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Abstract

Large Language Models (LLMs), such as
GPT3.5, have exhibited remarkable proficiency
in comprehending and generating natural lan-
guage. On the other hand, medical assistants
hold the potential to offer substantial benefits
for individuals. However, the exploration of
LLM-based personalized medical assistant re-
mains relatively scarce. Typically, patients con-
verse differently based on their background and
preferences which necessitates the task of en-
hancing user-oriented medical assistant. While
one can fully train an LLM for this objective,
the resource consumption is unaffordable. Prior
research has explored memory-based methods
to enhance the response with aware of previous
mistakes for new queries during a dialogue ses-
sion. We contend that a mere memory module
is inadequate and fully training an LLM can be
excessively costly. In this study, we propose
a novel computational bionic memory mecha-
nism, equipped with a parameter-efficient fine-
tuning (PEFT) schema, to personalize medical
assistants. To encourage further research into
this area, we are releasing a new conversation
dataset generated based on an open-source med-
ical corpus and our implementation code1.

1 Introduction

The potential of large language models to under-
stand and generate natural language is undeniable
(Brown et al., 2020; Chowdhery et al., 2022; Tou-
vron et al., 2023), while there is an untapped oppor-
tunity to explore how LLMs could be customised
to provide personalized medical advice with pa-
tients, allowing them to receive tailored responses
that best suit their individual needs (Bender and
Koller, 2020). For example, as depicted in Figure
1, medical practitioners can discern vital patient
information through ongoing diagnostic conversa-
tions. Consequently, responses to identical queries

∗Corresponding Author
1https://github.com/MatthewKKai/MaLP

Figure 1: Personalized responses for different users in
terms of the same query.

may differ based on individual patient nuances,
highlighting the imperative need for personalized
medical assistants leveraging LLM. Efforts have
been made to obtain proper prompts for steering
LLMs to enhance outputs. For example, by memo-
rizing previous mistakes and user feedback, given
a new query, a similarity-based retriever can be
leveraged to preemptively recognize and rectify
LLM errors(Dalvi et al., 2022; Madaan et al., 2022;
Lewis et al., 2020). However, this paradigm poses
us two challenges: Firstly, most existing memory
designs are dictionary-based (Madaan et al., 2022;
Lewis et al., 2020) (i.e. key-value form where key
is the previous mistake, value is the correspond-
ing user-feedback) which can be inflexible and rely
heavily on the power of retriever. Secondly, such
paradigm, without retraining, can barely provide
users with personalized and engaging experience.
For instance, a diabetes patient who prefers concise
and straightforward medical advice won’t expect
detailed glucose test explanations from a doctor
while others who prefer fully elaborated responses
may want to know as much as possible about the
disease (e.g., causes etc.). To this end, how to
process patient-relevant information properly and
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being aware of their preference can be crucial for
enhancing patients’ experience and remains under-
studied. In this paper, we propose a novel memory
mechanism along with a PEFT schema to enhance
LLM-based medical assistant personalization.

Dictionary-based memory is not pliable due
to its intricate structure and thus efforts can
only be made in strengthening retrievers. De-
spite the improvements made by retrievers like
semantic-similarity based and distance-closest
based(Madaan et al., 2022), we argue that the mem-
ory structure should be ameliorated to accommo-
date diverse information. Unfortunately, rare ef-
forts have been made to address this challenge.
Neuroscientists have revealed that real-world mem-
ory mechanism works in two processes, one can be
characterized as automatic and unconscious while
the other one is effortful and analytical(Kahneman,
2011). For example, acquiring a new skill initially
can be active and analytical, but as one’s profi-
ciency increases, it becomes more intuitive. This
is referred as Dual-process theory and correspond-
ingly, memory can be defined as three types: work-
ing memory, short-term memory (STM) and long-
term memory (LTM). Working memory is respon-
sible for filtering and buffering information, STM
holds knowledge for a short period, while LTM
stores knowledge for a longer duration (Roediger
and McDermott, 1995). Drawing inspirations from
this, we propose a novel Dual-Process enhanced
Memory (DPeM) mechanism of which three types
of memory cooperate smoothly under the guidance
of dual-process schema and thus can provide LLM
more useful knowledge from both user-specific and
common-sense aspects.

Furthermore, existing works in personalized
LLMs primarily focus on designing comprehensive
prompts that enable LLMs to generate contextu-
ally relevant responses aligned with user-specific
dialogue preferences (e.g., preferring concise re-
sponses) (Wang et al., 2023; Wu et al., 2023;
Wang et al., 2019). However, these methods of-
ten yield inferior performance compared to fine-
tuning approaches and are susceptible to the ex-
act formatting of the prompts (e.g., wording and
ordering) (Liu et al., 2022a). Another approach
proposed by Salemi et al. (2023) involves incorpo-
rating user profiles during the pretraining stage,
enabling LLMs to possess user-specific knowl-
edge for downstream tasks. Nevertheless, train-
ing fully personalized LLMs for individuals can be

economically unviable. To this end, we embrace
the utilization of PEFT which focuses on updat-
ing a small subset of parameters, ensuring that the
trained LLM achieves promising performance on
new tasks while minimizing computational costs,
to develop user-oriented LLMs with reduced time
and resource consumption.

In tandem, we propose a novel memory mech-
anism inspired by neuroscience, and along with
a PEFT training strategy to achieve LLM-based
medical assistant personalization. The key contri-
butions of our work are as follows:
• We propose a novel DPeM mechanism that

closely resembles real-world memory processes
which lead to a relatively 7% improvement against
existing memory structure.
• We propose MaLP, a unified frame based on

DPeM and PEFT which promotes the response’s
quality by catering to user-specific needs.
• We introduce a new medical dialogue dataset

that incorporates user preferences and historical
records. This dataset offers a unique perspective to
explore personalized medical assistants.

2 Methodology

2.1 Preliminary Definition

Before going further, we would like to give our
preliminary definitions first. Given multi-round
dialogues between two characters (e.g., patient
and doctor) which is denoted as D = {d0, ..., dn}
where n is the number of rounds, our task here is
to learn and memorize the knowledge from D to
form a memory M and fine-tune a large language
model (LLM) Φ to produce personalized response
y in terms of a new query x from the same user
with respect to (w.r.t) D and M.

2.2 Medical Knowledge Adaptation

To help the LLM provide better responses, we pro-
pose to first incorporate more medical knowledge
via a domain adapter(Zhang et al., 2023). The
adapter architecture consists of a down-projection
layer, a non-linearity function (e.g., ReLU(Agarap,
2018)), and an up-projection (e.g., a fully con-
nected network). Note that all parameters, ex-
cept those pertaining to the domain adapter, re-
main frozen. However, directly using such domain
adapter will lead to the catastrophic forgetting prob-
lem(Gururangan et al., 2020). This phenomenon
entails the risk that the LLM may lose its inher-
ent capabilities after training on domain-specific
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knowledge using an adapter. To solve this, we pro-
pose leveraging a sample loss, which gauges the
output disparity before and after the knowledge
adaptation process for the same query. Given a
medical text with K masked tokens, the knowledge
loss can be LK = − 1

K

∑M
i=1 log p(mi) where

p(mi) is the probability of generating mi, and the
sample loss can be defined as LS = ||Vo, Vk||22,
where the Vo is the vector representation of tokens
from the original layer and Vk is the vector repre-
sentation of tokens from the layer that installed the
adapter. The overall knowledge adaptation can be
trained by simply adding those two losses. We use
the trained LLM with external medical knowledge
as the base LLM in the following steps.

2.3 DPeM Mechanism

The key novelty that differentiates our work with
previous efforts is that we turns into excavating
the improvements regarding the intricate memory
structure instead of studying solely on retriever.
Drawing inspirations from Kahneman (2011), we
aim to design a memory mechanism that closely re-
sembles real-world memory processes. To achieve
this, we propose a dual-process (Rehearsal Process,
Executive Process) enhanced procedure which con-
sists of three steps - Learning, Summarizing and
Memorizing. The Rehearsal Process involves learn-
ing information from D, which is then stored in
working memory. The working memory is re-
freshed iteratively based on the dialogue’s content
of current iteration—this is the summarizing step.
The two-step rehearsal process is facilitated by a
coordinator with powerful natural language under-
standing abilities. Next, the information stored in
working memory is evaluated to determine whether
it needs to be stored in Short-Term Memory (STM)
or Long-Term Memory (LTM) based on the fre-
quency of access by the Executive Process. This
dual-process is illustrated in Figure 2 by the green-
box and the three-colored lines. The detailed mem-
ory structure and working flows of DPeM are de-
picted in the following sections.

2.3.1 Memory M:
As prescribed, M does not consist of a single type
of memory. Instead, it comprises different types
of memory that store and access information in
their own way, while working together for better
knowledge management through dual-process. In-
tuitively, there will be a vast amount of information
that needs to be registered when learning some-

Figure 2: Overview of MaLP: the user’s historical di-
alogues will firstly be passed to a coordinator C and a
trainable LLM equipped with PEFT iteratively for mem-
ory generation and causal language modeling, respec-
tively. Then the memory generation module will form a
memory using DPeM mechanism where dual-process is
denoted in green box along with three steps denoted in
colored lines separately. After iterations completed, a
new query by the user will be passed to a retriever for
corresponding memory lookup and then the fine-tuned
LLM will produce the personalized response in terms
of the retrieved knowledge and historical dialogues.

thing new and not all those information will be
stored directly and entirely into memory. Instead,
a working memory acts as a buffer memory to reg-
ister and filter information so that only the relevant
information enters STM, while the rest is dropped.
Short-term memory refers to a limited space that
holds a small amount of knowledge in an active,
quickly accessible state. Long-term memory stores
knowledge transited from STM for a longer period.
Being aware of the differences in information stor-
age and access, our memory mechanism enhances
LLM by incorporating knowledge from both user-
specific and common-sense perspectives. All the
three types of memory are in the form of a growing
table which support different operations but work
collaboratively as shown in Table 1.
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Type Refresh Storage Sup. Lookup?
Mworking Each Iteration Limited %

MSTM Certain Rounds Limited !

MLTM Never Unlimited !

Table 1: Comparison among three types of memory.

2.3.2 Rehearsal Process
Rehearsal refers to the process of obtaining and
refreshing information so that the relevant informa-
tion can be filtered and stored as knowledge into
memory. Learning aims at gathering information
from the dialogue’s content of the current iteration.
Inspired by how humans take notes when learn-
ing something new, we leverage C, which takes all
the necessary notes for each iteration’s dialogue.
Formally, by passing di ∈ D to C iteratively, we
obtain some notes denoted as nts = C(di) which
will be recorded into working memory. Typically,
not all the notes will be practical which makes the
summarizing step indispensable within the DPeM
mechanism. Summarizing steps further by purify-
ing the relevant notes from nts and pass them into
STM. Specifically, the coordinator will determine
if the nt ∈ nts is relevant or not and store the use-
ful nt+ as knowledge item by item and the stored
knowledge is delivered to STM and is denoted as
K = [k0, ..., km] where ki = nt+i .

2.3.3 Executive Process
Executive Process mainly focuses on and memo-
rizing the knowledge produced from rehearsal pro-
cess. The main objective of DPeM is to process and
store information based on its importance level and
user-specific needs, an aspect that previous works
have paid little attention to. Specifically, the fil-
tered knowledge k will firstly be categorized as two
types: Common-sense Knowledge, User-Specific
Knowledge and then be converted into the STM in
the form of key (type) - value (ki) pair. As the learn-
ing iteration progresses, a flag table ft is used to
keep track of the frequency of appearance for each
ki. When the frequency reaches a predetermined
threshold θ, the ki is transferred to LTM. Notably,
STM is refreshed periodically after certain rounds
(working memory is refreshed after each iteration)
while LTM typically only accepts new ki entries.
The final memory structure consists of three parts:
Working Memory, STM, and LTM. Working Mem-
ory serves as a buffer for storing newly detected
information, STM stores relevant and recent knowl-
edge, and LTM provides longer-term access to fre-

quently visited knowledge from STM. Through the
collaboration of these three types of memory, along
with the dual-process approach, DPeM provides a
more powerful memory system to further support
personalized LLM.

2.4 MaLP Frame
2.4.1 Memory Generation
Memory can provide latent knowledge from per-
sonal historical stream which can further be ne-
glected as prompts to assist LLM for producing de-
sired responses regarding new queries. Attributed
to our proposed DPeM mechanism, the memory
generation module can produce a well-organized
memory which can support different storage and
lookup operations in terms of information features
as can be seen in Fig. 2. Given dialogues D, the
memory formation can be described as follows:

Mworking = {nt0, ..., nti, ...},
MSTM = {..., k_type : kj , ...},
MLTM = {..., k_type : kf , ...},

M = [Mworking,MSTM ,MLTM ]

(1)

where nti = C(di), kj = nt+i , kf denotes fre-
quently visited kj from MSTM . The comparison
among these three types of memory can be seen in
the Table 1.

2.4.2 Memory Utilization
However, relying solely on memory for achieving
personalized LLMs still poses challenges, as the
quality of generated responses ultimately depends
on the understanding and generation ability of the
LLM, even with memory-augmented prompts and
pre-injected knowledge. Therefore, fine-tuning the
LLM to cater to user-specific needs naturally be-
comes an option for enhancing LLM personaliza-
tion. However, traditional fine-tuning approaches
often demand significant computational and data re-
sources, whereas our aim is to optimize the LLM’s
response generation in a user-friendly manner by
leveraging previous dialogues. In this regard, PEFT
methods (Li and Liang, 2021; Liu et al., 2022b,c)
offer a solution by achieving this objective with
low resource consumption.

To tune the base LLM (e.g., LLaMA) with user’s
previous dialogues and enable it to generate user-
favorable responses, we employ the Low-Rank
Adaption (LoRA) technique (Hu et al., 2021). With
LoRA, we update a given pre-trained weight ma-
trix WΦ ∈ Rd×k of LLM by incorporating a low-
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rank decomposition WΦ + ∆W = WΦ + BA.
Here, B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k). During the fine-tuning process,
we randomly select a set number of layers to im-
plement LoRA, where A and B are trainable while
WΦ remains frozen. This allows us to target user
preferences and adapt the LLM accordingly.

Once all iterations are completed, we acquire
a LoRA-tuned LLM along with a latent memory
that caters to user-specific needs. Typically, when
a new query x is received, the responding process
is presented as:

x → Φ → y (2)

however, by using MaLP, the process is refined as:

p = Retriever(x),

x, p → Φ̂ → y
(3)

where p is the prompt retrieved from M,
Retriever is a function that can retrieve knowl-
edge from M in terms of query x and Φ̂ is the
LoRA-tuned LLM. The utilization process is de-
noted in orange lines as can be seen in Figure 2.

2.4.3 Components
In the MaLP framework, several key components
actively engage in memory generation and utiliza-
tion to ensure efficient collaborations:
Coordinator C: C plays a pivotal role in the learn-
ing and summarizing stage which involves deriving
information from dialogue contexts and purifying
knowledge from learned information (Xu et al.,
2023). Thus we resort to a powerful tool (e.g.,
ChatGPT) that is capable of understanding the long
dialogue and performing summarization and judge-
ment(Xu et al., 2023).
Retriever R: Retrieval is the process by which
the retriever accesses stored knowledge. However,
since the memorized knowledge differs between
STM and LTM, their retrieval processes also differ.
STM is retrieved in the order in which it is stored,
while LTM is retrieved through association(e.g.,
recalling a past mistake by recognizing its similar-
ity(Kahneman, 2011)). To address this, we have
designed two retrievers: a closest-match retriever,
Rc, for STM retrieval, and a semantic-match re-
triever, Rs, for LTM retrieval. Rc aims to find
the knowledge stored in STM that is closest to the
query in terms of Levenshtein distance, which indi-
cates the minimum number of deletions, insertions,
or substitutions required to transform string s into

string t (e.g., lev(′test′,′ tent′) = 1 since only one
step ′s′− >′ n′ is needed). However, since the re-
trieval process for LTM is fast and unconscious, we
have chosen to train an encoder to obtain semantic
embeddings and retrieve knowledge in LTM based
on cosine similarity (Madaan et al., 2022).

3 Data

3.1 Data Construction

Existing dialogue datasets often lack awareness of
the importance of penalization, while recent works
like Xu et al. (2023) have explored the capability
of LLMs to generate high-quality chat corpora. In
light of this, we propose injecting user profiles into
the dialogue generation process using self-chat sim-
ulations within real-world conversational scenarios.
Specifically, we focus on medical scenarios as they
typically involve dialogues between patients and
doctors, encompassing a wealth of common-sense
information (e.g., Tylenol can alleviate fever) and
personal details (e.g., chronic diseases, dialogue
preferences). These scenarios allow us to empha-
size the significance of memory and personaliza-
tion, respectively. To obtain personalized dialogues,
one straightforward method is to incorporate user’s
profile into a language model prompt. We first
derive the patient’s profile including personal infor-
mation, symptoms and dialogue preference from
the publicly available medical corpus2 (Chen et al.,
2020) and then follow Xu et al. (2023)’s work us-
ing self-chat to guide powerful chat models (e.g.,
ChatGPT) simulate high-quality dialogues. The dif-
ference is that we endow the patient’s and doctor’s
profile to the chat model at the beginning of conver-
sation simulation. Further, we prompt the powerful
chat model to produce follow-up dialogues related
to the same symptom, new symptoms etc. to ob-
tain historical information. The whole construction
pipeline and detailed statistics can be seen in Figure
3 and Appendix A, respectively.

3.2 Safety and Evaluation

Safety Unlike most dialogue data generated by
chatting with human, our dataset does not rely
on human feedback to suppress unwanted content
(e.g., incorrect medicine suggestions) and instead
we resort to providing explicit prompts that can
steer the generation behaviors. While we have
tested the default prompts, it can still be risky to

2https://github.com/UCSD-AI4H/Medical-Dialogue-
System
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Figure 3: Details of data collection process: we first de-
rive patient’s profile from public medical corpus and
then endow the patient’s profile to a powerful chat
model. Assistant role (e.g., doctor) will be simulated
independently using the same chat model and thus we
could collect the historical dialogues via self-chat be-
tween these two roles.

have the guidance missed by changing the prompts.
Evaluation To further assess our dataset, two mas-
ter students with medical background are hired for
evaluating the quality of the dataset by identifying
any dirty content and safety issues on 100 random
samples3. The average quality score was found to
be 5.27, and the safety ratio, indicating the propor-
tion of instances without safety issues, was 94%.

4 Experiments

4.1 Setup

For the medical knowledge injection, we use the
open-source datasets from HealthCareMagic-100k
and iCliniq4 (Yunxiang et al., 2023) and set the
learning rate as 1e-4, batch size as 20, and weight
decay as 0.05 for training. To train our MaLP,
we leverage the AdamW optimizer(Loshchilov and
Hutter, 2018) with a learning rate of 5e-5 and also
a linear warm-up scheduler initialized with 10%
of the total training steps as warm-up steps and
a weight decay of 1e-4 to avoid over-fitting. The
LoRA’s rank of update matrices is set as 8 and the
scaling factor alpha is 32. To accommodate the
task of requirements, we set the maximum length

3Quality scoring is depicted in the Appendix B
4https://github.com/Kent0n-Li/ChatDoctor

of input and output to 1024 and 2048 tokens, re-
spectively. All implementations are conducted with
Pytorch(Paszke et al., 2017), PEFT(Mangrulkar
et al., 2022) and Transformers(Wolf et al., 2020)
on a computation node configured with a 256G
CPU and two 32G Tesla V100 GPUs.

4.2 Baselines

Considering the contributions of our work, we opt
to compare our DPeM and MaLP with three dif-
ferent configurations: Standard, with dict-based
Mem(Madaan et al., 2022) and with LoRA(Hu
et al., 2021) in terms of three current SOTA LLMs
as base models5: GPT3.5, LLaMA-7B, LLaMA-
13B(Touvron et al., 2023).

4.3 Tasks and Metrics

We follow the evaluation methods of Salemi et al.
(2023) and Wang et al. (2023) to assess the perfor-
mance of our proposed approach on three tasks:
Question Answering (QA) - We evaluate the
effectiveness by posing user-relevant/knowledge-
relevant questions to the model and comparing its
generated answers with the truth from the user pro-
file and memory. The ROUGE-1 and ROUGE-L
metrics are used for evaluation;
Preference Classification - We also assess person-
alization by prompting the trained model to select
the user’s dialogue preference from a pre-defined
set and measure performance using Accuracy;
Response Generation - In addition to empirical
results, we evaluate the quality of responses gener-
ated by the trained LLM for new queries from the
same user in terms of the content and preference.
To do so, we follow the scoring method of Wang
et al. (2023) and calculate the Win Rate between
different settings and the standard generation of the
base LLM. Furthermore, we conduct human eval-
uation to validate the alignment of this automatic
scoring schema with human judgments.

4.4 Comparative Study

Table 2 presents the main evaluation results for Pro-
file/Knowledge QA, Preference Classification, and
Response Generation tasks. The addition of mem-
ory improves the performance of both GPT3.5 and
LLaMA LLMs compared to the standard setting,

5Due to the resources limitation, we are unable to test
larger scale LLMs; Finetuning GPT3.5 is a black-box, we
didn’t find a way to apply LoRA on GPT3.5 and some results
are omitted. However, the results express the power of MaLP.
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Model Type Profile QA Knowledge QA Pref. Classification Response Generation
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L Accuracy % Win Rate %

GPT3.5
Standard 32.07 30.81 35.62 31.78 36.31 -
w Mem 34.93 34.27 40.19 38.27 41.73 80.91

w DPeM 40.81 38.78 40.87 39.51 47.72 86.60
w LoRA - - - - - -
w MaLP - - - - - -

LLaMA-7B

Standard 21.41 19.82 25.01 23.69 21.42 -
w Mem 21.90 20.44 32.90 31.17 21.15 78.41
w DPeM 22.37 20.97 35.07 33.98 33.06 84.60
w LoRA 30.89 29.66 34.90 33.60 61.05 72.01
w MaLP 35.59 33.91 36.91 36.37 69.95 91.53

LLaMA-13B

Standard 22.67 21.02 26.91 23.98 24.37 -
w Mem 23.10 21.39 34.06 32.47 23.68 78.92
w DPeM 23.57 22.01 36.90 35.09 34.96 84.81
w LoRA 31.29 29.96 36.79 34.99 62.47 71.93
w MaLP 35.97 34.63 37.88 37.07 71.05 91.27

Table 2: The main results on different tasks.

as it provides additional knowledge prompts to en-
hance the LLM’s understanding of user queries.
However, our novel DPeM exhibits superior per-
formance in assisting LLMs. When combined
with GPT3.5 as the base LLM, DPeM outper-
forms the dict-based memory setting (Madaan et al.,
2022) with relative improvements of 13.16% and
3.24% in ROUGE-L scores for profile QA and
knowledge QA tasks, respectively. Additionally,
DPeM demonstrates better user-specific assistance
by achieving a 14.35% increase in classification
accuracy compared to dict-based memory and a
7.03% higher win rate for response generation.
Similarly, when configured with LLaMA-7b as the
base LLM, DPeM achieves relative improvements
of 2.59% and 9.02% in profile and knowledge QA
tasks, respectively, along with 56.31% and 7.89%
enhancements in classifying user preferences and
generating personalized responses. These improve-
ments can be attributed to the novel dual-process
schema of DPeM, where the rehearsal process re-
freshes and rewrites knowledge to reduce the risk
of retrieving irrelevant information, and the execu-
tive process memorizes knowledge in a distinguish-
aware manner, leading to more effective retrieval.

One interesting thing we observed is that despite
the improvements made by DPeM, it’s still insuf-
ficient for acquiring user-specific needs. However,
by leveraging LoRA as can be seen in the results
of QA tasks using LLaMA as the base, DPeM
achieves a greater improvement on knowledge
QA than profile QA while using LoRA achieves
a greater improvement on profile QA. Moreover,
LoRA helps LLM to know user preference better
as it boosts the accuracy of classifying user prefer-
ence by 39.63% while using DPeM solely improves

the accuracy by 11.64% compared with standard
setting. However, despite the user-specific need de-
tected by using LoRA, we notice that using LoRA
solely is not comparable with using memory on re-
sponse generation which indicates the importance
of memory in our whole MaLP.

By combining DPeM and LoRA into a unified
framework, our MaLP approach can effectively in-
corporate both user-specific needs and knowledge
detected from previous dialogue history, resulting
in the best performance across all three evaluation
tasks compared to other configurations. One more
notable thing is that the nuanced distinction in lan-
guage understanding and generation across various
base models may result in subtle differences. These
findings further validate the effectiveness and supe-
riority of our novel DPeM mechanism as well as
the unified MaLP frame.

4.5 Ablation Study

We further conduct ablation study to validate the
completeness of our proposed frame. From table
3, we notice that with knowledge injection, the
performance of knowledge QA improves which
aligns our intuition to inject domain knowledge first
for better responses. When equipped with DPeM,
LoRA and fully configured MaLP, the observation
stays the same as discussed in the Section 4.4.

4.6 Response Quality Study

In addition to the main comparisons with standard
settings and previous efforts, we conducted further
experiments to explore the roles of different mod-
ules as the historical information increases. As
shown in Figure 4, our MaLP approach consis-
tently improves the quality of generated responses

2392



Model Type Profile QA Knowledge QA Pref. Classification Response Generation
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L Accuracy % Win Rate %

LLaMA-7B

Standard 21.41 19.82 25.01 23.69 21.42 -
w Injection 21.39 19.82 33.98 34.11 21.07 73.67
w DPeM 22.37 20.97 35.07 33.98 33.06 84.60
w LoRA 30.89 29.66 34.90 33.60 61.05 72.01
w MaLP 35.59 33.91 36.91 36.37 69.95 91.53

Table 3: The ablation study results on different modules.

Figure 4: The quality of generated response increases
with the number of historical dialogues.

and outperforms other configurations. Notably, the
quality of generated responses fluctuates in the
first 20 rounds as depicted in Figure 4 which we
attribute this to the accumulation of knowledge
during the initial rounds. Moreover, as the num-
ber of dialogue rounds increases, the oscillation
of the dict-based memory is larger compared to
that of DPeM. This indicates that our DPeM mech-
anism effectively reduces the chances of incor-
rect knowledge retrieval through its dual-process
schema. These findings further confirm the stability
and effectiveness of MaLP.

4.7 Case Study
We further conduct a case study to show the qual-
ity of generated response under the assistance of
MaLP compared with other baselines. As Figure
5 shows, given the background and the new query,
our MaLP receives the highest score since it takes
both the user historical knowledge (i.e. diabetes) in-
cluding preference (i.e. prefer concise suggestions)
learned by peft and the common-sense knowledge
(i.e. keeping skin moisture etc.) into consideration
for response generation. While standard settings
only generate response in a general manner and
the dict-based memory method only relies on the
knowledge stored in its memory which lacks the
aware of user-specific needs, thus leading inferior
scores. In tandem, our frame along with the novel

DPeM and PEFT training enables LLMs to pro-
vide more engaging dialogue experience towards
user-specific needs.

4.8 Human Judgement

To validate the alignment of our automatic scor-
ing schema with human judgements, we follow the
work of Wang et al. (2023) to conduct point-wise
evaluation. Specifically, two master students are
hired and 100 response pairs are sampled (i.e., re-
sponses generated by standard setting and MaLP
using LLaMA-13b). Then we ask the students to in-
dicate which response is better by selecting 1(win),
0(tie) and -1(lose) for each pair. Next, we calculate
the Pearson Correlation Coefficient (P.C) and also
the accuracy between human scores and automatic
scores. The P.C of 0.72 and the accuracy of 84% to-
gether indicate the feasibility and high confidence
of our evaluation method.

5 Related Work

Memory-Augmented LLM refers to apply a mem-
ory that contains user feedback from previous mis-
takes and by prepending or postpending the new
input query with the stored feedback, the output of
LLM can be improved(Ouyang et al., 2022). Ef-
forts have been made in terms of the usage of mem-
ory. Tandon et al. (2021) first proposed to leverages
a corrector that can correct the model’s output in
terms of the similar mistake stored in the memory
previously. However, this method aims to repair the
wrong output while Madaan et al. (2022) argued
that the stored experience can be used to avoid in-
correct output by prepending/postpending the feed-
back to the new query. Another usage of memory
is to include the memory into a learning frame such
as self-learning or teacher-student paradigm so that
the LLM can learn by iterative refinement(Madaan
et al., 2023; Dalvi et al., 2022). In tandem, the
key for better usage of memory is to equip power-
ful retrievers(Guu et al., 2020; Lewis et al., 2020;
Yuan et al., 2022). The main difference between
our work and the previous work is that our work
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Figure 5: A case study showing the quality of generated response in terms of different settings.

refine the memory structure, instead we design a
close-to-real memory mechanism that can better
identify and retrieve information for enhancement.
Personalized LLM has seen increasing attentions
since it can provide tailored experience that aligns
with their user’s expectations in terms of their
needs(Salemi et al., 2023). Previous works fo-
cused on identifying user preferences by Ceteris
Paribus(CP)-nets(Asher et al., 2010). Unfortu-
nately , this kind of methods suffer from its lim-
ited ability of natural language understanding. As
LLMs emerged, prompt-based methods attempt to
design in-depth prompts such as chain-of-thoughts
prompts that can guide LLM to produce desired
output with aware of user status and context con-
tent(Wang et al., 2023; Wu et al., 2023; Aher et al.,
2023). Another way resorts to enhancing LLMs
with aware of user information and fine-tuning
LLMs to generate responses towards user-specific
needs. For example, Korbak et al. (2023); Salemi
et al. (2023); Xu et al. (2023) tried to inject user
profile information in the pre-training stage and
fine-tune the LLM in terms of the learned prefer-
ences from user. Unfortunately, fully trained LLMs
can be too resource-consuming, thus we propose
to leverage parameter-efficient fine-tuning (PEFT)
techniques and along with our novel memory mech-
anism for personalization. Distinctively, our work
stands out from previous research as we pioneer
the conception of a realistic memory mechanism
and additionally, we employ PEFT techniques to
not only attain but also amplify the effectiveness of
personalized medical assistant.

6 Conclusion & Future Work

In summary, we proposed MaLP which integrates a
novel dual-process enhanced memory mechanism
and a peft approach to enhance medical assistants
with awareness of user-specific needs. This simple
yet effective endeavor enables personalized LLMs
while maintaining low resource consumption. Ad-
ditionally, our innovative data construction method
provided the community a fresh perspective to ex-
plore personalized medical assistant. The extensive
experiments and human judgment tests conducted
validate the effectiveness of our work.

Limitations

Despite the empirical success and the production of
superior responses, our simple yet effective method
remains in the prototype stage. Three notable limi-
tations warrant attention. Firstly, our memory op-
erates in an offline fashion, resembling a smoothly
collaborative database. Regrettably, it is incapable
of learning from new queries, functioning merely
as auxiliary prompts rather than an integral part
of the intricate knowledge possessed by the LLM
itself. Our dedicated team is actively engaged in
the process of incorporating all aspects of mem-
ory into the inside of the base LLM. This involves
leveraging multiple peft modules to emulate the
workflow of the brain’s memory mechanism.

Secondly, the forgetting mechanism in our cur-
rent implementation relies on frequency counting.
However, in scenarios such as avoidance learning
(e.g., "fire touch can lead to fire fear"), our DPeM
mechanism can encompass a more comprehensive
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approach. To address this, we plan to introduce
learning schemas/losses in the subsequent phase to
regulate and control avoidance behavior. We’re ex-
cited about making these limitations into novelties
in the near future.

Thirdly, applying this technology to real-world
scenarios can be complex. For instance, in the
case of millions of users, allocating a 7B model
for each user could be prohibitively expensive. Al-
ternatively, a large language model (LLM), such
as a 175B model, could be employed. This ap-
proach involves allocating layers to different users
while sharing common community features. How-
ever, privacy concerns, such as information leak-
age, may arise. Our initial approach to address-
ing this issue is to leverage Federated Learning to
model the framework, although further discussion
is warranted to delve into the specifics. Our team
is dedicated to exploring this direction further.
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A Appendix A. Data Statistics

The statistics of our generated dataset can be seen
in the Table 4

Attributes Value
Num of User 60
Avg. Rounds 182
Avg. Length 877

Num of Dialogue 10,920
Num of Utterance 131,040

Table 4: Statistics of dataset

B Appendix B. Data Quality Scoring form

Quality was scored based on the presence of hallu-
cinations, irrelevant content, dirty content, invalid
symbols, offensive content and harmful sugges-
tions. Each criterion resulted in a deduction of
one point, with a total of 6 points. Safety evalua-
tion focused on identifying profanity, inappropriate
suggestions and any presence of safety issues was
indicated by answering "yes". The scoring table
can be seen in Table 5. We calculate the average
quality score based on the forms from annotators.
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Aspect Explanation Answer
Hallucinations Contains Wrong facts

Invalid symbols Contains invalid symbols
Offensive content Contains insulation / profanity

Dirty content Answers are with unwanted preferences
Harmful suggestions Contains harmful treatment for patients

Irrelevant content The answer is not relevant to the question

Table 5: Quality Scoring Form
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