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Abstract
Large language models (LLMs) have demon-
strated considerable success in various natu-
ral language processing tasks, but open-source
LLMs have yet to attain state-of-the-art perfor-
mance in Neural Machine Translation (NMT).
Nevertheless, their significant performance in
tasks demanding a broad understanding and
contextual processing shows their potential for
translation. To exploit these abilities, we in-
vestigate using LLMs for MT and explore re-
cent parameter-efficient fine-tuning techniques.
Surprisingly, our initial experiments found that
fine-tuning with Q-LoRA for translation pur-
poses led to performance improvements in
terms of BLEU but degradation in COMET
compared to in-context learning. To overcome
this, we propose an alternative approach: adapt-
ing LLMs as Automatic Post-Editors (APE)
rather than direct translators. Building on the
ability of the LLM to handle long sequences,
we also propose extending our approach to
document-level translation. We show that lever-
aging Low-Rank-Adapter fine-tuning for APE
can yield significant improvements across both
sentence and document-level metrics while gen-
eralizing to out-of-domain data. Most notably,
we achieve a state-of-the-art accuracy rate of
88.7% on the ContraPro test set, which as-
sesses the model’s ability to resolve pronoun
ambiguities when translating from English to
German. Lastly, during manual post-editing
for document-level translation, the source sen-
tences are iteratively annotated, which can be
used to refine further translations in the doc-
ument. Here, we demonstrate that leveraging
human corrections can significantly reduce the
number of edits required for subsequent trans-
lations.

1 Introduction

Large Language Models (LLMs) are currently be-
ing explored for many Natural Language Process-
ing tasks such as Question Answering and Dia-
logue Applications (Touvron et al., 2023; Anil et al.,

Figure 1: Iterative Manual Post-Editing: For manual
PE, the annotator supplies the gold target context iter-
atively. The LLM then utilizes this gold target context
for generating translations at document-level.

2023; Thoppilan et al., 2022; Tan et al., 2023).
Moreover, they are even shown to achieve or sur-
pass state-of-the-art performance based on tradi-
tional methods. This achievement demonstrates
their ability to possess general understanding and
process long inputs. Given these strengths, LLMs
might also be suitable for Machine Translation
(MT) as many of them are also inherently mul-
tilingual from being trained on the web.

However, LLMs for MT still remain an under-
explored area of research. While there are initial
works on using LLMs for MT at both sentence and
document-level (Vilar et al., 2022; Hendy et al.,
2023; Wang et al., 2023; Zhang et al., 2023), the
performance of open-source models in the range of
13B parameters still lags behind the current state-
of-the-art Neural MT (NMT) methods (Xu et al.,
2023). Nonetheless, closed models such as GPT-4
are on par or better depending on the language pair
(Kocmi et al., 2023). Hence, it is necessary to in-
vestigate adapting small-scale open-source models
for for translation.
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Notably, these methods mainly employ In-
Context-Learning (ICL) (Brown et al., 2020) as
fine-tuning these models often requires a signifi-
cant amount of computational resources. Hence,
there might be a barrier to optimally adapting the
LLMs for MT.

Parameter-efficient techniques for fine-tuning
such as Low-Rank Adapters (LoRA) (Hu et al.,
2021; Dettmers et al., 2023) were recently pro-
posed to overcome large computational require-
ments. This enables a new adaptation process for
LLMs. However, whether these techniques are
sufficient for successful adaptation and better gen-
eralization is still unclear.

This work investigates exploiting LLMs for MT
at both sentence and document levels. We initially
experiment using ICL and parameter-efficient fine-
tuning techniques such as Q-LoRA to use LLM for
MT and find that adding adapters alone is insuffi-
cient and may even lead to degradation in COMET
(Section 4). While full fine-tuning may resolve
such discrepancies, it is important to efficiently
adapt open-source LLMs with minimal computa-
tional resources. To mitigate this and still exploit
the strengths of LLMs, we propose to adapt them
as Automatic Post-Editors (APE) correcting NMT
systems hypothesis rather than direct translators.

This approach offers several advantages. It in-
troduces modularity, allowing state-of-the-art or
customized NMT techniques to be applied inde-
pendently, followed by LLM improvements. Addi-
tionally, LLMs can refine the sentence-level NMT
systems output and generate consistent and coher-
ent text using their ability to generate fluent and
long documents.

The cascaded system of NMT and LLM offers
modularity and can also enable the integration of
human feedback. By feeding the LLM human-
corrected translations from previous sentences in
the document, we show that it can leverage this
feedback to improve the current sentence’s trans-
lation. This process can be applied iteratively in
practice, sentence by sentence, as the annotator
progressively corrects the translated document (see
Figure 1 for Iterative Manual Post-Editing).

We summarize our main findings and contribu-
tions below:

• Effective Combination of NMT and LLM:
Our sentence-level LLM APE demonstrates
a successful fusion of knowledge from NMT
systems and LLMs, leading to substantial en-

hancements in translation quality. Importantly,
we observe that the LLM APE exhibits robust-
ness and can adeptly correct NMT systems,
even for test sets from different domains that
it was not explicitly trained on.

• Extension to Document-level Post-Editing:
We extend our approach to document-level
APE and observe significant improvements in
both sentence and document-level translation
metrics. Notably, we achieve a state-of-the-art
accuracy of 88.7% on the ContraPro English
to German test set, underscoring the effective-
ness of APE.

• Iterative Manual Post-Editing: We intro-
duce a promising use-case scenario for itera-
tive post-editing (as depicted in Figure 1). We
show that providing gold target context sig-
nificantly enhances the remaining translation
quality, both at the sentence and document
levels, as indicated by various metrics.

2 Approach: Adapting LLM for APE

Open-source LLMs may not be as proficient trans-
lators as state-of-the-art NMT systems due to no
explicit training with large amounts of parallel data.
However, LLMs being trained on the web con-
taining data from several domains possess general
knowledge that is lacking in an NMT model. More-
over, they are capable of processing significantly
longer inputs compared to a standard sentence-level
NMT. Given their strengths of knowledge and abil-
ity to process long sequences, we propose to use
them for APE at both sentence and document lev-
els. Hence, we first generate translations with NMT
and then perform APE with LLMs. Our approach
combines the translation capacity of NMT with
fluency and understanding of LLMs.

We use a technique similar to Niehues et al.
(2016), which combines Phrase-Based and NMT
models. We extend this approach to incorporate
LLMs for APE at both sentence and document lev-
els. We first explain our system’s complete pipeline
at both text representation levels of sentence and
document. Then, we describe how we train and
create the data for each step in our setup. Finally,
we explain how human feedback can be easily inte-
grated into our cascaded approach during manual
PE.
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2.1 Pipeline
Given a source sentence s, we use an NMT model
to generate an initial translation hNMT . Then for
our APE model, we do not provide the hNMT

alone as it cannot distinguish when the hypoth-
esis from NMT is severely mistranslated but still
fluent. Hence, we feed the source sentence and the
initial translation to LLM and generate a refined
hypothesis hLLM .

hNMT = G(θNMT , s) (1)

hLLM = G(θLLM , s, hNMT ) (2)

where θNMT and θLLM are models trained for
translation and APE. G(θ, s, h) indicates generat-
ing a hypothesis using the model θ given s and h
using beam search.

For APE at the document level, we extend the
above formulation to process a sequence of sen-
tences. Consider a document D with n source sen-
tences si where i ranges from 1 to n. We first use
the NMT model to generate each translation in iso-
lation at the sentence level. Let them be denoted as
hiNMT . Then, we perform APE using the sequence
of source and hypothesis sentences, exploiting the
LLM’s ability to process and use contexts. We de-
note the generated document translation as hDLLM :

hiNMT = G(θNMT , s
i) ∀i ∈ 1..n (3)

hDLLM = G(θLLM , sD, hDNMT ) (4)

where sD and hDNMT are the source and
sentence-level hypothesis sentences joined by a
separator token to form a document.

2.2 LLM Fine-tuning for APE
In our cascaded approach, we have an NMT and
an LLM. For training our NMT model, we train
it on available parallel data in a conventional fash-
ion. We do not take any additional steps as our
main motivation was to exploit LLMs for further
enhancements. In the case of the LLM, we propose
to go beyond ICL approaches and fine-tune them
for maximum utility, as described in the following.

2.2.1 Training on MT Errors
To further optimize the LLM for the task of APE,
we propose to fine-tune them using Q-LoRA (Hu
et al., 2021; Dettmers et al., 2023). It is ideal to
fine-tune the LLM by providing the source and hy-
pothesis as input and predicting the corresponding

post-edited reference. This needs data in the form
of triples comprising the source, initial hypothesis,
and reference. To simulate real test conditions, we
need the initial hypothesis to consist of the errors
generated from the NMT model we plan to use.

To achieve this, we follow these steps:

1. We partition the training data into two halves.

2. We train two separate NMT models, one for
each half of the data.

3. We utilize the model trained on the first half
to perform inference on the second half, and
vice versa.

This process yields the same quantity of in-
stances as the original training set, with initial hy-
potheses that exhibit errors typical of the NMT sys-
tem we plan to improve on. Subsequently, we for-
mat this data into a prompt template, as described
in Appendix A.4 or A.5, depending on the level
of representation. Then, we employ Q-LoRA for
fine-tuning1 our LLM. For document-level APE
(Doc APE), we simply split into non-overlapping
chunks according to a chunk limit of source tokens
and create our training data.

2.2.2 Inference
In our setup, the level of granularity can be a sen-
tence or a document. The decoding process is
straightforward for sentence-level APE (Sent APE).
We generate an initial translation and feed it to the
adapted LLM for our final refined hypothesis.

In the context of document translation, decod-
ing poses a more intricate challenge compared to
sentence-level. Decisions must be made regarding
the direction of context for each source sentence,
whether it should be drawn from the left, right, or
both sides. In our work, we explore the following
strategies:

Chunk-Based: This is a straightforward ap-
proach where we employ the same method used to
create our training data. We create non-overlapping
chunks and translate them individually. In this
setup, it’s possible that some sentences may lack
left or right context. Note that if the number of sen-
tences in the hypothesis doesn’t match the source,
we replace them with the sentence-level △ LM
outputs exploiting the modularity of the cascaded
approach. We’ve observed that this situation occurs

1Training details can be found in Appendix C.1
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infrequently, with at most 30 sentences, and thus
for rare instances.

Batched Sliding Window: We translate the doc-
ument using a sliding window approach with a pay-
load, as described in Post and Junczys-Dowmunt
(2023). Following our chunk limit, we append
the sentence we intend to translate with as much
preceding source context as possible. Then, we
translate the entire chunk, including the context
(Payload), and extract the last sentence using the
separator token.

Continuous Sliding Window: Similar to the
previous approach above, we append the left source
context according to the chunk limit for translation.
However, the key distinction here lies in not re-
generating the target context at every step. When
translating a sentence, we force-decode the previ-
ous sentence translation that is the target context
in the next step. Hence, at each step, only one sen-
tence is translated into the target language, which
is then used for forced decoding in the subsequent
step to provide the target context (Referred to as
Sequential Decoding in Herold and Ney (2023)).

2.3 Integrating Manual Feedback

Consider the case of manual PE, where the annota-
tor edits each sentence in the document. Here, we
have access to the human-corrected target context,
which can be used to refine future translations.

We propose to integrate this information into our
APE system. We condition its subsequent transla-
tions on this expert knowledge by iteratively feed-
ing the model human-corrected contextual infor-
mation from preceding sentences and appending
it to the prompt. This modular approach enables
straightforward integration of human input without
requiring additional training.

3 Experimental Setup

Models: In our proposed approach, we have a
sentence-level NMT system that generates an ini-
tial hypothesis and an LLM which then improves
it. Nonetheless, we want a strong NMT model to
assess the benefits of using LLMs. Furthermore,
the model should be efficient to add more latency to
the two step approach. Therefore, we fine-tune the
pre-trained DeltaLM2 (Ma et al., 2021) (△ LM) for
initializing our NMT sentence-level model (Refer
to Appendix C.2 for more details). We chose this

2We use the △LM base model with 360M parameters

model given its size and the performance in the con-
strained setup in the IWSLT evaluation for multi-
lingual track (Agarwal et al., 2023). We also ablate
with NLLB (Costa-jussà et al., 2022) to compare
with state-of-the-art NMT models (Section 5.3).
While For LLM, we use the recently open-sourced
Llama-2-13b-chat-hf (Touvron et al., 2023) as it is
instruction-finetuned and has reasonable compute
and memory requirements when adapting with 4bit
Q-LoRA (Dettmers et al., 2023).

During training (Refer to Appendix C.1 for more
details), we mask the loss on the prompt, which
means that the LLM is exclusively trained to pre-
dict the reference given the source and hypothesis.

Datasets & Metrics: We primarily focus on
translating talks from English to German at a
document-level. This choice is based on the large
availability of document-level parallel data, the cur-
rent state of sentence-level NMT quality, and the
necessity for contextual information in this transla-
tion direction.

For training our sentence NMT and post-
editor LLMs, we utilize the MuST-C V3 Corpus
(Di Gangi et al., 2019). This corpus aligns well
with our objectives, containing parallel data anno-
tated with talk IDs for document-level translation.

For testing, we report results on three test sets.
First, we select a subset of the training corpus with
the most contextual phenomena in the speeches.
This choice stems from the need for context not al-
ways prevalent, and hence, standard tests may not
suffice for document-level evaluation. To identify
such contextual phenomena, we employ the MuDA
tagger (Fernandes et al., 2023), which automati-
cally tags words requiring contextual information
in the training corpus. We select talks with the high-
est number of tags for each phenomenon, resulting
in 14 talks in our test sets, addressing contextual
occurrences related to pronouns, formality, and lex-
ical cohesion. Then, we remove the selected talks
from our training data and use them for testing.

To evaluate the robustness of our approach with
out-of-domain data, we use the WMT21 News test
set (Akhbardeh et al., 2021) and the ACL dev set
from IWSLT23 (Salesky et al., 2023). Although
the ACL data consists of talks, its content contains
terminology and domains that are unlikely to be
found in the training data. Furthermore, both test
sets are annotated at the document level, aligning
with our experimental setup.

Table 1 presents an overview of the datasets. No-
tably, the number of detected tags is relatively small
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Dataset Sentences Documents
MuDA Tags

Pronouns Formality Lexical Cohesion

MuST-C V3 Train 261.4K 2.5K 28K 82K 86K
MuST-C V3 Test 3637 14 332 1127 1268
WMT 21 News 1002 68 42 145 381

ACL Dev 468 5 12 38 478

Table 1: Statistics of our training and test data sets. We report the number of sentences and documents along with
the total tag occurrences annotated by the MuDA tagger.

compared to the total sentences, even when ac-
counting for false positives in WMT and ACL test
sets. Therefore, creating a custom test set was
essential to reliably evaluate context usage and
sentence-level translation quality.

We also report scores on the ContraPro (EN →
DE) (Müller et al., 2018) for a targeted evaluation
of context usage in resolving pronoun ambiguities.

Regarding metrics, we employ various methods
to assess the quality at both the sentence and docu-
ment levels. Our report includes BLEU (Papineni
et al., 2002), ChrF2 (Popović, 2016) using Sacre-
BLEU (Post, 2018), and COMET3 (Rei et al., 2022)
scores for sentence-level evaluation. To gauge the
quality of word prediction using contextual infor-
mation at the document level, we report Precision,
Recall, and F1 scores for words detected by the
MuDA tagger.

4 Automatic Post-Editing is Necessary

Shot Size BLEU ChrF2 COMET
Sent-level △ LM 30.45 57.0 0.8179
Llama2 13B ICL

(Random 2)
21.53 50.0 0.7795

Llama2 13B MT 28.92 55.9 0.7664
Llama2 13B 0-Shot APE 27.26 53.9 0.8008

Table 2: ICL, LoRA fine-tuning for MT and 0-Shot
APE performance of the Llama2 13B on Must-C test set.
We report BLEU, ChrF2 and COMET scores for each
configuration (EN → DE) and highlight the best scores
in bold for each metric. We report only best performing
ICL configuration but provide results of 1-5 shots in the
Appendix B.

While APE with LLMs seems intuitively advan-
tageous, our first step is to empirically evaluate it
against several baselines, including alternatives like
In-Context-Learning (ICL) (Brown et al., 2020)

3Unbabel/wmt22-comet-da

and fine-tuning with LoRA. To justify the devel-
opment of a cascaded system with added computa-
tional complexity, we assess the following configu-
rations4:

Sentence-Level NMT: We fine-tune △LM on
the training data at sentence-level in conventional
fashion.

In-Context-Learning with Llama2 13B: We
prompt the model according to Vilar et al. (2023),
selecting examples randomly or similar to the cur-
rent prompt. To find sentences more closely related
to our source, we extract sentence embeddings
from our training data using Sent-BERT (Reimers
and Gurevych, 2019) and retrieve the nearest neigh-
bors for efficiency using FAISS (Johnson et al.,
2019) (Llama2 13B ICL).

Llama2 13B + Adapters: Leveraging the re-
cent advancements in efficient fine-tuning of LLMs,
we fine-tune with adapters using LoRA (Hu et al.,
2021) (Training and Hyper-Parameter Details can
be found in Appendix C.1). Like the sentence-level
NMT, we fine-tune it on all of our training data at
the sentence level (Llama2 13B MT).

Zero-Shot Post-Editing with Llama2 13B: Fi-
nally, we consider the case of simple zero-shot PE
to evaluate the in-built ability of the model to use
the knowledge from another system and compare
it to ICL where it acts as a direct translator.

Results for the above setups are reported in Table
2. First and foremost, we observe that the sentence-
level △ LM achieves the highest scores across all
metrics. This underscores the highly competitive
performance of a dedicated NMT model with 360M
parameters compared to a 13B LLM.

Furthermore, we find that in the case of ICL, the
selection strategy is relatively unimportant, with
both random and FAISS performing similarly as
indicated by the scores in Appendix B. Addition-

4Prompt templates for all the configurations described in
Appendix A
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ally, increasing the number of exemplars in the
prompt had a detrimental effect on our setup. More-
over, adapting with LoRA yields the highest BLEU
and ChrF2 scores of 28.92 and 55.9 when com-
pared to setups that rely solely on the LLM. How-
ever, it’s worth noting that COMET scores decrease
compared to ICL. These findings suggest that fine-
tuning with Q-LoRA on extensive parallel data may
lead to higher scores in lexical metrics but degra-
dation in COMET. Whether such a trend is also
observed with full fine-tuning demands further ex-
ploration, and we do not perform it due to a lack of
computational resources.

Zero-Shot APE beats ICL across metrics
(COMET included), unlike LoRA, showing LLMs’
innate post-editing ability. However, it falls short
of sentence-level △ LM. Therefore, we propose to
train the adapter for APE rather than direct transla-
tors to exploit LLMs.

5 Llama2 13B as Sentence-Level Post
Editors

Model BLEU ChrF2 COMET

MuST-C V3

△ LM 30.45 57 0.8179
Llama2 13B MT 28.92 55.9 0.7663

Llama2 13B 0-Shot APE 27.26 53.9 0.8009
△ LM + Llama2 13B Sent APE 31.71 58.3 0.8330

WMT 21 News

△ LM 21.53 52.6 0.7911
Llama2 13B MT 23.61 54.3 0.7931

Llama2 13B 0-Shot APE 21.44 52.0 0.7982
△ LM + Llama2 13B Sent APE 25.16 56 0.8411

ACL Dev

△ LM 31.36 60.5 0.7945
Llama2 13B MT 31.47 60.5 0.772

Llama2 13B 0-Shot APE 30.83 60.3 0.8028
△ LM + Llama2 13B Sent APE 36 63.9 0.8321

Table 3: Performance of Sent-Level Llama2 13B APE
on test sets in and out of the domain. △ LM + Llama2
13B Sent APE denotes using the hypothesis of △ LM as
input for our adapted Sentence-Level Llama2 13B post
editor. We report BLEU, ChrF2, and COMET scores
for each approach (EN → DE) and highlight the best
scores in bold for each metric.

In this section, we evaluate the performance of
improving sentence translations with APE. First,
we discuss the results of improving translations gen-
erated only by △ LM on in-domain test data. Then,
we analyze the influence of moving away from our
training conditions to assess the robustness of the

model. We achieve this by first evaluating its per-
formance on out-of-domain test sets and combining
it with hypotheses generated by models other than
△LM.

5.1 Improved Translation Quality with
Sentence-Level APE

We evaluate our Sentence-Level Llama2 APE and
present the results in Table 3. To assess the utility
of APE, we also report scores for the individual
models, namely, the sentence-level △ LM and the
Llama2 fine-tuned with LoRA on the parallel data.

We see that post-editing the output of △ LM
with Llama2 outperforms other models across all
metrics while fine-tuning for MT alone shows
degradation. We hypothesize that this is primar-
ily due to LLMs’ internal knowledge and intrinsic
ability to generate fluent sentences while lacking
in translation capability. However, by providing
initial translations to make the task easier, LLM
improves the quality by a high margin.

5.2 Generalizability to Out-Of-Domain Data

From Table 3, we observe that the performance
gains are more pronounced on the WMT21 News
and ACL test sets compared to our MuST-C test set.
The primary difference is that WMT and ACL fall
outside the domain of the training data. Hence, we
observe more significant improvements compared
to our MuST-C test set. We gain by 1.26 BLEU on
MuST-C but up to 5.64 and 3.63 BLEU on the out-
of-domain ACL and WMT test sets respectively.

This scenario mirrors practical situations where
a system encounters out-of-domain sentences and
performs sub-optimally. By utilizing Llama2, con-
taining a broader spectrum of "knowledge" (Illus-
trated in Table 10), we demonstrate that it can sig-
nificantly enhance translation quality.

5.3 Generalizability to NMT Models

Apart from improving △ LM hypothesis, it is ideal
if the APE with Llama2 can enhance translations
of various NMT models. Therefore, to critically
assess the generalization ability of the Sentence-
Level Llama2 APE, we evaluate it on correcting
hypotheses that were not generated from △ LM on
MustC and out-of-domain ACL dev set. For this
purpose, we utilize the NLLB models5 (Costa-jussà
et al., 2022) and present the results in Table 4.

5We perform inference with 8-bit quantization and achieve
slightly lower scores than reported in the literature
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Model BLEU ChrF2 COMET

MuST-C V3

Llama2 13B MT 28.92 55.9 0.7663
NLLB 3.3B 31.6 58.8 0.8265

NLLB 3.3B + Llama2 13B Sent APE 32.44* 58.9* 0.8320*

ACL Dev

Llama2 13B MT 31.47 60.5 0.772
NLLB 3.3B 43.01 69.7 0.8321

NLLB 3.3B + Llama2 13B Sent APE 40.09 67.2 0.8372*
NLLB 54B 45.82 71.56 0.844

NLLB 54B + Llama2 13B Sent APE 40.91 67.8 0.8407

Table 4: Analyzing the robustness of the Llama2 13B
Sentence-Level APE. NLLB X LLM + LLM Sent APE
denotes using the hypothesis of NLLB X as input for
our adapted Sentence-Level LLM APE. Best scores for
a test set are in bold for each approach. If the post-
editor improves the hypothesis according to a metric,
we denote it with *

We show that for the in-domain test set MuST-
C, the APE sucessfully improves the scores in
all metrics with notably an increase in COMET
score of 0.65. In the case of out-of-domain ACL,
APE improves the COMET score for the 3.3B
NLLB model (0.5 gain) but hurts lexical metrics,
suggesting it rephrases outputs while maintaining
quality. However, APE harms 54B NLLB trans-
lations, likely due to difficulty finding errors in
such strong models and adapter training focused
on lower-quality hypotheses.

6 Llama2 as Document-Level Post
Editors

Another motivation for our approach is to exploit
LLMs ability to process long sequences for Doc
APE. In this section, we evaluate and analyze the
performance of our Doc APE model in detail.

To gain insights on whether the Doc APE with
Llama2 is beneficial, we compare it against sev-
eral models. Apart from the previously mentioned
sentence-level models such as △ LM and Llama2 +
LoRA, we also extend them to the document-level
by concatenating sentences (Tiedemann and Scher-
rer, 2017) (Doc2Doc). Furthermore, we evaluate
different decoding strategies and report both sen-
tence and document-level metrics in Table 5.

After tuning on the dev data, we set the LLama2
maximum chunk token sizes as 1024 for training
and 256 for inference (See Figure 2 for more in-
formation). This ensured at least 5 preceding sen-
tences for most data, which we found to be rea-
sonable given the computation requirements with

large inputs. For △ LM Doc2Doc, we use a smaller
chunk size (128 tokens) due to its limited capacity.

Concatenating Sentences for Doc2Doc Proves
Insufficient: Our analysis reveals that models fine-
tuned with △ LM and Llama2 separately at the
document level exhibit subpar performance when
compared to the sentence-level △ LM across all
considered metrics. This limitation likely stems
from the scarcity of document-level parallel data, a
common occurrence, particularly in the context of
low-resource languages. This highlights the inad-
equacy of concatenation as a standalone approach
in practical use cases.

Navigating the Trade-off between Sentence
and Document APE: Doc APE models outperform
sentence-level on BLEU/ChrF2 (despite slight
COMET dip of 0.003 between Sent and Doc APE),
showing promise for document translation. The
Doc APE models leverage context effectively for
pronouns and formality by achieving the best F1
scores of 0.75 and 0.74. However, it is still un-
clear why the COMET score of Doc APE model is
worse while we observe improvements in all other
metrics.

Impact of Decoding Strategy: Doc APE’s dif-
ferent decoding strategies (chunking, windowing)
show no clear winner in the sentence or document-
level metrics. Batched sliding window, though
computationally expensive, offer no significant ad-
vantage. Thus, a continuous sliding window or
chunking may be preferred for efficiency. However,
further research across domains and languages is
crucial to comprehensively understand Doc2Doc
decoding strategies.

6.1 Incorporating Target Context during
Manual Post Editing

Until now, we have focused on APE and assumed
there is no human feedback. However, in the case
of manual PE, we force decode the previous target
sentences as the manually corrected target context
and condition the model to generate the translation
of the current source sentence. We denote this as
△ LM + Llama2 Doc APE Gold Target Context in
Table 5.

By feeding gold target sentences as context to
Doc APE, we achieve substantial gains across met-
rics: +4.14 BLEU, +2.6 ChrF2, +0.268 COMET,
compared to sentence-level △ LM. This validates
Doc APE’s ability to leverage context and suggests
the potential for reducing manual edits in PE, lead-
ing to cost savings.
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Approach BLEU ChrF2 COMET
Pronouns Formality Lexical Cohesion

Precision Recall F1 Precision Recall F1 Precision Recall F1

△ LM 30.45 57 0.8179 0.65 0.76 0.70 0.68 0.70 0.69 0.60 0.74 0.67

△ LM Doc2Doc 30.66 57.7 0.7481 0.66 0.78 0.71 0.68 0.72 0.69 0.6 0.74 0.66

Llama2 13B MT 28.92 55.9 0.7663 0.66 0.77 0.71 0.67 0.71 0.69 0.61 0.76 0.68

Llama2 13B MT Doc2Doc 28.98 56.1 0.8221 0.67 0.75 0.71 0.68 0.74 0.71 0.61 0.70 0.65

△ LM + Llama2 13B SENT APE 31.71 58.3 0.8330* 0.66 0.77 0.71 0.67 0.71 0.69 0.61 0.76 0.68*

△ LM + Llama2 13B Doc APE
Chunk

31.47 58.4 0.8306 0.68 0.82 0.74 0.66 0.76 0.71 0.60 0.76 0.67

△ LM + Llama2 13B Doc APE
Batched SW

31.77 58.9* 0.8300 0.68 0.83* 0.75* 0.67 0.77 0.72 0.61 0.77* 0.68*

△ LM + Llama2 13B Doc APE
Continuous SW

31.85* 58.9* 0.8298 0.69* 0.72 0.71 0.68* 0.81* 0.74* 0.62* 0.64 0.63

△ LM + Llama2 13B Doc APE
Gold Target Context

34.59 59.6 0.8347 0.73 0.8 0.76 0.77 0.78 0.77 0.69 0.77 0.73

Table 5: Comparing our Document Level APE with Llama2 13B with sentence level APE and conventional
approaches. We use chunk-based decoding unless it is explicitly mentioned for Doc2Doc models. We report BLEU,
ChrF2 and COMET scores for sentence level evaluation and MuDA tagger scores for document level. The best
score in each metric is highlighted in bold. We also compare APE models without gold target context in isolation
and append * for the best score in each metric.

6.2 Disambiguating Pronouns with Doc APE
We also report scores on the ContraPro test set
(Müller et al., 2018). This is a benchmark designed
to assess the disambiguation of pronouns, specifi-
cally "Er" (masculine)," "Sie," (feminine) and "Es"
(neutral) when translating "It" from English to Ger-
man. We evaluate on two setups following Post
and Junczys-Dowmunt (2023). For contrastive,
we force-decode the target context and determine
which pronoun is most likely based on the log-
likelihood. In the case of generative, we directly
translate the full source paragraph and extract the
last sentence to check if it contains the correct pro-
noun.

Cxt Size Contra/Gen (%)

Post and Junczys-Dowmunt (2023) 10 77.9/70.5
Lupo et al. (2023) 4 82.54/_

△ LM + Llama2 Doc APE 2 87.7/68.0
△ LM + Llama2 Doc APE 4 88.7/69.7

Table 6: Contrastive and Generative accuracy on the
ContraPro English → German Test Set. Results for Sent
APE and additional configurations in Table 9.

We find that our document-level APE model
achieves state-of-the-art accuracy 88.7% in choos-
ing the right pronoun. This can be attributed to
LLMs pre-training in long texts. We are very com-
parable to Post and Junczys-Dowmunt (2023) for
generative accuracy with fine-tuning only on TED
talks. Moreover, this shows that when target con-
text is made available, LLMs seem to better exploit
them and are ideally suited for document-level.

7 Related Work

Document NMT: Conventional approaches in Doc-
NMT rely on a straightforward concatenation tech-
nique (Tiedemann and Scherrer, 2017; Agrawal
et al., 2018; Post and Junczys-Dowmunt, 2023).
Several works also explored complicated adapta-
tions to transformer architectures, such as the in-
clusion of additional context encoders (Jean et al.,
2017; Voita et al., 2018), adjustments to positional
information (Bao et al., 2021; Li et al., 2023),
and the application of data augmentation strategies
(Sun et al., 2022), among others. Similar to our
work is Voita et al. (2019), where sentence-level
translations are refined to create a coherent docu-
ment but without considering the source context.

LLM for MT: LLMs are currently being ex-
plored for MT given their success in several tasks.
These techniques were mainly facilitated by ICL
(Brown et al., 2020) at sentence-level (Zhang et al.,
2023; Vilar et al., 2022) or document-level (Hendy
et al., 2023; Wang et al., 2023). Similar to our
work, the other line of direction is integrating trans-
lation memories (Mu et al., 2023; Moslem et al.,
2023) or correcting NMT system outputs in the
prompt (Raunak et al., 2023; Chen et al., 2023). It
is worth noting that our work sets itself apart from
these approaches by leveraging efficient LoRA and
enabling the effective fusion of NMT with LLMs
at both the sentence and document-levels.

Online Learning for NMT: Integrating human
feedback for MT was explored in both statistical
and neural MT (Formiga et al., 2015; Logacheva,
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2017). Many methods perform additional training
steps using the feedback and alter the MT model at
run-time (Turchi et al., 2017; Kothur et al., 2018).
Few works explored integrating retrieval and cache
mechanisms to avoid further fine-tuning (Gu et al.,
2018; Shang et al., 2021; Wang et al., 2022). Our
approach incorporates human feedback as context
and does not need any changes.

8 Conclusion

Our work highlights LLMs’ potential for APE, sig-
nificantly boosting NMT at both sentence and doc-
ument levels. We showed that it enables modular-
ity, deeper text understanding, and document-level
quality boosted by LLMs’ massive pretraining.

For future work, we consider several research av-
enues. These include training the adapters on sub-
stantially larger volumes of document-level paral-
lel data, assessing various open-source LLMs, and
conducting similar experiments with low-resource
languages and domain.

9 Limitations

The main disadvantage of the proposed cascaded
system is the latency of generating a translation.
From Table 5, we find the △ LM performance
is worse but comparable to the APE approaches
with LLM. However, △ LM can produce transla-
tions with significantly shorter latency than LLMs.
Therefore, integrating techniques from quality es-
timation to decide when to perform APE may be
helpful to overcome this limitation.

The other drawback of the cascaded approach is
that it does not simulate a deep fusion. The LLM
can make mistakes even when the NMT is highly
confident and correct for a given translation. How-
ever, fusing them is not trivial due to the models
having different vocabularies.

Finally, we would also like to mention that we
performed experiments for only English to German
direction, which was highly present during LLMs
pretraining. The benefits of APE should also be val-
idated for low-resource languages for generalizabil-
ity, where the monolingual data of such languages
may be significantly less in the LLM pretraining.
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A Prompt Templates

In this Section, we provide our prompt templates
for our experiments

A.1 Prompt: LLM In-Context-Learning

Below is the prompt template for our few-shot ICL
experiments. In this example, we perform 2-shot.
Given, the two previous examples are either se-
lected randomly or nearest in the embedding space
for the source sentences.

### INSTRUCTION:
Translate the input from
English to German.

###Input: [SRC1]
####Response: [TGT1]

###Input: [SRC2]
####Response: [TGT2]

###Input: [SRC3]
####Response:

A.2 Prompt: LLM Adapter

We use the following template when adapting the
LLM for sentence-level translation. Note that it is
different from the ICL in Section A.1. However,
we experimented with the below prompt for ICL
and found similar results. We do not again perform
the experiments for all configurations due to the
computational load.

[INST] <<SYS>>\nYou are a
professional translator
from English to German.

The output should only be the
translation in one line.<</SYS>>

English: [SRC]
[/INST]
German:

A.3 Prompt: LLM ZeroShot PE

Since this scenario is zero-shot, we provide more
instructions so that is much easier for the model to
understand the task. Since we found it was gener-
ating explanations and notes even when explicitly
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mentioned not to, we ask to always end the answer
with "###". Later, we use it as a separator for pars-
ing the output. We provide the prompt template
below

[INST] <<SYS>>You are a post-editor.
You improve translations from English
to German using the English source and
German translation. Do not provide any
explanation or correction.
The translation should end with
### in new line
<</SYS>>
English: [SRC]
German Translation: [HYP]
[/INST]
Post-Edited Translation:

A.4 Prompt: LLM LoRA Sentence APE
In this case, we decrease the prompt size as now
we perform fine-tuning and instructions are not
necessary. Furthermore, it will lead to less memory
consumption as the sequences are much shorter.

English: [SRC]
German Translation: [HYP]
Post-Edited Translation: [REF]

A.5 Prompt: LLM LoRA Document APE
We format the prompt similarly to the sentence
level. The only difference is that now we have sen-
tences separated by "<SS>" token in the document.

English: [SRC1] <SS> [SRC2] <SS> [SRC3]
German Translation: [HYP1] <SS> [HYP2]

<SS> [HYP3]
Post-Edited Translation: [REF1] <SS>

[REF2] <SS> [REF3]

B LLM In-Context-Learning: Zero to
5-shot

Please refer to Table 7 for results on ICL with
random selection and Table 8. The results reported
are on the Must-C v3 test set using LLama2.

C Training Details

C.1 Llama2 Experiments
We use the transformers library (Wolf et al.,
2020) for training and inference with Llama2.
While training the adapters, we set the hyper-
parameters to rank 8, alpha 32, dropout 0.1,
and bias as ’LoRA_only’. Following Dettmers
et al. (2023) to make the model robust to

Shot Size BLEU ChrF COMET

Sent-level △ LM 30.45 57.0 0.8179
0 20.47 48.3 0.7592
1 20.73 48.8 0.7697
2 21.53 50.0 0.7795
3 20.34 50.1 0.7685
4 19.87 50.0 0.7609
5 20.33 50.5 0.7658

Table 7: In-Context-Learning with Llama2 13B using
Random Selection Strategy

Shot Size BLEU ChrF COMET

Sent-level △ LM 30.45 57.0 0.8179
0 20.47 48.3 0.7592
1 21.16 49.8 0.7755
2 21.13 50.2 0.7724
3 19.61 49.8 0.7593
4 18.82 49.9 0.7531
5 18.51 49.9 0.7402

Table 8: In-Context-Learning with Llama2 13B using
FAISS Selection Strategy

LoRA hyper-parameters, we adapt on all lay-
ers. The modules we add to the adapter in-
clude q_proj,k_proj,v_proj,gate_proj,up_proj and
down_proj. We set a batch size for each device
to 32 initially and enable auto_find_batch_size
to True on 4 NVIDIA RTX A6000 GPU’s.
To simulate a larger batch size, we set gradi-
ent_accumulation_steps to 20. We use a learn-
ing_rate of 2e− 5. The other parameters are set to
default. We train for 3 epochs and select the model
with the best validation loss. During inference, we
use beam search with a num_beams set as 3 as we
find it to be reasonable given the computation and
performance.

C.2 DeltaLM Experiments

We use the fairseq library (Ott et al., 2019) for
our experiments with △ LM. During training, we
use cross-entropy loss with label smoothing set to
0.1. We set a learning rate of 0.0001 with Adam
optimizer, betas (0.9, 0.98) and the initial learning
rate to 1e − 7. We set both dropout and attention
dropout to 0.1. We use a batch size of 2000 max
tokens and perform gradient accumulation for 3
steps. We train until the validation loss increases
after 5 consecutive interval steps that are set to 4500
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steps (Roughly 1/3 of epoch). During inference,
we do beam size with the number of beams set to
5. The other parameters not mentioned are set to
default.

D ContraPro Scores for Sentence and
Document APE

Cxt Size Contra/Gen (%)

Post and Junczys-Dowmunt (2023) 10 77.9/70.5
Lupo et al. (2023) 4 82.54/_

△ LM + Llama2 13B Sent APE 0 60.0/_
△ LM + Llama2 13B Sent APE 2 85.8/_
△ LM + Llama2 13B Doc APE 0 50.9/_
△ LM + Llama2 13B Doc APE 2 87.7/68.0
△ LM + Llama2 13B Doc APE 4 88.7/69.7

Table 9: Comparing Sentence and Document APE Ac-
curacy on the ContraPro English → German Test Set.
For generative results, we only report on sentences from
1 to 10 using th evaluation script from Post and Junczys-
Dowmunt (2023).
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Source
This is a sentence in Spanish: Las prendas bestsellers se estampan

con motivos fLoRAles, animal print o retales tipo patchwork.

Reference
Dies ist ein Satz auf Spanisch: Las prendas bestsellers se estampan

con motivos fLoRAles, animal print o retales tipo patchwork.

△ LM Hypothesis
Das ist ein Satz auf Spanisch: Die Bestsellers se multidisciplinan

conão fLoRAles, Tierdruck oder Reliefs ol Flitterwerk.

Post-Edited with Llama2 13B
Das ist ein Satz auf Spanisch: Las prendas bestsellers se estampan

con motivos fLoRAles, animal print o retales tipo patchwork.

Table 10: Example from the ACL dev set taken from Talk id: 268 and Sentence 26. The △ LM translates everything
into German including the Spanish phrase that needs to be retained in the original language. However, after APE,
Llama2 13B does not translate the Spanish Phrase as it was also not translated in the source sentence.

Figure 2: Number of sentences in a document with chunk sizes 1024 and 256.

2725


