgun et al., 2022; bench authors, 2023),
an LLM benchmark, providing more than 200 dis-
tinct tasks, including one in alphabetical ordering
(word_sorting), which we enlarge and expand
on in WordSort. Stoehr et al. (2023) also con-
structed fact-based synthetic sorting datasets for
listwise ranking, but they are private and hence
noncomparable. In the future, PSC can be ap-
plied to any list-oriented ranking task involving
LLMs. Examples include using LLMs for evalu-
ation (Wang et al., 2023a) and annotating human
feedback judgments with language models. Addi-
tionally, PSC is applicable at training time, such as
denoising weakly labeled training sets generated by

teacher models, shown to be crucial to the success
of listwise-ranking LLMs (Pradeep et al., 2023).

We are not the first to establish positional bi-
ases in LLMs. Lu et al. (2022) are among the
earliest to relate prompt order to the quality of
in-context learning. The main difference in setup
is that they assume the presence of a training set,
whereas we do not, which especially matters for
passage ranking, as many tasks only have evalua-
tion sets. Recently, Liu et al. (2023) and Wang et al.
(2023a) characterized positional bias in the context
of list-oriented tasks, such as question answering
and response evaluation. However, we are to our
knowledge the first to characterize the position bi-
ases of passage-ranking LLMs with respect to pair-
wise item positions, and our work also proposes
a correction technique. Moreover, Pezeshkpour
and Hruschka (2023) and Li et al. (2023) apply
prompting-based techniques for mitigating posi-
tional bias. Prompting is not mutually exclusive of
our PSC, and it could be complementary.

Lastly, our paper is connected to all the meta-
algorithms for improving LLM generation. As a
pertinent example, Lu et al. (2022) study prompt
order on in-context learning classification tasks,
proposing an entropy-based statistic over devel-
opment sets to find performant permutations of
few-shot examples. Aggarwal et al. (2023) make
self-consistency more efficient, halting the proce-
dure when enough samples have been collected.
To keep our method in its simplest form, as self-
consistency had not been applied to listwise rank-
ing to begin with, we based our design on the origi-
nal approach (Wang et al., 2023b).

6 Conclusions

We introduce a novel decoding method to improve
the ranking ability of black-box LLMs by mitigat-
ing potential sensitivities and biases to list item
order. We intervene on prompt list order to pro-
duce multiple rankings then return an aggregated
statistic as the prediction, which has less associ-
ation with list order. Theoretically, we prove the
robustness of our method to arbitrary, fixed noise
distributions. Empirically, our method consistently
improves upon ordinary decoding on all 15 of our
sorting model–dataset combinations and 13 out of
16 of our passage reranking ones. Finally, our sen-
sitivity analyses justify our design choices of 20
output rankings, zero sampling temperature, and
the Kemeny ranking method.
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Limitations

We share limitations with those of the original self-
consistency paper (Wang et al., 2023b). We use
multiple LLM calls, potentially to a commercial
LLM, which would raise financial cost. Thus, prac-
tical applications may require careful weighing of
quality gain against elevated expense. Nevertheless,
a few calls already help, and returns rapidly dimin-
ish past 5–10 calls. We note that our method does
not in practice increase latency by much, since all
calls can be parallelized, and aggregation time does
not rise with the number of samples. For further
discussion, see Appendix D.3.

Another limitation is that GPT-3.5 and GPT-4
are proprietary models lacking official documenta-
tion of its internals. We acknowledge that this is an
ongoing issue in the natural language processing lit-
erature as of 2023, with many publications relying
on the continued existence of these endpoints. To
partially alleviate this, we have run experiments
on the open-source Mistral (Jiang et al., 2023),
Zephyr (Tunstall et al., 2023), LLaMA 2 (Touvron
et al., 2023), and RankVicuna (Pradeep et al., 2023)
models where possible.

Finally, our study is intentionally restricted
to automated evaluation in an academic setting.
Kendall’s tau and nDCG@10, while standard met-
rics in evaluating ranking systems, do not exactly
capture human preferences. It remains to be deter-
mined how effective permutation self-consistency
is for, say, an in-production web search engine or
recommendation system.
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A Proofs of Propositions

Proposition A.1 (2.1). Let there be a true ranking
σ and a sequence of i.i.d. uniformly noisy rank-
ings σ̂ := {σ̂i}mi=1. Suppose each noisy ranking
σ̂k has a uniformly random, nonempty concordant
subset S′

k with σ, and the remaining rank elements
not in S′

k represent a random permutation. Then
the Kemeny–Young ranking σ̄ of σ̂ converges in
probability to σ, i.e., it is a consistent estimator.

Proof. Our strategy is to upper-bound the probabil-
ity that the number of discordant pairs between the
predicted rankings and the true ranking is greater
than the number of concordant pairs, then show that
this upper bound approaches zero with enough sam-
ples. Since the Kemeny-optimal ranking is defined
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as the ranking that exactly minimizes the difference
between these discordant and concordant pairs, the
probability that the Kemeny ranking is equivalent
to the true ranking shares this upper bound.

Let Aij be the event that the sum of discordant
pairs indexed by i and j between σ̂ and σ is greater
than the concordant ones, i.e.,

Aij :=

m∑

k=1

discij(σ, σ̂k) >
m∑

k=1

concij(σ, σ̂k)

=

m∑

k=1

discij(σ, σ̂k) > m−
m∑

k=1

discij(σ, σ̂k)

=

m∑

k=1

discij(σ, σ̂k) >
m

2
,

with convenience functions discij(σ1, σ2) :=
I((σ1(i) > σ2(j) ∧ σ1(i) < σ2(j)) ∨ (σ1(i) <
σ2(j) ∧ σ1(i) > σ2(j))) and concij := 1 −
discij(σ1, σ2) indicating pair discordance and con-
cordance according to the Kendall tau criterion.
The LHS of the event also defines a sum of inde-
pendent random variables (r.v.), each a Bernoulli
distribution

Xk = discij(σ, σ̂k) ∼ Bernoulli(pk). (7)

This is evident because each summand is a binary
outcome, which is independent based on the given
premise that σ̂ and concordant subsets {S′

k}mk=1

are each independent. The probability of Aij can
be equivalently stated as

P(Aij) = P(
m∑

k=1

Xk >
m

2
). (8)

We upper-bound the RHS. First, since S′
k is non-

empty and σ̂k’s elements not in S′
k are uniformly

random (as given by the premise), the chance of
drawing a discordant ranking is pk ≤ 1

2 − δ for
some δ > 0. Thus,

P(
m∑

k=1

Xk >
m

2
) ≤ P(

m∑

k=1

X >
m

2
) (9)

= P(
1

m

m∑

k=1

X >
1

2
), (10)

where X ∼ Bernoulli(12 − δ). By Hoeffding’s
inequality, we have for all ϵ > 0

P

(
1

m

m∑

k=1

X − (
1

2
− δ) > ϵ

)
≤ exp(−2mϵ2).

Let ϵ = δ. Then

P

(
1

m

m∑

k=1

X − (
1

2
− δ) > δ

)
(11)

= P

(
1

m

m∑

k=1

X − 1

2
> 0

)
(12)

= P

(
1

m

m∑

k=1

X >
1

2

)
(13)

= P(Aij) (14)

≤ exp(−2mδ2). (15)

We now consider the probability of any Aij , i.e., the
probability that the sum of discordant pairs indexed
by any i and j between σ̂ and σ is greater than the
concordant ones. By the union bound,

P(
⋃

i<j

Aij) ≤
∑

i<j

P(Aij) (16)

≤
(
n

2

)
exp(−2mδ2) (17)

≤ n2 exp(−2mδ2). (18)

Taking m → ∞, the RHS = 0. Since the Kemeny-
optimal ranking always chooses the ranking that
minimizes pairwise discordance (picking any other
ranking would increase the Kendall tau distance, a
contradiction with the definition of Kemeny opti-
mality), for m → ∞ we recover the true ranking
with probability 1, completing our proof that it is a
consistent estimator.

Proposition A.2 (2.2). Let there be a true ranking
σ and a distribution of noisy rankings P(σnoise),
where σnoise ◦ π always has a uniform, non-empty
concordant subset S with σ for any input ranking
π, and the elements not in S are uniformly random.
Then the permutation self-consistency procedure
is a consistent estimator of σ when applied to the
input π and the “LLM” characterized by P(σnoise).

Proof. Our technique is to show that the premises
of Proposition 2.2 can be transformed to those of
2.1, which we have a proof for. Let π be drawn
uniformly at random from the sample space of all
permutations, Ω, as in the first step of the permuta-
tion self-consistency procedure. From the premise
of both the concordant subset S of σnoise ◦π and its
complement SC being uniformly random, letting
σ̂ be realizations of σnoise ◦ π fulfills the premise
for Proposition 2.1. The rest of our proof follows
from that of 2.1.
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1. MathSort: Sort ten arithmetic expressions by value.

<User> Sort the following expressions from smallest to
largest: 3 / 5, 2 - 9, 6 * 5, 2 * 1, 3 / 1, 9 * 9, 1
- 9, 9 + 8, 3 / 5, 1 / 9. The output format should be
a comma-separated list containing the exact expressions;
do not reduce them. Only respond with the results; do
not say any word or explain.

2. WordSort: Order ten words alphabetically.

<User> Order these words alphabetically: aaron, roam,
aardvark, nexus, [...]. The output format should [...]

3. GSM8KSort: Unscramble sentences from GSM8K.

<User> Order the scrambled sentences logically:
- She took 1 hour to walk the first 4 miles [...]
- Marissa is hiking a 12-mile trail.
- If she wants her average speed to be 4 [...]
The output format should have each sentence on a new
line. Only respond with the results; do not say any [...]

Table 5: Full prompts for our three sorting tasks.
“<User>” is a model-specific prefix token qualifying
the subsequent message as belonging to the user for
instruction prompting.

B Detailed Experimental Setup

B.1 Computational Environment

We conducted the experiments on a machine run-
ning Ubuntu 22.04 with two Nvidia A6000 GPUs,
an AMD Epyc Milan 7B13 CPU, and 256GB of
ECC RAM. Our most relevant software frame-
works included PyTorch 2.1.0, Transformers 4.36.1,
PuLP 2.7.0, and CUDA 12.2. Where possible,
we used FlashAttention v2 (Dao, 2023; Dao et al.,
2022) and BF16 to accelerate the LLMs.

B.2 Sorting Tasks

Table 5 lists the full prompts used in our sorting
tasks. To extract the rankings, we examined the out-
puts and wrote regular expressions; all the models
capably generated well-formed, extractable text, in
line with the claims in their papers (Tunstall et al.,
2023; Jiang et al., 2023; Touvron et al., 2023). All
prompts fit in a context size of 4096 tokens.

Dataset settings. We made a few further consid-
erations in designing WordSort and MathSort. To
add difficulty to word sorting, for each example we
randomly mixed five consecutively ordered words
in the English language with five randomly picked
ones, e.g., mixing “aardvark, aaron, abacus ...” with
“dog, cat, shrew ...” On MathSort, we ensured that
all expressions evaluated to unique values within
an example (of 10 expressions). None of our lists
for any task were duplicates.

RankVicuna: Prompt from Pradeep et al. (2023).

<User> I will provide you with {num} passages, each
indicated by a numerical identifier []. Rank the passages
based on their relevance to the search query: {query}.

[1] {passage 1}
[2] {passage 2}
...
[{num}] {passage {num}}

Search Query: {query}.
Rank the {num} passages above based on their relevance
to the search query. All the passages should be included
and listed using identifiers, in descending order of rele-
vance. The output format should be [] > [], e.g., [4] >
[2]. Only respond with the ranking results, do not say any
word or explain.

RankGPT: Prompt from Sun et al. (2023).

<System> You are RankGPT, an intelligent assistant that
can rank passages based on their relevancy to the query.
<User> I will provide you with {num} passages, each
indicated by number identifier [].
Rank the passages based on their relevance to query:
{query}.

[1] {passage 1}
[2] {passage 2}
...
[{num}] {passage {num}}

Search Query: {query}.
Rank the {num} passages above based on their relevance
to the search query. The passages should be listed in
descending order using identifiers. The most relevant
passages should be listed first. The output format should
be [] > [], e.g., [1] > [2]. Only response the ranking
results, do not say any word or explain.

Table 6: Full prompts for our passage reranking task.
“<User>” and “<System>” are model-specific prefix to-
kens denoting the user and system roles. Nuances be-
tween RankVicuna and RankGPT include grammatical
changes and no system prompt.

B.3 Passage Reranking Task

Table 6 lists the full prompts for our passage rerank-
ing task, following prior art precisely (Sun et al.,
2023; Pradeep et al., 2023). We used the same
output extraction procedure from the official code-
bases as well, ensuring a faithful comparison.

For our OpenAI GPT endpoints, we deployed
GPT-3.5 Turbo (version 0613) and GPT-4 on Azure.
In total, at the current public price of $0.002 and
$0.03 per one thousand tokens,1 we estimate a cost
of $100–200 USD to reproduce the GPT passage
ranking results in their entirety, with GPT-4 con-
suming most of it.

1https://openai.com/pricing
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(a) Results reranked by GPT-3.5. Both PSC and conventional
inference rank the first document the same, but PSC correctly
ranks document #8204457 higher (second vs. fourth).

(b) Results reranked by GPT-4. Compared to the previous
example, PSC results in no difference.

Figure 7: The DL19 query “define visceral?” with relevant documents reranked without PSC on the left and with
PSC on the right of each subfigure.

Figure 8: The DL19 query “who is robert gray” with
relevant documents reranked without PSC on the left
and with PSC on the right, with GPT-4 as the model.

C Qualitative Examples

We present qualitative examples of our approach
on DL19 in Figures 7a, 7b, and 8. In Figures 7a
and 7b, we compare the outputs of GPT-3.5 and
GPT-4 with PSC, fixing the query to “define vis-
ceral?” We find that PSC improves GPT-3.5 but
not GPT-4, since GPT-4’s original output is already
correct, providing visual evidence for why PSC
attains more gains on GPT-4 than on GPT-3.5. In
Figure 8, GPT-4 with PSC ranks the third docu-
ment (#3641634) correctly higher (right) than GPT-
4 without PSC (left). In summary, these illustra-
tions suggest that the quantitative improvements of
PSC are not merely illusory.
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First Stage Top-k Method
TREC-DL19 TREC-DL20

Original Our PSC Original Our PSC

BM25 20 (1) Single (GPT-3.5, Reversed) 55.92 62.88 52.66 59.59
20 (2) Single (GPT-4, Reversed) 64.04 65.60 60.20 62.27
100 (3) RankGPT (GPT-3.5, Reversed) 56.76 57.32 51.03 55.73
100 (4) RankGPT (GPT-4, Reversed) 67.83 69.63 64.92 65.89

Table 7: nDCG@10 results on DL19 and 20.

Method MATHSORT WORDSORT GSM8KSORT

GPT-3.5 (PRP) 46.7 82.2 64.0
GPT-4 (PRP) 73.3 83.9 79.9

GPT-3.5 (PSC) 75.2 88.1 88.4
GPT-4 (PSC) 89.6 92.0 90.5

Table 8: Pairwise ranking prompting versus permutation
self-consistency on the sorting tasks.

Method MATH WORD GSM8K DL19 DL20

GPT-3.5 (Orig.) 64.0 85.9 82.1 68.00 62.08
GPT-3.5 (Borda) 74.6 87.9 88.1 70.09 62.54
GPT-3.5 (Our PSC) 75.2 88.1 88.4 70.77 62.70

GPT-4 (Orig.) 83.5 89.9 88.4 75.00 70.36
GPT-4 (Borda) 89.2 91.5 90.4 75.23 70.62
GPT-4 (Our PSC) 89.6 92.0 90.5 75.66 71.00

Table 9: Comparisons to using bootstrapping/Borda
count as the aggregation algorithm.

D Supplementary Results and Discussion

During the peer review process of this paper, our
reviewers helpfully suggested experiments to fur-
ther bolster the rigor of our claims. We explicitly
include most of them here, with the remaining feed-
back incorporated into the related work section.

D.1 Sorting Tasks

In Table 8, we demonstrate that our PSC approach
outperforms PRP-10 by 15 points in Kendall’s tau
on average, with higher gains on GPT-3.5. We
chose PRP-10 because it most closely matches ours
in computation time. Overall, these findings are in
line with our conclusions on the passage reranking
task, as shown in Table 4.

D.2 Passage Reranking Task

We additionally conducted experiments on revers-
ing input orders for passage reranking. Note that
it is inapplicable to sorting because the underlying
dataset is unordered, so reversing the input would
not affect the results. Shown in Table 7, our PSC
method improves the result by an average of 3.2

points; thus, it successfully mitigates position bias
regardless of the order used in the sliding window.

Finally, we show that PSC outperforms the boot-
strapping technique (or “Borda count,” as the rank
aggregation literature calls it) from Hou et al.
(2023). Presented in Table 9, our method consis-
tently outperforms bootstrapping on GPT-3.5 and
GPT-4, possibly because of Kemeny ranking’s the-
oretical optimality. The gains are roughly equal
between GPT-3.5 (0.39 average point increase) and
GPT-4 (0.42 points). We conclude that the choice
of rank aggregation algorithm matters.

D.3 Computational Burden
Finally, we discuss the difference in time and com-
putational cost of the proposed method compared
to other baselines. We concede computation time is
a general limitation of many self-consistency-style
works, as we acknowledge in our limitations sec-
tion. Our advantage is that PSC is embarrassingly
parallel and scales horizontally with ease, e.g., for a
choice of five repetitions, spinning up five instances
will be roughly equivalent to the original baseline
of one. Furthermore, our Kemeny-optimal aggrega-
tion method is virtually instantaneous for practical
sample sizes (less than 0.05 CPU seconds). This
contrasts with methods such as PRP that necessi-
tate, say, 20–200 sequential calls for a list size of
10 rather than our fully parallelizable 5–20.

Thus, even though in theory our method is
asymptotically linear, in practice the big-O con-
stant can be made “small” by horizontal scaling,
assuming the presence of parallel computing. As
a rough quantitative comparison, our experiments
run 20 parallel calls to multiple deployments of
GPT-3.5 and GPT-4, incurring a running time of no
more than 25% (in addition to) a single call.
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