@inproceedings{varadarajan-etal-2024-alba,
title = "{ALBA}: Adaptive Language-Based Assessments for Mental Health",
author = {Varadarajan, Vasudha and
Sikstr{\"o}m, Sverker and
Kjell, Oscar and
Schwartz, H. Andrew},
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.136",
doi = "10.18653/v1/2024.naacl-long.136",
pages = "2466--2478",
abstract = "Mental health issues differ widely among individuals, with varied signs and symptoms. Recently, language-based assessments haveshown promise in capturing this diversity, but they require a substantial sample of words per person for accuracy. This work introducesthe task of Adaptive Language-Based Assessment (ALBA), which involves adaptively ordering questions while also scoring an individual{'}s latent psychological trait using limited language responses to previous questions. To this end, we develop adaptive testing methods under two psychometric measurement theories: Classical Test Theory and Item Response Theory.We empirically evaluate ordering and scoring strategies, organizing into two new methods: a semi-supervised item response theory-basedmethod (ALIRT) and a supervised Actor-Critic model. While we found both methods to improve over non-adaptive baselines, We foundALIRT to be the most accurate and scalable, achieving the highest accuracy with fewer questions (e.g., Pearson r {\mbox{$\approx$}} 0.93 after only 3 questions as compared to typically needing at least 7 questions). In general, adaptive language-based assessments of depression and anxiety were able to utilize a smaller sample of language without compromising validity or large computational costs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="varadarajan-etal-2024-alba">
<titleInfo>
<title>ALBA: Adaptive Language-Based Assessments for Mental Health</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vasudha</namePart>
<namePart type="family">Varadarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sverker</namePart>
<namePart type="family">Sikström</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oscar</namePart>
<namePart type="family">Kjell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Mental health issues differ widely among individuals, with varied signs and symptoms. Recently, language-based assessments haveshown promise in capturing this diversity, but they require a substantial sample of words per person for accuracy. This work introducesthe task of Adaptive Language-Based Assessment (ALBA), which involves adaptively ordering questions while also scoring an individual’s latent psychological trait using limited language responses to previous questions. To this end, we develop adaptive testing methods under two psychometric measurement theories: Classical Test Theory and Item Response Theory.We empirically evaluate ordering and scoring strategies, organizing into two new methods: a semi-supervised item response theory-basedmethod (ALIRT) and a supervised Actor-Critic model. While we found both methods to improve over non-adaptive baselines, We foundALIRT to be the most accurate and scalable, achieving the highest accuracy with fewer questions (e.g., Pearson r \approx 0.93 after only 3 questions as compared to typically needing at least 7 questions). In general, adaptive language-based assessments of depression and anxiety were able to utilize a smaller sample of language without compromising validity or large computational costs.</abstract>
<identifier type="citekey">varadarajan-etal-2024-alba</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.136</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.136</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2466</start>
<end>2478</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALBA: Adaptive Language-Based Assessments for Mental Health
%A Varadarajan, Vasudha
%A Sikström, Sverker
%A Kjell, Oscar
%A Schwartz, H. Andrew
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F varadarajan-etal-2024-alba
%X Mental health issues differ widely among individuals, with varied signs and symptoms. Recently, language-based assessments haveshown promise in capturing this diversity, but they require a substantial sample of words per person for accuracy. This work introducesthe task of Adaptive Language-Based Assessment (ALBA), which involves adaptively ordering questions while also scoring an individual’s latent psychological trait using limited language responses to previous questions. To this end, we develop adaptive testing methods under two psychometric measurement theories: Classical Test Theory and Item Response Theory.We empirically evaluate ordering and scoring strategies, organizing into two new methods: a semi-supervised item response theory-basedmethod (ALIRT) and a supervised Actor-Critic model. While we found both methods to improve over non-adaptive baselines, We foundALIRT to be the most accurate and scalable, achieving the highest accuracy with fewer questions (e.g., Pearson r \approx 0.93 after only 3 questions as compared to typically needing at least 7 questions). In general, adaptive language-based assessments of depression and anxiety were able to utilize a smaller sample of language without compromising validity or large computational costs.
%R 10.18653/v1/2024.naacl-long.136
%U https://aclanthology.org/2024.naacl-long.136
%U https://doi.org/10.18653/v1/2024.naacl-long.136
%P 2466-2478
Markdown (Informal)
[ALBA: Adaptive Language-Based Assessments for Mental Health](https://aclanthology.org/2024.naacl-long.136) (Varadarajan et al., NAACL 2024)
ACL
- Vasudha Varadarajan, Sverker Sikström, Oscar Kjell, and H. Andrew Schwartz. 2024. ALBA: Adaptive Language-Based Assessments for Mental Health. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 2466–2478, Mexico City, Mexico. Association for Computational Linguistics.