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Abstract

Modular Neural Networks (MNNs) demon-
strate various advantages over monolithic mod-
els. Existing MNNs are generally explicit:
their modular architectures are pre-defined,
with individual modules expected to imple-
ment distinct functions. Recent works reveal
that there exists implicit modularity in stan-
dard pre-trained transformers, namely Emer-
gent Modularity. They indicate that such modu-
lar structures spontaneously exhibit during the
early pre-training phase. Despite the benefits
of modularity, most Language Models (LMs)
are still treated as monolithic models in the
pre-train and fine-tune paradigm, with their
emergent modularity locked and underutilized.
In this work, focusing on unlocking the emer-
gent modularity in LMs, we showcase that stan-
dard LMs could be fine-tuned as their Mixture-
of-Expert (MoEs) counterparts without intro-
ducing any extra parameters. Such MoEs are
derived from emergent modularity and are re-
ferred to as Emergent MoEs (EMoE). Our ex-
periments demonstrate that fine-tuning EMoE
effectively improves downstream in-domain
and out-of-domain generalization compared
with vanilla fine-tuning. Our analysis and ab-
lation studies further illustrate that it is robust
to various configurations and can scale up to
Large Language Models (i.e., Llama2-7B and
Llama-30B). Code is available at this repo.

1 Introduction

Modularity attracts considerable attention from
the artificial intelligence community (Auda and
Kamel, 1999). Neural networks with modular de-
signs, termed Modular Neural Networks (MNNs),
have exhibited a wide range of advantages, in-
cluding adaptation (Shen et al., 2023b), data effi-
ciency (Bengio et al., 2020), and better generaliza-
tion abilities (Goyal and Bengio, 2020; Weiss et al.,
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2022). Typical MNNs are usually explicitly mod-
ular. They have a pre-defined modular structure
and are expected to achieve a divide-and-conquer
solution for the given task. Among various MNNs,
Mixture-of-Experts (MoEs) employ a conditional
computation strategy where different submodules -
so-called experts - are expected to be activated by
different types of inputs. MoEs see substantial suc-
cess in various domains (Fedus et al., 2022; Shen
et al., 2023a; Chen et al., 2023b; Mustafa et al.,
2022; Bao et al., 2022) in the era of large-scale
transformers, and they are therefore a widespread
modular neural architecture.

Apart from explicit MNNs, some research finds
that modular structures spontaneously emerge dur-
ing training, not only in small-scale CNNs or
LSTMs (Csordás et al., 2021; Agarwala et al.,
2021), but also large-scale pre-trained transformer
models. Zhang et al. (2022b); Li et al. (2022) reveal
notable sparse activation patterns within the Feed-
Forward Networks (FFNs) in pre-trained trans-
former models. They find that in T5-Base (Raffel
et al., 2020) and ViT-B16, only 3.0% and 6.3%
neurons are activated during one forward process,
respectively. Furthermore, Zhang et al. (2023) uti-
lize handpicked semantic and knowledge-intensive
tasks to probe the nature of neurons in FFNs.
They observe a strong correlation between neuron
activation and specific tasks, further discovering
clear function-based neuron grouping of the pre-
trained T5 model (neurons with similar functions
are usually co-activated). They summarize such
phenomenon as Emergent Modularity (EM).

Though modularity emerges, pre-trained lan-
guage models are generally treated as monolithic
models in the standard pre-train and fine-tune
paradigm. It is natural to ask whether their EM
and the potential improvements brought by EM are
locked in this process.

In this paper, we advocate unlocking the EM in
the pre-trained language models could bring gen-
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eralization improvements for downstream tasks.
Specifically, we split certain FFNs layers of the
original model into MoEs layers. The MoEs is de-
rived according to the EM in that layer and can be
regarded as the externalization of the EM. Hence,
the obtained MoEs model is called Emergent MoEs
(EMoE). We then fine-tune the obtained EMoE
model to investigate whether unlocking EM en-
courages downstream task performance.

We validate our empirical findings with vari-
ous models, evaluation benchmarks, fine-tuning
methods (parameter-efficient tuning and full fine-
tuning). We find that fine-tuning EMoE achieves
stronger generalization performance than vanilla
fine-tuning across various experimental settings,
demonstrating that unlocking the EM of LMs
boosts the models’ downstream generalization abil-
ities. We provide a comprehensive analysis for
EMoE: 1) We first validate that EMoE indeed un-
locks EM in pre-trained language models by show-
casing its task-specific expert choice. 2) We then
reveal that EMoE ameliorates the parameter updat-
ing during fine-tuning and can even be abandoned
afterward. We want to highlight that this property
further improves the practicality of EMoE as the
model architecture does not change before and after
fine-tuning. Meanwhile, our ablation studies show
the EMoE’s robustness to various hyper-parameter
configurations. 3) We also conclude that EMoE
could mask neurons with negative transfer effects.
We hope our research discoveries can bring novel
insights and serve as an example attempt towards
further unlocking the EM of LLMs.

2 Methodology

2.1 Preliminaries

Transformer FFNs are Key-Value Memories.
The FFNs layer in the transformer block typically
includes weights K ∈ Rh×d, V ∈ Rd×h, where
h is embedding size and d is the dimension of the
hidden layer (usually d = 4h), and a non-linear
activation function σ(·). For an input x ∈ Rh, the
output y ∈ Rh can be calculated as Eq. 1:

y = FFN(x;K,V) = σ(x ·K) ·V. (1)

More precisely, for each column K:,i and row Vi,:,
Eq.1 can be rewritten as:

y = σ(x ·K) ·V =

h∑

i=1

σ(x ·K:,i) ·Vi,: (2)

Following Geva et al. (2021, 2022); Huang et al.
(2023), we regard columns in K as key vectors and
rows in V as value vectors, the output of an FFNs
network can be viewed as a weighted sum of value
vectors based on the activation scores σ(x · K).
For the rest of this paper, we refer to one key-value
memory pair using neuron and the co-activation of
neurons using modularity.

Mixture-of-Experts In transformers, MoEs is
often implemented by replacing the original FFNs
with a group of parallel FFNs and introducing a
gating module. Supposing there are N experts:
{FFNn(·;Kn,Vn)|n ∈ [1, N ]}, the gating mod-
ule g(· ;G, k), defined with its parameters G and
an integer k, is to map input x to a score distribu-
tion of experts g(x; G, k) ∈ RN . Typically, g is
implemented with a simple linear layer followed by
a softmax function and a Top-k function. Given
x ∈ Rh, the output y ∈ Rh of can be summarized
as the weighted sum of the output from all experts:

y =
∑

n∈N
gn(x;G, k) FFNn(x;Kn,Vn) (3)

When k for Top-K is smaller than N , only a sub-
group of experts is involved in the computation,
termed sparse MoEs.

2.2 Emergent Mixture-of-Expert
According to Eq. 2 and Eq. 3, we find that FFNs
internally resemble MoEs if we consider keys as
the gating module and values as the group of ex-
perts, which inspire us to transform existing FFNs
into sparse MoEs to unlock its modular potentials.
Since our research goals mainly focus on EM, a
preferred approach to externalizing EM into sparse
MoEs should not introduce additional parameters,
training, and data, which may result in impracti-
cal or undesired biases. Therefore, after splitting
original neurons into different groups to construct
different experts, each group’s average of key vec-
tors is calculated to form the gating module. Details
are described and illustrated in Fig. 1.

Clustering-based Experts Construction. We
aim to ensure that neurons that tend to be co-
activated are divided into the same group. Since
neurons with similar key vectors tend to be co-
activated according to Eq. 2, we split them into
separate experts by clustering their key vectors.
Specifically, given a FFNs layer FFN(·;K,V),
we perform constrained clustering (Malinen and
Fränti, 2014) (more details are in Appendix A.0.1)
to partition all key vectors K into N experts on
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Figure 1: (a) Existing literatures (Geva et al., 2021, 2022) suggest that the FFNs in transformers can be viewed as
key-value memories. They regarded the input as a query, the first layer as keys, and the second as values. Given
an input, keys are sparsely activated (marked in red). Most of the values don’t impact the output. (2) The FFNs
block can be partitioned into experts by clustering keys. (3) Afterward, experts’ key averages are used as the gating
weights. The inner product between x and gating weights are used to select experts.

average. Denoting the indices of keys in the i-th
group as Ei ⊂ [d], for ∀j ∈ Ei, we extract neuron
(K:,j ,Vj,:) to form the i-th expert FFN(·;Ki,Vi)
as depicted in Fig. 1(b). After that, the computation
of each expert follows Eq. 1.

Avg-k Gating. As discussed, we do not want
to introduce extra trainable parameters when exter-
nalizing EM. Therefore, we construct the gating
module by averaging each expert’s keys, which
should route the input x to the experts who tend
to have larger activation scores and thus contribute
more to the model’s output. The gating function is
usually implemented by a single layer G ∈ Rh×N ,
in the avg-k gating’s case, the weights in i-th col-
umn G:,i can be calculated as follows:

G:,i = Avg(Ki, dim=0). (4)

And then the gating score for i-th expert is:

gi(x;G, k) =

{
1 if i ∈ Top-K(x ·G; k)

0 else
(5)

where Top-K(·; k) returns indices of k largest ele-
ment of the given input along. As the gating score
is the average of activation scores (before σ(·)) of
neurons in that expert:

x·G:,i = x·Avg(Ki) =
N

d

∑

j∈Ei

xKi
:,j =

N

d

∑

j

aj .

(6)
a larger value of gating score gi implies more acti-
vated keys within the corresponding expert. Con-
sequently, the expert could potentially contribute

more to the output y for input x. During down-
stream tuning, gating weights are tied with the
FFNs parameters using Eq. 4.

3 Experiments

Configurations: We first evaluate EMoE using
BERT and GPT2 series models. We employ
GLUE (Wang et al., 2019b) and GLUE-X (Yang
et al., 2023) for benchmarking in-domain (ID) and
out-of-domain (OOD) performance of the fine-
tuned model, respectively. We mainly present the
experimental results when employing LoRA (Hu
et al., 2022) to fine-tune the pre-trained language
models for two reasons: (1) with the increasing
scale of pre-trained models, parameter-efficient tun-
ing (Houlsby et al., 2019) can scale up to very
large language models and thus becomes more
practical. (2) standard LoRA weights are added
in each self-attention block, and the parameters in
FFNs will not be updated, allowing us to investigate
whether leveraging EM, even without fine-tuning
the parameters of EMoE, can yield improvements.
We present EMoE full fine-tuning results in the
Appendix B.1. Besides, we scale up EMoE on
Llama2-7B and Llama-30B (Touvron et al., 2023)
for further validation. We instruct-tuning models
on Alpaca and testing them on the MMLU bench-
mark (Hendrycks et al., 2021). For more details
about datasets, evaluation metrics and computation
cost, please refer to the Appendix D and E.

Baselines Our baselines include (1) vanilla
LoRA-tuning: add LoRA weights to the q and
v projections in attention layers; (2) GMoE (Li
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Table 1: ID and OOD performance of EMoE and baseline models. All the reported results are obtained from
3 independent experiments. OOD Metrics (averaged over 14 OOD tasks, lower is better) provide additional
information for OOD generalization. The best result is highlighted in bold.

Algorithm MRPC CoLA RTE STSB SST2 QNLI QQP MNLI ID-Avg↑ OOD↓

BERT-Large (340M Parameters)

LoRA 89.97 63.40 72.92 90.51 93.16 92.20 87.21 85.40 84.35 4.86
GMoE 89.45 63.80 72.56 90.29 93.85 92.32 87.99 85.92 84.52(+0.18) 4.04
EMoE-learn 89.87 64.00 71.36 90.48 93.65 92.40 87.55 85.62 84.37(+0.02) 4.66
EMoE 90.85 65.33 75.21 90.43 93.50 92.23 87.74 85.43 85.09(+0.74) 4.37

GPT2-XL (1.5B Parameters)

LoRA 86.83 60.88 78.70 89.07 95.18 91.84 87.41 86.93 84.61 5.61
GMoE 87.02 62.81 79.78 89.21 95.41 92.18 89.10 87.17 85.34(+0.73) 4.33
EMoE-learn 87.93 61.50 79.90 89.48 95.18 92.33 89.71 87.00 85.38(+0.77) 4.40
EMoE 87.75 62.27 80.02 89.37 95.41 92.10 89.58 87.06 85.45(+0.84) 3.88

et al., 2023): Instead of splitting, GMoE replicates
FFNs layer and train new gating layers to introduce
MoE structure from the two-to-last and fourth-to-
last transformer blocks in the original pre-trained
models. Since GMoE copies the FFNs of the pre-
trained model to form the MoEs, it is ineffective
if introduced MoEs aren’t tuned. Thus, we con-
duct experiments with LoRA tuning for GMoE
and tune the transformer block where the original
FFNs are replaced. (3) EMoE-learn: an ablation
method, where the gating function is learned (same
as GMoE) during fine-tuning. This helps us better
understand the effect of avg-k gating.

Hyper-parameters: those unrelated to MoEs
(e.g., learning rate, batch size) remain consistent
with the baselines. Following Li et al. (2023), we
replace original FFNs with EMoE layer in {last
two even layers, last one even layer}. Comparable
hyper-parameter searches are conducted for both
GMoE and EMoE for the number of experts N
and top-k: GMoE explores N within {4, 8} and
top-k within {1, 2}; for EMoE, N is fixed at 64,
with top-k explored within {16, 32}. The under-
lying reason for different N and top-k in GMoE
and EMoE is that EMoE decomposes the original
FFNs into experts, and the total parameters of all
experts remain the same as the original FFNs. On
the contrary, GMoE replicates the original FFN
from a MoEs architecture; the larger N and top-k
they choose, the more parameters and computa-
tional overhead they introduce. Our ablation study
indicates that while more careful hyper-parameter
searches may yield superior performance, adhering
to a top-k/N = 0.25 or 0.5 for EMoE consistently
brings improvement over vanilla fine-tuning.

Evaluation Metrics All experiments except the
scale-up ones are repeated three times, and the
average is presented in the main section. Full

results are in Appendix F.1. For the OOD met-
ric, we follow GLUE-X (Yang et al., 2023) and
employ the Friedman rank (Friedman, 1940)1

rankf = 1
n

∑n
i=1 ranki. For each method under

the same backbone, ranki is produced based on
each dataset’s best and average results. For the 13
OOD tasks used in GLUE-X, each method gener-
ates 26 ranki values. The OOD results presented in
Table 1 represent the mean of all these ranki values.
The original results of each task can be found in
the Appendix F.1.

Results with BERT and GPT2 According to
Tab. 1: (1) EMoE demonstrates enhancements com-
pared to vanilla LoRA-tuning. Notably, EMoE
also achieves results comparable to GMoE on
BERT-large and outperforms GPT2-XL with much
fewer learnable parameters. (2) While EMoE-
learn’s results are better than EMoE in several tasks
(STSB, QNLI), EMoE exhibits higher stability than
EMoE-learn and delivers superior overall results.
(3) MoEs structures improve OOD performance
(GMoE, EMoE, EMoE-learn vs. LoRA).

Results with Llama Unlike GMoE, EMoE does
not introduce any additional trainable parameters
or procedures so that we can scale EMoE up to
models of 7B and 30B sizes to validate its effective-
ness further. From Tab. 2: 1. EMoE consistently
yields improvements compared with LoRA tuning
with negligible additional computation. 2. Because
EMoE does not introduce any additional trainable
parameters, the choice of K and N proportions re-
mains large (can be even larger) and is applicable in
larger-scale models. While the performance varies
when employing different N and K, EMoE consis-
tently outperforms the vanilla LoRA tuning. This

1Our evaluation includes nine methods detailed, demon-
strating the relationships among these methods. Therefore,
these values can’t provide a direct comparison with the results
in the GLUE-X paper
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Figure 2: Left: Activations of neurons (z-axis denotes activation value) in FFNs of a pre-trained transformer models.
Middle: By clustering the keys in the FFNs layer and rearranging the activation scores accordingly, modular patterns
of neuron activation emerge. Right: The heat map between experts and tasks. It is observed that the activation of
experts is task-dependent, while some experts are generally shared across different tasks.

Table 2: Instruction LoRA-tuned Llama models evalu-
ated (in accuracy) on the MMLU benchmark. Times are
wall-clock computation times for training 3 epochs on
Alpaca using the same GPU devices. When N = K =
1, it represents the vanilla LoRA tuning.

Experts (N) topk (k) MMLU score times (s) FLOPS (1017)

Llama2-7B

1 1 46.96 1396 6.92
64 16 47.58 1545 7.03
64 32 47.37 1521 7.13

Llama-30B

1 1 56.18 6943 22.5
256 64 57.11 6955 22.5
256 128 56.64 6974 22.4

suggests that although additional hyperparameters
N and K are introduced, they do not lead to us-
ability challenges. Please refer to Sec. 5 for more
ablation results on hyperparameters.

Additional Results Moreover, we conduct ex-
periments with full fine-tuning under comprehen-
sive evaluation settings: 1. Vision OOD benchmark
Domainbed (Gulrajani and Lopez-Paz, 2021), full
fine-tuning ViT-Small (22M) and ViT-Base (86M).
2. GLUE benchmark, fully fine-tuning BERT-Base,
BERT-Large, and GPT2-Small. 3. Full fine-tuning
Llama2-7B. We present detailed results and anal-
yses in Appendix B.1. According to the results,
EMoE brings consistent improvements over stan-
dard full finetuning across various tasks and model
scales. On the vision OOD benchmark Domainbed,
which strictly controls evaluation metrics, EMoE
achieved results comparable to the state-of-the-
art GMoE. Furthermore, when full-finetuned with
Alpaca, EMoE exhibited a notable improvement
of 1.58 on MMLU to the standard tuning base-
line. These findings underscore the effectiveness
of EMoE in enhancing model performance across
various architectures and tasks.

4 Analysis

4.1 Does EMoE Unlock Emergent
Modularity?

We first investigate whether simple key-vector-
based clustering partitioning could capture the mod-
ular pattern of the neuron activation. The activation
scores of different neurons on different inputs are
visually shown in the Fig. 2 left and middle. Before
clustering (Fig. 2 left), the activation of neurons
seems random. After rearranging those activation
scores according to the EMoE partition (Fig. 2 mid-
dle), we observed that only a part of the neurons
are frequently employed in this task, and clear acti-
vation clusters emerge. This demonstrates that key-
vector-based clustering can decompose modular
components within the standard model. We then
delve into expert usages across different tasks in
the EMoE. The heatmap between tasks and experts
(Fig. 2 right) showcases that the expert utilization
differs between tasks, while some crucial experts
are nearly used by all 8 tasks. For example, expert
19, that heavily used in QQP and MNLI, is merely
activated in MRPC and RTE. On the contrary, ex-
pert 33 is frequently activated by all 8 tasks.

4.2 How does EMoE improve fine-tuning
performance?

Though EMoE achieves notable improvements in
both ID and OOD scenarios, it is non-trivial that
simply transforming the pre-trained FFNs into
MoEs before fine-tuning can yield such benefits, es-
pecially when using LoRA tuning, where the gates
and experts part are not updated. We investigate
the mechanism behind the enhanced performance.
We use BERT-Large as the backbone model.

EMoE benefits LoRA weight learning instead
of influencing inference. EMoE and the standard
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model only differ in FFNs activations. Such dif-
ferences might (1) directly impact outputs during
inference and (2) influence the parameter updating
during training. In light of this, we propose two
variants and compare them with vanilla LoRA tun-
ing and EMoE: (a) LoRA2EMoE: Using LoRA to
fine-tune the original model and split it into EMoEs
during inference. If it surpasses the vanilla LoRA
tuning, we can infer that EMoE mainly impacts
model inference. (b) EMoE2LoRA: Using LoRA
to fine-tune an EMoE model and merge experts
into original FFNs during inference. If no changes
occur, it implies that EMoE mainly ameliorates the
parameter updating of the fine-tuning stage.
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Figure 3: ID and OOD accuracies compared with LoRA
for validating EMoE’s training & inference effects.

According to Fig. 3, doing sparse activation dur-
ing testing does not contribute to better generaliza-
tion on average (LoRA2EMoE). However, when
merging EMoE back into the original FFNs af-
ter fine-tuning, the performance remains signifi-
cantly better than the vanilla LoRA tuning and
is almost identical to EMoE (EMoE2LoRA and
EMoE). Please refer to Appendix F.1 Tab. 16 for
full results. Thanks to this property, we can use
EMoE during fine-tuning and then convert the mod-
els to standard ones. This allows the model to enjoy
the benefits of EM without any alterations to its
deployment, which improves EMoE’s practicability
in the LLMs era. We further validate this on the
Llama series models and the findings are consistent.
Thus, in Tab. 2, we report the results using EMoE
to fine-tune and standard Llama architecture for
benchmarking. And we highlight that this property
can also be applied in the full fine-tuning setting,
as illustrated in Appendix B.1 Tab. 7.

EMoE masks neurons with negative trans-
fer impacts. The only difference between EMoE
and vanilla LoRA tuning is EMoE blocks some
activated neurons during training by Top-k expert
selection. Based on these, we hypothesize that the
effects of EMoE stem from preventing negative
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Figure 4: Sparse activated training accuracies with dif-
ferent expert selections.

knowledge transfer from blocked neurons. There-
fore, we investigate whether there are such nega-
tive transfers. Specifically, we study the following
expert selection variants: (1) Bottom-k: select k
experts with the lowest scores; (2) Not-top-k: se-
lect N − k experts who are not among the top-k
experts. These variants are evaluated across six
tasks from GLUE. The averaged outcomes are in
Fig. 4. Full results can be found in Appendix F.1
Tab. 17. LoRA tuning results with Bottom-k and
Not-top-k expert selections are worse than vanilla
LoRA tuning, while Top-K outperforms it. We also
examine the neuron activation ratio (the number
of activated neurons in selected experts versus the
number in the FFNs) across these variants. Full
results can be found in Appendix F.2 Tab. 21. The
activation ratios for these three variants are approx-
imately 0.43 for Top-k, 0.57 for Not-top-k, and
0.12 for Bottom-k, respectively. Notably, Not-top-
k significantly lags behind Top-k, even though it
involves and activates more neurons, suggesting the
performance drop is more related to the neurons’
property. This further corroborates that masked
neurons have negative transfer effects.

Table 3: T5-base Multi-tasks ID and OOD accuracies
across different EMoE settings.

Experts (N ) topk (k) ID avg OOD avg

Baseline - 65.73 51.65
8 2 67.98 52.19
16 4 68.14 53.23
32 8 73.29 53.20

Inspired by this, we choose a multi-task learn-
ing setting where negative transfer might be more
pronounced. We adopt the codebase2 from AT-
TEMPT (Asai et al., 2022). For the ID scenario,
we follow ATTEMPT and select six small tasks.
For the OOD scenario, we train the models on two
larger natural language inference (NLI) datasets

2https://github.com/AkariAsai/ATTEMPT

2643



0 4 8 12 16

Experts

Tr
ai

n 
St

ep
s

(a) EMoE

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0 4 8 12 16
Experts

Tr
ai

n 
St

ep
s

(b) EMoE-learn

0.04

0.06

0.08

0.10

0 4 8 12 16
Experts

Tr
ai

n 
St

ep
s

(c) GMoE

0.06

0.08

0.10

Figure 5: Expert selections during training with distinct gating functions (avg-k vs. learned) and expert types (splits
of FFNs vs. copies of FFNs). The vertical axis illustrates training steps (top-down arrangement signifies begin-end);
the horizontal axis represents expert selection frequency within 1K steps (deeper color implies a higher frequency).
(a), (b) and (c) correspond to EMoE, EMoE-learn, and GMoE.

and test them on four NLI datasets from differ-
ent domains. All hyperparameters unrelated to
MoEs are consistent with the baseline. We list the
MoEs-related hyperparameters and average results
in Tab. 3. More details about experiment setting
and results are in Appendix B.2. We can observe
that EMoE exhibits a more substantial improve-
ment compared to the baseline. In the ID setting,
the highest improvement reaches 7.56, even consid-
ering the average performance across the six tasks.
In the OOD setting, the highest average OOD result
across the four datasets also improves by 1.58.

Table 4: Results for different expert constructions
(clustering-based v.s. random) and selections

Top-k Bottom-k

Cluster +0.92 -0.48
Random -0.11 -0.34

5 Ablation studies

Sparsity and Modularity To provide further ev-
idence that the EMoE’s improvements stem from
leveraging modular features rather than just sparse
activation or MoEs architecture, we compare the
results of (1) key-vector-based clustering expert
construction and (2) random construction. We em-
ploy the same setting of Sec. 4.2. The relative
changes in averaged outcomes compared to the
vanilla fine-tuning are shown in Tab. 4, while full
results can be found in the appendix F.1, Tab. 17.
It’s noteworthy that while cluster top-k exhibits a
significant improvement over the standard, random
top-k is conversely worse than vanilla fine-tuning.
This suggests that random construction can nega-
tively impact gating, and only MoEs structure itself
can’t bring improvement. Moreover, when select-
ing weights with negative transfer under bottom-k
selections, it’s observed that cluster bottom-k also
achieves lower results. In summary, clustering-
based methods can externalize implicit modu-

larity within the pre-trained language model.
Within suitable frameworks like MoEs, such modu-
larity can facilitate downstream tuning.

MoEs Constructing Methods In EMoEs, the
expert construction methods and gating methods
are pivotal. To further understand splitting versus
replicating FFNs, avg-k gating versus learned gat-
ing, we visualize expert selections of modularized
GPT2-XL during tuning on 6 tasks with 16 experts.
In Fig. 5, we showcase the results for the largest
dataset QNLI among them. Full results are avail-
able in the Appendix G. Our observations are: (1)
Both avg-k gating and learned gating converge,
as indicated by the lower halves of the plots. (2)
avg-k gating is more stable than learned gating. As
shown in Fig. 5 (a) and (b), the expert selection
merely changes during fine-tuning. This might mit-
igate data inefficiency from gating inconsistencies
across different training stages (Zuo et al., 2022a).
(3) EMoE, with its differently initialized experts pa-
rameters, exhibits better load balancing than GMoE
(expert 11 in Fig. 5 c is way more frequently se-
lected than other experts). In GMoE, all experts
share identical initialization; in EMoE, the experts
are derived from FFNs with EM. This also suggests
a good initialization can facilitate MoEs learning,
as indicated by Nie et al. (2021).

Fig. 5 (a) and Appendix G demonstrate that some
experts in EMoE are barely selected during fine-
tuning. This bears similarity to pruning, leading
to the argument that EMoE’s improvements may
stem from pruning. In this context, continuing our
exploration from 4.2 on examining EMoE during
training and inference, we supplement two abla-
tions under the same setting: 1. Training-Pruning:
Training EMoE (N=64, top-k=32), pruning experts
with lower selection frequency, and evaluating the
pruned model. 2. Pruning-Training: pruning lower
selection frequency experts of a new model as per
step 1, then training and evaluating the pruned
model. The experimental outcomes are detailed
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Figure 6: Results of 3 tasks for different experts splittings and expert select fractions (top-k / number of experts).
‘e=16’ and ‘e=32’ mean splitting FFNs into 16 and 32 experts, respectively.

in Tab. 22. Our primary findings are: 1. When
sparsely selected experts are pruned post-EMoE
tuning, the performance consistently outperforms
the LoRA baseline (even when only 1/16 experts
are used). This underscores that EMoE’s impact is
manifested during the fine-tuning stage, not infer-
ence. 2. In the optimal pruning-training setting, the
performance surpasses the baseline but falls signif-
icantly short of EMoE. This suggests that EMoE’s
improvements are not solely attributable to prun-
ing. Compared with EMoE selecting experts for
each token, pruning masks the same neurons for all
tokens. Therefore, pruning can also be considered
task-level EMoE, thus less effective. Lastly, it is
important to emphasize that in multi-task learning,
pruning methods struggle to ascertain the neurons
requiring pruning, whereas EMoE demonstrates
significant effectiveness in these scenarios.

MoEs Configurations Beyond the settings de-
tailed in the main results section, which are based
on N = 64 experts and top-k ∈ {16, 32, 48},
we also present specific scenarios where N ∈
{16, 32}, and top-k varies within {2, 4, 8, 16} in
Fig. 6. Notably, in each of these settings, (1)
EMoE consistently surpasses the standard model,
illustrating its robustness to hyper-parameters. (2)
On average, avg-k gating exhibits superior perfor-
mance than learned gating. Though learned gat-
ing (EMoE-learn) outperforms avg-k gating in a
few specific settings (Fig. 6 (b) and (e)). This is
consistent with the earlier results in Section 3. Re-
garding how many EMoE layers should be intro-
duced, our findings align with those discovered
in GMoE, indicating that only a limited number
of layers can be converted into the EMoE layer.
If excessive EMoE layers are introduced, perfor-
mance deteriorates. Taking GPT2-XL (48 layers)
as an example, when introducing EMoE every two
layers in the latter half, the performance averaged
across 5 GLUE tasks (79.36) matches that of the
standard model (78.87). However, when adopting

EMoE for every 2-layer for the entire model, the
performance lags slightly behind that of the stan-
dard model (78.17) but surpasses the EMoE-learn
(75.87). For additional configurations, please refer
to the appendix F.2 Tab. 19.

6 Related Work

Works most related to our work is introducing mod-
ularity based on off-the-shelf pre-trained models.
For example, GMoE (Li et al., 2023) and Upcy-
cling (Komatsuzaki et al., 2023) copy the FFNs
from a trained transformer model to form the MoEs
architecture. Their modular structure is introduced
by replicating existing FFNs modules, leaving EM
within pre-trained FFNs unexplored. MoEfica-
tion (Zhang et al., 2022b) and MoEBert (Zuo et al.,
2022b) explores the EM within the model. They
seek to improve the inference efficiency by de-
composing the original FFNs layer into sparse
MoEs. They utilize the sparse expert activation
to reduce inference overhead and do not touch on
how EM influences the model’s performance in
downstream fine-tuning. Our method to split FFNs
is adopted from one simple method in the ablation
studies of MoEfication paper (Zhang et al., 2022a):
clustering-based expert construction and avg-k gat-
ing. We empirically find that such a simple method
can validate the improvements brought by EM and
answer our research questions. We thus leave more
elaborated methods for future works. Please refer
to Appendix C for a detailed comparison of EMoE
with those related works.

7 Conclusion

In this work, we validate that unlocking the EM in
standard LMs improves downstream task ID and
OOD performances. EMoE can bring this benefit
without adding any parameters, significant training
costs, or any alterations to its deployment, which
improves its practicability in the LLMs era. One
possible reason is the modular structure can allevi-
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ate negative transfer effects presented in the LMs.
We hope our findings can deepen the understanding
of neural networks’ modularity, further helping the
community develop more sophisticated modular
neural architectures and utilize existing LMs.

8 Limitations

Our primary objective was to investigate the util-
ity of EM, and thus, we predominantly adopted
the techniques from MoEfication for decomposi-
tion. We encourage further research to propose im-
proved algorithms for harnessing EM. Our research
findings have not been validated on more challeng-
ing tasks (e.g., Mathematical Reasoning (Imani
et al., 2023)). While our analysis was primarily
conducted on models with a maximum parameter
count of 1.5B, we validate the scaling-up ability of
EMoE to Llama-30B.
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A Additional Information

A.0.1 Constrained clustering
Constrained clustering (Malinen and Fränti, 2014)
enhances traditional clustering methods by incor-
porating additional user-specified constraints. This
approach involves balancing the k-means algorithm
for clustering, making it more efficient and effec-
tive in generating meaningful clusters. The intro-
duction of constraints, such as must-link or cannot-
link conditions, guides the clustering algorithm
to produce results that align more closely with
domain-specific requirements or prior knowledge.
This method has improved the relevancy and accu-
racy of clustering outcomes in various applications.

B Additional Experiment Results

B.1 Full Fine-tuning Performance

We test the EMoE’s OOD performance on Do-
mainbed. Domainbed provides comprehensive vi-
sion OOD evaluations (one result is aggregated
with 30 experiments), and the outcomes vary
marginally. Moreover, Gulrajani and Lopez-Paz
(2021) indicates that vanilla full fine-tuning with
fair hyper-parameter search is a strong baseline
compared with specifically designed methods like
Invariant Risk Minimization (Arjovsky et al., 2019).
More dataset details are in appendix D.0.1. Ac-
cording to Table 5: (1) Overall, EMoE outperforms
ViT and GMoE (except ViT-base Train-validation
setting, upper right). (2) Compared with EMoE,
EMoE-learn incorporates a learned gate. While it
surpasses avg-k gating in certain scenarios (ViT-
small Terra Train-validation), it can also lead to a
performance drop compared with vanilla ViT. Its
overall performance is lower than EMoE. (3) In
tasks where the standard model is strong (like Of-
fice), EMoE performs better than other MoEs meth-
ods. One possible reason is that the avg-k gating re-
duces the influence of gating weights (gn(x;G; k)
in Equation 3), making it more like the standard
model in such scenarios.

In vision tasks, as highlighted by (Gulrajani and
Lopez-Paz, 2021), the hyper-parameter search has
a profound impact on outcomes. Consequently, we
search with a relatively large scope: for GMoE, N
is searched within {4, 6, 8}, and top-k within {2, 3,

4}; for EMoE, N is sought within {6, 12, 24}, and
top-k within {2, 4, 8}.

We evaluate EMoE’s ID performance on 5
GLUE tasks. We also include an additional base-
line noisy tuning (Wu et al., 2022), which improves
adaptation for free by adding uniform distribution
noise proportional to the standard deviation of the
pre-trained weights before tuning. According to
Table 6: (1) On average, EMoE and EMoE-learn
outperform other baselines. (2) Among the two
methods that do not introduce additional parame-
ters, EMoE significantly outperforms noisy tuning.
(3) EMoE provides stable improvements over base-
lines across different settings, demonstrating its
generality.

B.2 Mult-tasks Setting

In our analysis 4, we have identified that the im-
provement brought by EMoE is likely associated
with mitigating negative transfer. Inspired by this,
we choose a multi-task learning setting where nega-
tive transfer might be more pronounced. We adopt
the codebase3 from ATTEMPT (Asai et al., 2022).
For the in-domain (ID) scenario, we follow the set-
tings outlined in ATTEMPT and select six tasks
from the Super-GLUE benchmark (Wang et al.,
2019a). For the out-of-domain (OOD) scenario, we
take two larger natural language inference (NLI)
datasets MNLI and QNLI, from GLUE as our ID
training data. We subsequently conducted direct
testing on four additional NLI datasets from dif-
ferent domains. All hyperparameters unrelated to
MoEs are kept consistent with the baseline, and we
have listed the MoEs-related hyperparameters in
the result table. Our observations are as follows:
1. EMoE exhibits a substantial improvement com-
pared to the baseline. In the in-domain (ID) setting,
the highest improvement reached 7.56, even con-
sidering the average performance across the six
tasks. In the OOD setting, the highest average
OOD result across the four datasets improved by
1.58. 2. Across various settings of N and K, EMoE
consistently outperforms the vanilla fone-tuning.
Within the hyperparameter search space specified
in our paper, EMoE consistently improves at least
2 points over the baseline in the ID setting. This
emphasizes the effectiveness of EMoE and EMoE’s
robustness to the explored hyperparameter range.

3https://github.com/AkariAsai/ATTEMPT
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Table 5: Overall OOD performances with 3 selection criteria. All the reported results are obtained following the
Domainbed codebase. The best result is highlighted in bold. In cases where results are the same, the best result is
determined by the smallest standard deviation. EMoE demonstrates comparable results to GMoE.

Results with ViT-small (22M) backbone

Algorithm PACS VLCS Office Terra Avg

Train-validation selection criterion

ViT 86.9 79.7 73.0 44.0 70.90
GMoE 87.7 79.6 73.1 45.4 71.45
EMoE-learn 87.2 79.6 72.5 46.1 71.35
EMoE 87.8 79.5 73.1 45.9 71.58

Leave-one-domain-out selection criterion

ViT 86.1 79.7 73.3 45.0 71.03
GMoE 86.5 80.5 73.1 45.3 71.35
EMoE-learn 86.8 79.6 72.6 45.8 71.20
EMoE 86.8 80.6 73.3 46.1 71.70

Test-domain selection criterion

ViT 86.5 78.2 73.1 44.0 70.45
GMoE 87.2 79.0 73.4 45.3 71.23
EMoE-learn 87.4 79.1 72.8 45.4 71.18
EMoE 87.6 79.0 73.3 45.5 71.35

Results with ViT-base (86M) backbone

Algorithm PACS VLCS Office Terra Avg

Train-validation selection criterion

ViT 89.1 80.7 77.2 47.3 73.58
GMoE 90.0 80.4 77.0 49.2 74.15
EMoE-learn 89.8 80.6 76.5 48.7 73.90
EMoE 89.4 80.7 77.3 48.5 73.98

Leave-one-domain-out selection criterion

ViT 88.9 80.8 77.5 46.1 73.33
GMoE 89.3 81.0 76.7 50.1 74.28
EMoE-learn 89.3 81.2 76.5 50.5 74.38
EMoE 89.6 81.6 77.4 50.0 74.65

Test-domain selection criterion

ViT 88.8 79.0 77.2 46.7 72.93
GMoE 89.7 79.0 77.0 48.8 73.63
EMoE-learn 89.7 79.7 76.6 48.7 73.68
EMoE 89.7 79.7 77.5 48.8 73.93

Table 6: ID performance on GLUE tasks with different backbones and algorithms. All the reported results
are obtained from 3 independent experiments. The average accuracy (Avg) is reported along with the relative
improvement compared to the baseline. The best result is highlighted in bold.

Backbone Algorithm MRPC CoLA RTE STSB SST2 Avg

BERT
Base

baseline 88.45 60.67 68.95 87.87 91.97 79.582
noisy tuning 88.43 61.79 71.36 88.27 92.32 80.43(+0.85)
GMoE 88.63 61.25 70.28 88.63 92.28 80.21(+0.63)
EMoE-learn 89.05 62.46 70.40 88.47 92.58 80.59(+1.01)
EMoE 89.45 61.55 69.68 88.71 92.89 80.46(+0.87)

BERT
Large

baseline 89.82 65.41 74.89 89.87 93.50 82.70
noisy tuning 90.42 64.75 73.41 90.05 93.65 82.46(-0.24)
GMoE 91.24 64.90 74.24 90.00 93.58 82.79(+0.09)
EMoE-learn 90.57 65.51 74.72 90.22 93.73 82.95(+0.25)
EMoE 90.74 65.79 76.17 90.31 93.58 83.32(+0.62)

GPT2
Small

baseline 84.46 47.07 67.15 86.29 92.13 75.42
noisy tuning 84.15 46.16 67.51 86.09 92.13 75.21(-0.21)
GMoE 85.07 47.77 67.51 86.57 92.35 75.85(+0.43)
EMoE-learn 85.73 47.24 67.99 86.66 92.35 75.99(+0.57)
EMoE 85.40 48.00 68.95 86.64 92.70 76.34(+0.92)
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Table 7: Instruction full-tuned Llama2-7B’s MMLU
scores. Times are wall-clock computation times. The
term ’times’ in the subsequent tables refers to the same
concept. ’w/o’ refers to ’without’.

Experts (N) topk (k) MMLU score times (s) FLOPS (1016)

w/o tuning - 46.79 - -
full tuning - 46.5 4988 8.97

64 16 48.08 5036 9.12
64 32 47.44 5041 9.24

Table 8: T5-base ID performances. All tasks are from
SuperGLUE so we omit the prefix "SuperGLUE" for
each tasks.

Experts (N) topk (k) boolq cb wic wsc.fixed rte copa test avg

Baseline 82.14 85.71 65.83 34.62 74.10 52.00 65.73
8 2 80.67 89.29 65.52 36.54 79.86 56.00 67.98
16 4 81.16 89.29 68.34 51.92 74.10 44.00 68.14
32 8 80.12 78.57 70.85 63.46 82.73 64.00 73.29
32 16 81.04 75.00 72.41 57.69 78.42 54.00 69.76

B.3 Performance Across Different Training
set Volumes

Previous research has indicated that modular ar-
chitectures offer improved data efficiency (Bengio
et al., 2020). Therefore, we conducted experiments
with GPT2-XL on six tasks using varying propor-
tions of original training data, and the results for all
tasks are presented in Figure 7. It can be observed
that EMoE consistently outperforms the standard
across different data factions. EMoE achieves su-
perior results even when using less than 20% of the
data. On SST2, only using 50% data, EMoE shows
comparable performance to the standard. More de-
tails can be found in the Appendix F.2 Table 20.
This further underscores the benefits of incorporat-
ing modular structures.

C Comparison between EMoE,
MoEfication, and GMoE

Leveraging modular designing into neural net-
works has various advantages (Pfeiffer et al., 2023;
Chowdhery et al., 2022; Chen et al., 2023a), includ-
ing superior generalization abilities (Goyal et al.,
2021; Li et al., 2023). Most MNNs are explicitly
modular. Among them, MoEs (Szymanski and

Table 9: T5-base OOD performances. ’SG’ refers to
’SuperGLUE’.

Experts (N) topk (k) mnli qnli wnli rte SG-rte SG-cb OOD avg

Baseline 86.2 92.42 50.00 61.87 62.59 32.14 51.65
8 2 86.27 92.18 50.00 64.03 62.59 32.14 52.19

16 2 86.44 92.59 52.78 64.03 56.83 39.29 53.23
32 8 86.56 92.49 58.33 64.03 61.87 28.57 53.20
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Figure 7: Average performance of EMoE with different
proportions of training data.

Lemmon, 1993) is currently a standard architecture
for developing MNNs (Shen et al., 2023b; Shazeer
et al., 2017; Fedus et al., 2022; Zhang et al., 2022a).
Apart from explicit MNNs, Hod et al. (2021);
Csordás et al. (2021) explore emergent modular
structures in CNNs and LSTMs. Some recent
works (Zhang et al., 2022b; Li et al., 2022) focus on
the sparsity of more complicated pre-trained trans-
formers. Based on their observations, Zhang et al.
(2023) recently explore modularity in pre-trained
transformer FFNs by employing handpicked se-
mantic and knowledge-intensive tasks to probe the
modular nature of pre-trained transformers.

Having observed that FFN layers in pre-trained
Transformers are sparsely activated (many neurons
are unused for inputs), MoEfication splits trans-
forms FFNs into a sparse MoE, aiming to approx-
imate the functionality of the original FFNs to re-
duce the computational cost, further improving
inference efficiency. Besides, the GMoE makes
multiple replicates of the original FFN layer and
introduces a learned gate to form a MoE archi-
tecture. They claim that such architecture could
improve OOD performance from their theoretical
perspective of algorithmic alignment framework.
MoEfication and GMoE do not touch on how emer-
gent modularity influences the training stage. The
table below illustrates a detailed comparison of
these works. These differences are summarized in
Table 10.

D Datasets and Evaluation Metrics

D.0.1 Domainbed
The four datasets (PACS (Li et al.,
2017), VLCS (Fang et al., 2013), Office-
Home (Venkateswara et al., 2017), and Terra
Incognita (Beery et al., 2018)) are selected
from Domainbed. Each dataset comprises 4
distinct domains(PACS: {art, cartoons, photos,
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Table 10: Comparison between EMoE, MoEfication, and GMoE

Aspect EMoE MoEfication GMoE

Research Problem Exploit the emergent mod-
ularity during fine-tuning
pre-trained transformers.

Approximate FFNs with
sparse MoE to improve in-
ference efficiency.

Validate the OOD im-
provements brought by
Sparse MoE architectures.

Methods Split FFNs Split FFNs Copy of FFNs

Practicality No additional trainable pa-
rameters. Experts can be
recomposed into the stan-
dard model so that models
can be deployed as a stan-
dard model.

May need re-training on
the original task. May suf-
fer from inference latency
owing to the specific im-
plementation of MoE ar-
chitectures.

Additional trainable pa-
rameters are introduced.
May suffer from inference
latency owing to the spe-
cific implementation of
MoE architecture.

Contribution Significant general im-
provement without adding
parameters and not de-
pending on the specific im-
plementation.

Improved inference effi-
ciency (depending on the
specific implementation of
MoE), but performance
drop.

Significant OOD improve-
ment with additional pa-
rameters and specific im-
plementation.

Table 11: Used dataset information from Domainbed

Dataset PACS VLCS OfficeHome TerraInc

#Domains 4 4 4 4
Classes 7 5 65 10
Images 9,991 10,729 15,588 24,788

sketches}, VLCS: {Caltech101, LabelMe, SUN09,
VOC2007}, Office-Home: {art,clipart, product,
real}, and Terra Incognita: {L100, L38, L48,
L46}). One or two domains’ data are sequentially
designated within a single training for OOD
evaluation. For example, when training on PACS,
{art, cartoons} could be selected as ID training
data, while {photos, sketches} are designated
for OOD testing. This configuration results in
C2
4 + C1

4 = 10 distinct training processes within
each dataset. Suppose there are dtr ID domains,
“Train-validation” means selecting OOD test
checkpoints based on ID accuracies from the
validation subsets of all dtr ID domains; “Leave-
one-domain-out” means leaving one selected ID
domain as a validation set, doing training on
dtr − 1 domains; “Test-domain” means selection
based on limited access to test domains and
selection based on these results. The final results
are aggregated with selection criteria provided by
Domainbed4. As a result, even a variation of 0.1
in the benchmark outcomes signifies a significant
improvement.

In our experiments, all the hyper-parameters,

4https://github.com/facebookresearch/DomainBed

like training steps, learning rates, and weight de-
cay, except those related to MoEs, strictly follow
GMoE.

D.1 GLUE

Each task involves one to four OOD tasks from
GLUE-X (Yang et al., 2023), resulting in 13 OOD
tasks in total. To illustrate, consider the Senti-
ment Analysis task: we first fine-tune models on
SST-2 from GLUE and report the validation re-
sults as ID performance, then use the test data
from IMDB (Maas et al., 2011), Yelp (Zhang et al.,
2015), Amazon (Kaushik et al., 2020) and Flip-
kart (Vaghani and Thummar, 2023) from GLUE-X
for OOD testing.

In the full fine-tuning, to ensure convergence
and reduce randomness, we train all models 10
epochs across 3 random seeds on each task. Each
experiment does a hyper-parameter search on
learning rates on [2e-5, 3e-5, 5e-5] as suggested
by BERT (Devlin et al., 2019). The training
batch size is 32. In the LoRA tuning, following
LoRA (Hu et al., 2022) that tunes models with
more epochs and larger learning rates than standard
full fine-tuning, all models are trained 20 epochs
on small and medium datasets and 5 epochs on
large ones (like QNLI, MNLI, QQP). The learn-
ing rate is searched in [2e-4, 3e-4, 5e-4]. All
methods are implemented with LoRA_rank=8 and
LoRA_alpha=16. The training batch size is 16
due to a larger model size. Other settings like
max_lengt following the codebase from hugging
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face5. After training on GLUE, we directly test the
selected models on GLUE-X with the data from
the official repo6.

E Computation Cost and Memory Usage

E.1 Experiments with public MoEs library

Theoretically, EMoE does not introduce additional
parameters compared to the standard model. Al-
though it adds computation in the gating portion
within the MoEs layer, it omits a substantial amount
of computation within the FFNs layer. For instance,
the computation in the gating portion is of the order
of h×N , where h represents the model’s hidden
size, and N is the number of experts. In contrast,
the complete computation in the FFNs layer is of
the order of (h×h×4h)×2, and sparse activations
can reduce more than a quarter of this computation.
Since N ≪ h, theoretically, using EMoE within
a single block should accelerate the forward pass
of the model. However, in real deployment, we
have observed that the hardware implementation
of MoEs can result in EMoE being, on average, ap-
proximately 10% slower than the standard model.
The memory usage is also slightly higher, by less
than 5%

Each experiment was conducted on a single
NVIDIA 40G A100 GPU. The training times for
different tasks ranged from just over ten minutes
(RTE) to more than ten hours (QQP).

E.2 Experiments with self-implementation

We further find that the increasing wall time and
the GPU memory usage come from the public li-
brary tutel we used to implement EMoE. We reim-
plemented our method and observed that EMoE
does not require significant additional run time and
memory usage. Specifically, we introduce an alter-
native implementation approach in EMoE where
hidden states are used to calculate gate scores af-
ter computing the first layer. These scores mask
the outputs of unselected experts, mimicking the
effect of MoEs. Though this theoretically increases
FLOPS compared to traditional MoEs, in practice,
the speed is comparable to standard models, as
demonstrated in Tab. 7, 2 All experiments about
LLMs are conducted on eight NVIDIA 80G A100
GPU.

5https://github.com/huggingface/transformers
6https://github.com/YangLinyi/GLUE-X

F Tabular Results

F.1 Full Tables in Full Fine-tuning with
Standard Deviation

This section presents the mean and variance of
experiments conducted with three different random
seeds. The Domainbed results are demonstrated in
Table 13, full fine-tuning results are in Table 14,
LoRA tuning results are in Table 15.

F.2 Full Tables and Figure Data Sources in
Analysis

In the Analysis section 4, we have transformed
tabular data into graphs or retained only a subset
of the results for clarity. The original and complete
results corresponding to them are presented in this
section. Fig. 3 is summarized from Tab. 16 and
Tab. 17. The OOD results in Table 1 are from 15.
The ablation studies are from Tab. 19, and Tab.20.

G More Visualization Results

In this part, we demonstrate more gating visualiza-
tion results on SST-2, STSB, MRPC, and RTE in
Figure 8. These results are consistent with earlier
findings: (1) Both avg-k gating and learned gating
converge, as indicated by the lower halves of the
plots. (2) avg-k gating is more stable than learned
gating. This could mitigate data inefficiency result-
ing from inconsistencies in gating across different
stages of training (Zuo et al., 2022a).
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Table 12: Language tasks and corresponding ID and OOD datasets.

Task ID-dataset size OOD-dataset size

Paraphrase
MRPC 4,076 Twitter 16,777

QQP 404,301
Twitter 16,777
MRPC 4,076

Linguistic Acceptability CoLA 9,594 Grammar Test 304,277

Textual Entailment RTE 2,768
SciTail 26,527
HANs 60,000

Textual Similarity STSB 7,128 SICK 9,840

Sentiment Analysis SST2 68,223

IMDB 50,000
Yelp 598,000
Amazon 4,000,000
Flipkart 205,041

Question Answering NLI QNLI 110,206 NewsQA 119,525

Natural Language Inference MNLI 412,313 SICK 9,840

Table 13: Overall out-of-domain performances with different selection criteria. All the reported results are obtained
from three independent experiments following the Domainbed codebase. The best result is highlighted in bold.In
cases where results are the same, the smallest standard deviation determines the best result. EMoE demonstrates
comparable results to GMoE.

Results with ViT-small backbone

Algorithm PACS VLCS OfficeHome TerraInc Avg

train-validation selection criterion

ViT 86.9±0.2 79.7±0.4 73.0±0.2 44.0±1.1 70.90
GMoE 87.7±0.2 79.6±0.4 73.1±0.3 45.4±0.3 71.45
EMoE-learn 87.2±0.4 79.6±0.2 72.5±0.2 46.1±0.4 71.35
EMoE 87.8±0.2 79.5±0.4 73.1±0.2 45.9±0.3 71.58

leave-one-domain-out selection criterion

ViT 86.1±0.6 79.7±0.4 73.3±0.1 45.0±0.5 71.03
GMoE 86.5±0.3 80.5±0.2 73.1±0.3 45.3±0.6 71.35
EMoE-learn 86.8±0.0 79.6±0.3 72.6±0.2 45.8±0.6 71.20
EMoE 86.8±0.1 80.6±0.4 73.3±0.2 46.1±0.6 71.70

test-domain selection criterion

ViT 86.5±0.4 78.2±0.4 73.1±0.2 44.0±0.5 70.45
GMoE 87.2±0.4 79.0±0.3 73.4±0.2 45.3±0.4 71.23
EMoE-learn 87.4±0.2 79.1±0.3 72.8±0.1 45.4±0.6 71.18
EMoE 87.6±0.5 79.0±0.2 73.3±0.0 45.5±0.1 71.35

Results with ViT-base backbone

Algorithm PACS VLCS OfficeHome TerraInc Avg

train-validation selection criterion

ViT 89.1±0.0 80.7±0.1 77.2±0.1 47.3±0.8 73.58
GMoE 90.0±0.3 80.4±0.6 77.0±0.1 49.2±1.1 74.15
EMoE-learn 89.8±0.2 80.6±0.2 76.5±0.1 48.7±0.5 73.90
EMoE 89.4±0.4 80.7±0.2 77.3±0.1 48.5±0.5 73.98

leave-one-domain-out selection criterion

ViT 88.9±0.4 80.8±0.3 77.5±0.1 46.1±0.6 73.33
GMoE 89.3±0.6 81.0±0.3 76.7±0.1 50.1±1.1 74.28
EMoE-learn 89.3±0.2 81.2±0.1 76.5±0.1 50.5±0.2 74.38
EMoE 89.6±0.2 81.6±0.2 77.4±0.1 50.0±1.1 74.65

test-domain selection criterion

ViT 88.8±0.7 79.0±0.5 77.2±0.0 46.7±0.4 72.93
GMoE 89.7±0.5 79.0±0.3 77.0±0.1 48.8±0.4 73.63
EMoE-learn 89.7±0.4 79.7±0.2 76.6±0.1 48.7±0.3 73.68
EMoE 89.7±0.4 79.7±0.2 77.5±0.1 48.8±0.6 73.93
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Table 14: Results on GLUE tasks with different backbones and algorithms. All the reported results are obtained
from 3 independent experiments. The average accuracy (avg) is reported along with the relative improvement
compared to the baseline. The best result is highlighted in bold.

Backbone Algorithm MRPC CoLA RTE STSB SST2 Avg

BERT-B

baseline 88.45±0.40 60.67±0.54 68.95±0.69 87.87±0.12 91.97±0.19 79.582
noisy tuning 88.43±0.12 61.79±0.16 71.36±0.17 88.27±0.94 92.32±0.25 80.43(+0.85)
GMoE 88.63±0.53 61.25±2.36 70.28±0.68 88.63±0.65 92.28±0.24 80.21(+0.63)
EMoE-learn 89.05±0.23 62.46±1.01 70.40±1.28 88.47±0.74 92.58±0.14 80.59(+1.01)
EMoE 89.45±0.36 61.55±0.67 69.68±1.02 88.71±0.50 92.89±0.19 80.46(+0.87)

BERT-L

baseline 89.82±1.30 65.41±0.47 74.89±1.39 89.87±0.28 93.50±0.24 82.70
noisy tuning 90.42±0.35 64.75±1.31 73.41±1.62 90.05±0.46 93.65±0.11 82.46(-0.24)
GMoE 91.24±0.25 64.90±1.26 74.24±1.04 90.00±0.64 93.58±0.25 82.79(+0.09)
EMoE-learn 90.57±0.43 65.51±0.32 74.72±2.13 90.22±0.49 93.73±0.35 82.95(+0.25)
EMoE 90.74±0.65 65.79±1.16 76.17±0.00 90.31±0.43 93.58±0.32 83.32(+0.62)

GPT2

baseline 84.46±0.51 47.07±1.60 67.15±0.51 86.29±0.29 92.13±0.30 75.42
noisy tuning 84.15±0.92 46.16±2.79 67.51±0.78 86.09±0.38 92.13±0.27 75.21(-0.21)
GMoE 85.07±0.45 47.77±3.20 67.51±0.51 86.57±0.29 92.35±0.35 75.85(+0.43)
EMoE-learn 85.73±0.09 47.24±1.48 67.99±0.17 86.66±0.32 92.35±0.38 75.99(+0.57)
EMoE 85.40±0.77 48.00±1.50 68.95±0.29 86.64±0.16 92.70±0.22 76.34(+0.92)

Table 15: Results on various algorithms with different models and tasks. All the reported results are obtained
from 3 independent experiments. OOD Metrics (averaged over 14 OOD tasks, lower is better) provide additional
information for out-of-distribution generalization. The best result is highlighted in bold, and the second is marked
with underline.

Algorithm MRPC CoLA RTE STSB SST2 QNLI QQP MNLI ID-Avg OOD

BERT-Large (340 Million Parameters) Results

LoRA 89.97±0.40 63.40±0.62 72.92±1.64 90.51±0.18 93.16±0.19 92.20 ±0.13 87.21±0.60 85.40±0.07 84.35 4.86
Block 89.34±0.84 62.10±0.91 71.96±1.68 90.39±0.14 93.35±0.43 92.04±0.16 88.45±0.07 86.20±0.10 84.23(-0.12) 4.95
Block+GMoE 89.45±0.72 63.80±0.71 72.56±0.29 90.29±0.07 93.85±0.11 92.32±0.14 87.99±0.06 85.92±0.13 84.52(+0.18) 4.04
Block+EMoE-learn 89.79±0.23 64.16±0.87 73.16±1.04 90.27±0.03 93.85±0.11 92.40±0.06 88.01±0.12 85.76±0.19 84.68(+0.33) 3.94
Block+EMoE 89.77±0.46 63.25±0.50 71.60±0.68 90.31±0.09 93.69±0.32 92.09±0.13 88.08±0.19 86.21±0.16 84.38(+0.03) 5.89
EMoE 90.85±0.61 65.33±0.40 75.21±1.62 90.43±0.06 93.50±0.33 92.23±0.10 87.74±0.10 85.43±0.10 85.09(+0.74) 4.37
EMoE+LN 90.47±0.33 64.39±0.31 73.41±1.04 90.54±0.03 93.00±0.16 92.31±0.05 88.79±0.17 85.50±0.10 84.80(+0.46) 4.53
EMoE-learn 89.87±0.50 64.00±0.57 71.36±1.39 90.48±0.10 93.65±0.33 92.40±0.11 87.55±0.14 85.62±0.23 84.37(+0.02) 4.66
EMoE-learn+LN 89.9±0.25 64.16±1.16 72.44±0.45 90.45±0.10 93.42±0.38 92.15±0.10 87.70±0.04 85.52±0.24 84.47(0.12) 4.28

GPT2-XL (1.5 Billion Parameters) Results

LoRA 86.83±0.87 60.88±2.54 78.70±0.59 89.07±0.11 95.18±0.28 91.84±0.09 87.41±1.74 86.93±0.15 84.61 5.61
Block 86.59±1.45 61.18±1.74 79.78±2.22 89.08±0.15 95.45±0.19 91.88±0.05 87.71±2.95 86.95±0.08 84.83(+0.22) 5.13
Block+GMoE 87.02±0.76 62.81±1.51 79.78±1.35 89.21±0.20 95.41±0.28 92.18±0.11 89.10±0.78 87.17±0.20 85.34(+0.73) 4.33
Block+EMoE-learn 87.31±1.23 62.24±1.51 79.54±0.17 89.33±0.11 95.30±0.09 92.20±0.09 88.59±1.68 87.06±0.18 85.20(+0.59) 4.05
Block+EMoE 87.86±0.98 62.88±0.54 80.05±0.29 89.18±0.25 95.49±0.39 92.10±0.15 89.69±0.15 86.87±0.11 85.52(+0.91) 5.71
EMoE 87.75±0.14 62.27±0.93 80.02±0.34 89.37±0.30 95.41±0.32 92.10±0.15 89.58±0.10 87.06±0.25 85.45(+0.84) 3.88
EMoE+LN 88.05±0.35 63.11±0.51 79.90±1.51 89.40±0.22 95.18±0.28 92.23±0.11 89.70±0.09 87.03±0.14 85.58(+0.97) 4.39
EMoE-learn 87.93±0.61 61.50±1.09 79.90±0.61 89.48±0.24 95.18±0.11 92.33±0.093 89.71±0.06 87.00±0.19 85.38(+0.77) 4.40
EMoE-learn+LN 87.04±1.11 62.64±0.84 79.78±0.59 89.50±0.22 95.30±0.50 92.31±0.19 89.43±0.35 87.00±0.12 85.38(+0.77) 3.67

Table 16: ID and OOD results of BERT-L for different settings. "LoRA-to-EMoE" refers to converting a model
tuned using standard LoRA into EMoE for testing. On the other hand, "EMoE-to-LoRA" involves merging a tuned
EMoE model back into a standard standard model during testing.

Algorithm CoLA Gram MRPC Twitter RTE Hans SciTail STSB Sick Avg

LoRA 60.89±2.55 41.77±1.62 86.83±0.87 75.42±2.71 78.70±1.02 60.37±1.31 77.36±0.73 89.22±0.13 78.48±0.33 72.12
LoRA-to-EMoE 61.31±2.14 41.99±1.56 86.83±0.91 75.15±3.02 78.58±0.95 60.39±1.32 77.24±0.68 89.23±0.13 78.53±0.35 72.14
EMoE 62.69±0.91 42.95±0.95 87.82±0.17 76.07±2.12 79.54±0.45 61.56±1.65 78.09±0.56 89.39±0.31 78.57±0.67 72.96
EMoE-to-LoRA 62.69±0.91 42.94±0.95 87.82±0.17 76.06±2.12 79.54±0.45 61.56±1.65 78.07±0.58 89.39±0.3 78.58±0.67 72.96
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Table 17: ID results of BERT-L for different settings. "Cluster-top" refers to EMoE utilizing avg-k gating. "Cluster-
not-top" represents a scenario where, during gating, the top-k experts are removed. Similarly, "Cluster-bottom"
involves selecting the bottom-k experts with the lowest scores during gating. "Random" denotes the approach
of randomly selecting key values to construct experts. The terms "top," "not-top," and "bottom" have the same
meanings as in the cluster situations.

Algorithm MRPC CoLA RTE STSB SST2 QNLI Avg

LoRA 89.97±0.40 63.40±0.62 72.92±1.64 90.51±0.18 93.16±0.19 92.20±0.13 83.69
Cluster-top 90.85±0.61 65.33±0.40 75.21±1.62 90.54±0.03 93.50±0.33 92.23±0.10 84.61(+0.92)
Cluster-not-top 89.61±0.76 63.21±0.44 72.56±1.28 90.31±0.07 93.12±0.34 92.14±0.18 83.49(-0.20)
Cluster-bottom 89.21±0.69 63.08±1.09 71.72±0.34 90.15±0.18 92.97±0.19 92.13±0.31 83.21(-0.48)
Random-top 89.88±0.75 63.26±0.39 72.56±1.06 90.33±0.05 93.35±0.00 92.14±0.20 83.59(-0.11)
Random-not-top 90.09±0.75 63.35±0.34 72.44±1.19 90.44±0.07 93.31±0.25 92.20±0.16 83.64(-0.05)
Random-bottom 89.47±0.23 63.17±0.98 71.96±0.74 90.30±0.23 93.11±0.25 92.10±0.11 83.35(-0.34)
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Table 18: Raw OOD performances across 13 tasks. Average results with standard deviation and best results are re-
ported separately. Due to the large deviation across seeds overall methods, we use Friedman rank metrics (Friedman,
1940).
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Table 19: Results of different MoEs Configurations

Algorithm MRPC CoLA RTE STSB Avg

standard 86.83±0.87 60.88±2.54 78.70±0.59 89.07±0.11 78.87
EMoE 88.05±0.35 63.11±0.21 80.02±0.34 89.37±0.24 80.14
EMoE-learn 87.93±0.61 62.87±0.71 79.90±0.61 89.40±0.08 80.03
EMoE-last-every2 87.27±0.47 61.60±0.63 79.18±0.17 89.38±0.24 79.36
EMoE-learn-learn-every2 87.26±0.21 61.82±1.10 78.46±1.22 89.31±0.15 79.21
EMoE-every2 86.78±0.34 59.21±0.79 77.38±1.04 89.31±0.06 78.17
EMoE-learn-every2 86.71±1.32 54.02±0.47 74.25±0.74 88.51±0.31 75.87

Table 20: Comparison of EMoE and Standard Results with Different Training Data Fraction

Data CoLA MRPC RTE STSB SST2 QNLI Average
Fraction EMoE Standard EMoE Standard EMoE Standard EMoE Standard EMoE Standard EMoE Standard Diff

1.0 62.27 60.88 87.75 86.83 80.02 78.70 89.37 89.07 95.41 95.18 92.10 91.84 0.74
0.9 61.58 60.01 87.52 86.49 79.87 77.85 89.18 89.07 95.41 95.16 92.05 91.94 0.85
0.8 60.89 59.28 86.58 86.35 79.22 76.77 88.98 88.99 95.34 95.06 91.94 91.83 0.78
0.7 59.29 58.25 86.10 85.56 77.98 76.77 87.95 87.95 95.41 95.06 92.04 91.74 0.57
0.6 58.91 57.93 85.61 84.76 76.29 75.45 86.70 86.17 95.26 95.03 91.83 91.54 0.62
0.5 55.18 53.89 84.91 84.76 76.53 75.21 85.63 85.59 95.19 94.91 91.23 91.12 0.53
0.3 50.17 50.29 82.80 82.59 73.52 72.44 80.23 79.08 94.82 94.72 90.45 90.26 0.44
0.1 46.47 45.54 78.17 77.85 63.05 63.17 62.33 60.81 94.49 94.38 88.39 88.32 0.47

Table 21: Results of top and bottom selection strategies on SST2 and CoLA datasets with different activation ratios.
The activation ratio is determined by calculating the proportion of activated neurons that belong to the selected
expert among all activated neurons. Meanwhile, the weighted activation ratio is computed by taking the ratio of the
sum of activation scores in the selected experts to the sum of the activation scores across the entire FFNs.

Top selection Bottom selection
Dataset Activation Ratio EMoE EMoE-learn EMoE EMoE-learn

SST2

Activation Ratio
32 0.6879 0.6796 0.3121 0.0552
16 0.4317 0.4247 0.124 0.1293
8 0.2616 0.2558 0.0528 0.3218

Weighted Activation Ratio
32 0.731 0.7234 0.269 0.2791
16 0.4953 0.4888 0.1041 0.109
8 0.3304 0.3237 0.0442 0.046

CoLA

Activation Ratio
32 0.6815 0.6788 0.3185 0.3212
16 0.4292 0.4239 0.1295 0.131
8 0.264 0.2582 0.0552 0.0637

Weighted Activation Ratio
32 0.7341 0.4958 0.2659 0.2744
16 0.512 0.3389 0.0468 0.1109
8 0.3589 0.7256 0.1063 0.0488
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Table 22: Comparing EMoE and pruning at different states. T-P means training EMoE, pruning experts with lower
selection frequency, and evaluating the pruned model. P-T means pruning lower selection frequency experts of an
untrained model, then training and evaluating the pruned model.

CoLA SST2

LoRA 63.40 93.16
EMoE 65.33 93.54

Remained Expert T-P P-T T-P P-T

64 65.26 63.4 93.42 93.16
32 65.33 63.52 93.54 93.34
16 65.33 63.42 93.45 93.27
8 64.33 63.42 93.45 93.27
4 63.80 63.21 93.34 93.21
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Figure 8: Expert selections during training with distinct gating functions (avg-k vs learned gate) and expert types
(modules from the standard vs repetitions of the standard). The vertical axis illustrates training steps, with top-down
arrangement signifying begin-end; the horizontal axis represents expert selection frequency within 1K steps. (a), (b)
and (c) correspond respectively to EMoE, EMoE-learn, and GMoE configurations. The subplots from top to bottom
are results for SST-2, STS-B, MRPC, and RTE.
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