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Abstract

Metaphor detection is a challenging task for nat-
ural language processing (NLP) systems. Previ-
ous works failed to sufficiently utilize the inter-
nal and external semantic relationships between
target words and their context. Furthermore,
they have faced challenges in tackling the prob-
lem of data sparseness due to the very limited
available training data. To address these two
challenges, we propose a novel model called
MiceCL. By leveraging the difference between
the literal meaning of the target word and the
meaning of the sentence as the sentence ex-
ternal difference, MiceCL can better handle
the semantic relationships. Additionally, we
propose a curriculum learning framework for
automatically assessing difficulty of the sen-
tence with a pre-trained model. By starting
from easy examples and gradually progressing
to more difficult ones, we can ensure that the
model will not deal with complex data when
its ability is weak so that to avoid wasting lim-
ited data. Experimental results demonstrate
that MiceCL achieves competitive performance
across multiple datasets, with a significantly im-
proved convergence speed compared to other
models. Our model is available at https:
//github.com/Evilxya/MiceCL.git.

1 Introduction

Metaphor has long been a common phenomenon in
language and cognition research(Lakoff and John-
son, 2008). It not only exists in our daily commu-
nication, but also plays a key role in the effective
understanding of abstract concepts. In our daily
life, we often use metaphors to convey emotions,
ideas and opinions to make communication more
vivid, rich and profound. For example, when we
say "time is money", we don’t mean it literally as
gold, but rather as a metaphor for how precious and
finite it is.

∗*corresponding author

However, metaphor detection is a complex and
challenging task. It involves the integration of var-
ious contextual cues, considering factors such as
vocabulary, grammar and context. This undoubt-
edly places high demands on the capabilities of
models. Metaphor detection is similar to word
sense disambiguation, which involves determin-
ing whether a target word is used metaphorically
or literally. However, unlike word sense disam-
biguation, which has abundant corpus resources,
metaphor detection tasks suffer from very limited
data availability, resulting in a severe data sparsity
problem.

In summary, the current metaphor detection task
faces two major challenges: (1) How to effectively
use sentence information such as context, gram-
mar and context; (2) How to solve the problem of
data sparsity. These two challenges are not inde-
pendent of each other. Failing to effectively use
sentence information will make the data sparsity
problem more severe, and the data sparsity prob-
lem will also make it difficult for the model to learn
truly effective information. Recent methods(Gong
et al., 2020; Choi et al., 2021) partially address the
first challenge by encoding sentence information
through pre-trained Transformer models and lever-
aging linguistic rules to enhance their representa-
tion of complex contextual meaning and various
semantic information. However, they focus too
much on designing complex structures to better en-
code sentence information, but ignore how to make
full use of the existing data set in the case of sparse
data, so they do not address the second challenge.
Also, The model they designed does not make good
use of linguistic rules. CLCL(Zhou et al., 2023)
attempts to address the second challenge by intro-
ducing curriculum learning to make better use of
the data by transitioning the model from simple to
complex examples. However, CLCL uses manual
evaluation of difficulty to measure the difficulty of
examples. Not only is it too dependent on expert
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knowledge, but what is considered simple by hu-
mans may not be considered simple by machine
models, that is, difficulty evaluation methods may
not be suitable for machine models. Therefore, the
second challenge is not well addressed by CLCL.

To address the above two challenges simul-
taneously, we propose a novel Metaphor detec-
tion model named Metaphor Identification with
Context Enhancement and Curriculum Learning
(MiceCL). It adopts new SPV (Selectional Prefer-
ence Violation)(Wilks, 1978) and MIP (Metaphor
Identification Procedure)(Group, 2007) to better
solve the first challenge, which we call IE-SPV
(Internal and External Selectional Preference Viola-
tion) and M-MIP (Multiple Metaphor Identification
Procedure). IE-SPV can make full use of the in-
ternal and external semantic relationships of the
sentence, so as to better determine whether the
target word is reasonable in the context. M-MIP
learns the basic and complex differences between
the contextual meaning and the literal meaning of
the target word through two parts respectively. By
combining IE-SPV and M-MIP, we can make full
use of complex contextual meaning and various
semantic information to solve the first challenge.
To address the second challenge, we introduce a
curriculum learning framework that automatically
computes the difficulty. By using the training loss
of the pre-trained model as the difficulty, we elim-
inate the disadvantage of manually evaluating the
difficulty and are able to more accurately reflect
the difficulty of the sentence as considered by the
machine model. We largely addressed the second
challenge by transitioning the model from simple
to complex examples to make the best use of the
limited data.

Our main contributions are:

• We propose novel semantic representation
modules M-MIP and IE-SPV for metaphor
detection. The combination of M-MIP and IE-
SPV can make full use of the internal and ex-
ternal semantic relationships of the sentence,
and effectively capture the basic and complex
differences between the target word and the
context information.

• We propose a curriculum learning framework
to automatically measure the difficulty. By us-
ing the training loss of the pre-trained model
as the difficulty, we eliminate the disadvan-
tage of manually evaluating the difficulty and
largely solve the problem of data sparsity.

• Experiments show that our model outperforms
all the previous models and has a large perfor-
mance improvement compared with the origi-
nal results. Meanwhile, we provide detailed
ablation experiments and analysis to illustrate
the effectiveness of our model.

• Our method can greatly improve the conver-
gence speed of the model. While the effect
is significantly improved, it can also improve
the computational efficiency and reduce the
dependence on computing power.

2 Related Work

2.1 Metaphor Detection
Since metaphors are ubiquitous in our daily lives,
it is crucial to correctly identify the use of
metaphors(Lakoff and Johnson, 2008). Early
work used feature-based approaches to identify
metaphors(Turney et al., 2011; Broadwell et al.,
2013; Tsvetkov et al., 2014; Bulat et al., 2017).
Since these methods rely too heavily on manu-
ally annotated data, they are unable to handle
rare uses of metaphors. To solve this problem,
they tried to use other linguistic features such as
sparse distributional features(Shutova et al., 2010;
Shutova and Sun, 2013) and dense word embed-
dings(Shutova et al., 2016; Rei et al., 2017). Other
studies have adopted RNN-based models like bidi-
rectional LSTM (BiLSTM)(Graves and Schmid-
huber, 2005) as the encoder(Gao et al., 2018; Wu
et al., 2018), using Word2Vec(Mikolov et al., 2013),
Glove(Pennington et al., 2014) and ELMo(Peters
et al., 2018) as text input representations. Due to
the limitations of shallow neural networks in ex-
pressing information, these methods also struggle
to deal with complex contextual meaning. Recent
approaches are based on Transformers, most of
which use pre-trained models such as BERT(Devlin
et al., 2019) or RoBERTa(Liu et al., 2019) as base
models(Gong et al., 2020; Su et al., 2020). They
focus too much on designing complex structures to
better encode sentence information, but ignore how
to make full use of the existing data set in the case
of data sparsity, so they fail to solve the problem of
data sparsity.

2.2 Curriculum Learning
Curriculum learning was first proposed by Bengio
et al. (2009). Its main idea is to imitate the charac-
teristics of human learning and learn samples from
simple to difficult, so that the model can easily
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find a better local optimal solution and accelerate
the training speed. Therefore, curriculum learning
can better deal with limited data and can solve the
data sparsity problem to some extent. As the re-
search progresses, curriculum learning is gradually
applied to various tasks. In the field of computer vi-
sion, curriculum learning has played an important
role in image classification(Weinshall et al., 2018),
question answering(Li et al., 2020), etc. In the field
of natural language processing, curriculum learning
is mainly applied to machine translation(Platanios
et al., 2019; Liu et al., 2020; Zhou et al., 2021;
Zhang et al., 2021).

CLCL(Zhou et al., 2023) introduced curriculum
learning into the task of metaphor detection to try
to solve the problem of data sparsity, but used the
method of manual evaluation of difficulty, that is,
manually designing the difficulty measurers. This
method relies too much on expert knowledge and
is not necessarily applicable to the machine models.
Therefore, although curriculum learning can make
the most of the limited data, CLCL(Zhou et al.,
2023) has certain limitations and does not solve the
problem of data sparsity well.

3 MiceCL

In this section, we will introduce our proposed
model, which is mainly composed of two parts:
(1) IE-SPV and M-MIP modules; (2) Curriculum
Learning modules. We use the first to make full
use of the semantic relationships and the second to
re-arrange the training examples. Figure 1 presents
the overall structure of the model and details the
structure of the first part, while Figure 2 details the
structure of the Curriculum Learning modules at
the bottom of Figure 1.

3.1 IE-SPV & M-MIP

3.1.1 Transformer Encoder
Given a sentence S containing the target word wt

and the literal usage S′ of the target word, we first
use the Transformer encoder to encode the two
sentences into sentence vectors, and then further
analyze the sentence vectors.

hL1, . . . , hLn = Enc([CLS], S, [SEP ]), (1)

hR1, . . . , hRm =

Enc([CLS], wt, [SEP ], S′, [SEP ])
(2)

Among them, [CLS] and [SEP] are two special
marker symbols in BERT, which play the role of

demarcation. The left part is the vector of the given
sentence, from which we extract the sentence mean-
ing vector hs and the contextual meaning vector
ht of the target word. hs and ht is calculated as
follows.

hs =
1

n

∑n

i=1
hLi (3)

ht =
1

k

∑k

i=b
hLi (4)

Where b is the starting position of the target word,
and k is the number of tokens that the target word
is divided into.

The right part is the literal usage vector of the
target word, from which we extract the literal mean-
ing vector hl of the target word. Unlike ht, hl does
not need to know the specific position of the tar-
get word, because the attention mechanism of the
Transformer Encoder will automatically converge
the target word to the relevant part(Vaswani et al.,
2017). It should be noted that hs, hl and ht all con-
tain [CLS] and [SEP] tokens to ensure the validity
of the contrast

3.1.2 IE-SPV
The basic idea of SPV is to identify the metaphoric-
ity of a target word by detecting whether the target
word is reasonable in the context. Current main-
stream methods believe that they can detect se-
mantic differences between the target word and
the context by detecting the difference between
the contextual meaning vector of the target word
and the sentence vector(Choi et al., 2021; Zhang
and Liu, 2022) to reflect whether the target word
is reasonable in the context. However, the target
word vector ht is directly encoded from the sen-
tence, which represents the contextual meaning of
the target word rather than the literal meaning, so
the difference between ht and hs cannot fully rep-
resent the semantic difference between the target
word and the context.

Therefore, we propose a new SPV module based
on SPV language rules, which we call IE-SPV (In-
ternal and External Selectional Preference Viola-
tion). We take the difference between the contex-
tual meaning vector ht of the target word and the
sentence vector hs as the sentence internal differ-
ence hin, which represents the contextual meaning
of the target word and the semantic difference be-
tween the words in the sentence. The difference
between the sentence vector hs and the literal mean-
ing vector hl of the target word is taken as the sen-
tence external difference hex, which represents the
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Figure 1: Structrues of MiceCL.

semantic difference between the literal meaning
of the target word and the words in the sentence.
By combining hin and hex as hSSPV to reflect the
semantic difference between the target word and
the context, the model can better identify whether
the target word is reasonable in the context, so as
to judge the metaphor of the target word.

The sentence internal difference hin is calcu-
lated as follows, this readout method can better find
out the difference between the two representations
while retaining the original information(Zhang and
Liu, 2022).

hin = W T
in[hs;ht; |hs − ht|;hs ∗ ht] + bin (5)

Where Win and bin are the weights and biases of
the in-layer (internal layer). The ex-layer (exter-
nal layer) compares the sentence vector hs and the
literal meaning vector hl of the target word to rep-
resent the sentence external difference hex, that is,
the difference between the literal meaning of the
target word and the words of the sentence. We
implement ex-layer using a linear transformation:

hex = W T
ex[hs;hl; |hs − hl|;hs ∗ hl] + bex (6)

Where Wex and bex are the weights and biases of
the ex-layer. We combine hin and hex to represent

hIE−SPV :

hIE−SPV = concat(hin, hex) (7)

3.1.3 M-MIP
The basic idea of MIP is to identify the metaphoric-
ity of a target word by detecting the difference
between its contextual meaning and its literal mean-
ing. The current mainstream methods use the con-
textual meaning vector of the target word and the
literal meaning vector of the target word as the in-
put of the fully connected layer(Choi et al., 2021;
Zhang and Liu, 2022) to learn the difference. How-
ever, although this approach can learn more fea-
tures, it will greatly increase the complexity of the
model and easily learn more noisy data, making
it difficult for the model to learn even basic differ-
ences.

Therefore, we propose a new MIP module based
on the MIP language rules, which we call the M-
MIP (Multiple Metaphor Identification Procedure).
In addition to using fully connected layers, we in-
troduce the Manhattan distance between the contex-
tual meaning vector and the literal meaning vector
of the target word as the similarity vector hsim.
By connecting the difference vector learned by the
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Figure 2: Structures of Curriculum Learning.

fully connected layer with the similarity vector, the
model can ensure that it learns a certain number of
complex differences while learning the basic dif-
ferences, so as to better identify the difference be-
tween the contextual meaning and the literal mean-
ing of the target word, and judge the metaphor of
the target word.
hM−MIP is calculated as follows.

hM−MIP = concat(W T
M−MIP [ht;hl;

|ht − hl|;ht ∗ hl] + bM−MIP , hsim)
(8)

Where WM−MIP and bM−MIP are the weights
and biases of the M-MIP layer, and the similarity
vector hsim is calculated as follows.

hsim =
∑H

i=1
|hti − hli| (9)

Where H is the dimension size of the hidden layer.
We combine hM−MIP and hIE−SPV to determine
whether the target word is metaphorical or not:

ŷ = σ(W T [hM−MIP ;hIE−SPV ] + b) (10)

Where W and b are the weights and parameters, σ
is a softmax function, and ŷ represents the pre-
dicted label distribution. Finally, we adopt the
cross-entropy loss as the loss function:

L = − 1

N

∑N

i=1
wyiyilog(ŷi) (11)

Where N is the number of training examples, yi
and ŷi represent the true label and predicted label
distribution of the ith example respectively, and
wyi is the class weight, which is used to alleviate
the data imbalance problem.

3.2 Curriculum Learning
In CLCL(Zhou et al., 2023), curriculum learning is
introduced and contrastive loss is used as the dif-
ficulty evaluation methods. However, because the
model is trained according to the contrastive target
and classification target, the impact of only consid-
ering contrastive loss is one-sided and cannot fully
reflect the difficulty of a sentence. At the same
time, because the method of manual evaluation
of difficulty relies too much on expert knowledge,
and even if the method is logically valid, it is not
necessarily applicable to the machine. Certain sen-
tences may be seen as "easy" or "difficult" for a
human, but not necessarily the same for a machine.
Therefore, instead of manual evaluation, we chose
to adopt a framework that automatically measures
the difficulty of the sentence. Specifically, we use
the training loss of a pre-trained model as the mea-
sure of sentence difficulty. As a classification task,
we use cross-entropy loss to measure the sentence
difficulty:

dM (Yi) = CTS(Yi;M)

= − 1

N

∑N

i=1
wyiyilog(ŷi)

(12)

Where M is the pre-trained model and dM (Yi) is
the difficulty of Yi. N is the number of training
examples, yi and ŷi represent the true label and
predicted label distribution of the ith example, re-
spectively, and wyi is the class weight, which is
used to alleviate the data imbalance problem.

Algorithm 1: MiceCL
Input: Dataset P = {Yi}Ki=1, Pretrained

Model M0, Model M and number of
epochs N

Output: Fine-tuned Model M*
1 D0 = CTS(P, M0);
2 Sort P based on each difficulty level in D0,

resulting in a re-arranged P0;
3 start = 0.5, speed = (1− start) ∗ 3

2N ;
4 for n=1; n<=N do
5 percent = min(1, start+ speed ∗ n);
6 Pn = P0[: len(P0) ∗ percent];
7 Mn← TRAIN(Pn);
8 end
9 return M* = MN

As shown in Figure 2, we use the pre-trained
model to measure the difficulty of the sentences,
once we determine the difficulty of the sentences,
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Dataset #Tar #M #Sent #Len
VUA ALLtr 116,622 11.19 6,323 18.4

VUA ALLdev 38,628 11.62 1,550 24.9
VUA ALLte 50,175 12.44 2,694 18.6
VUA Verbtr 15,516 27.90 7,479 20.2

VUA Verbdev 1,724 26.91 1,541 25.0
VUA Verbte 5,783 29.98 2,694 18.6

MOH-X 647 48.69 647 8.0
TroFi 3,737 43.54 3,737 28.3

Table 1: Datasets information. #Tar: Number of target
words. #M: Percentage of metaphors. #Sent: Number
of sentences. #Len: Average sentence length.

we rearrange them in order from easy to difficult
and feed them into the model for training, fine-
tuning the model based on the training loss. Since
the initial ability of the model is weak and will grad-
ually increase over time, we set the initial amount
of training data to half of the original amount of
data and gradually increase it as the number of
epochs increases. In order to better evaluate the ef-
fectiveness of the model, we do not make changes
to the development and test sets, but adopt the orig-
inal development and test sets. Through this mod-
ule, we can ensure that the model will not deal
with complex data when its ability is weak, avoid
wasting limited data and save computing resources,
thus solving the problem of data sparsity and im-
proving the ability and training efficiency of the
model. The specific training strategy is shown in
Algorithm 1.

4 Experiment

4.1 Datasets
Following previous works on metaphor detection,
we conduct experiments on four widely used public
datasets: (1) VUA ALL(Steen, 2010); (2) VUA
Verb(Steen, 2010); (3) MOH-X(Mohammad et al.,
2016); (4) TroFi(Birke and Sarkar, 2006). The
statistics of the datasets are shown in Table 1, which
was summarized by Zhang and Liu (2022).

4.2 Baselines
RNN_ELMo(Gao et al., 2018) and RNN_BERT
(Devlin et al., 2019): They combine ELMo (or
BERT) and GloVe’s embeddings to represent a
word and use BiLSTM as the base framework.
RNN_HG and RNN_MHCA(Mao et al., 2019):
RNN_HG uses MIP to compare the differences
between the literal and contextual meanings of the

target words, which are represented by GloVe and
ELMo embeddings, respectively. RNN_MHCA
compares the differences between them based on
SPV, and uses the multi-head attention mechanism.
MUL_GCN(Le et al., 2020): MUL_GCN uses a
multi-task learning framework for metaphor detec-
tion and semantic disambiguation.
MelBERT(Choi et al., 2021): RoBERTa based
model using both SPV and MIP architectures for
metaphor detection.
MrBERT(Song et al., 2021): Treat the metaphor
detection task as a relation classification task with
relation embeddings as the input to BERT.
MisNet(Zhang and Liu, 2022): RoBERTa based
model that uses both SPV and MIP structures for
metaphor detection. Different from MelBERT, it
improves the representation method of the literal
meaning of the target word.
CLCL(Zhou et al., 2023): RoBERTa based model
introduces curriculum learning and contrastive
learning for metaphor detection on the basis of
MelBERT, where curriculum learning adopts the
method of manual evaluation of difficulty.

4.3 Experimental Settings

In the experiments, we use RoBERTa(Liu et al.,
2019) provided by HuggingFace as the encoder. In
the Curriculum learning, the pre-trained model we
use for measuring the difficulty is MisNet(Zhang
and Liu, 2022). The batch size is 64 with a 1e-5
learning rate. We trained for 10 epochs with a learn-
ing rate warmup. All experiments were conducted
on a single NVIDIA RTX 3090 GPU. More Details
can be found in the appendix A.

5 Results and Analysis

5.1 Overall Results

Table 2 displays the comparative results of MiceCL
in contrast to other baselines across VUA ALL,
VUA Verb, and MOH-X datasets. Our implementa-
tion reveals the remarkable performance achieved
by MiceCL. Comparing it to the state-of-the-art
model CLCL, MiceCL outperforms it with an F1
score of 0.8 while also achieving the highest ac-
curacy and recall scores. This clearly demon-
strates our model’s proficiency in predicting com-
plex metaphor usage. MiceCL achieves the best
results despite the fact that it does not use POS tags.
This shows that IE-SPV and M-MIP modules can
make good use of the context and various semantic
information, and can correctly judge the semantics
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Model VUA ALL VUA Verb MOH-X
Acc P R F1 Acc P R F1 Acc P R F1

RNN_ELMo(2018) 93.1 71.6 73.6 72.6 81.4 68.2 71.3 69.7 77.2 79.1 73.5 75.6
RNN_BERT(2019) 92.9 71.5 71.9 71.7 80.7 66.7 71.5 69.0 78.1 75.1 81.8 78.2

RNN_HG(2019) 93.6 71.8 76.3 74.0 82.1 69.3 72.3 70.8 79.7 79.7 79.8 79.8
RNN_MHCA(2019) 93.8 73.0 75.7 74.3 81.8 66.3 75.2 70.5 79.8 77.5 83.1 80.0
MUL_GCN(2020) 93.8 74.8 75.5 75.1 83.2 72.5 70.9 71.7 79.9 79.7 80.5 79.6

MelBERT†(2021) 94.0 80.5 76.4 78.4 80.7 64.6 78.8 71.0 81.6 79.7 82.7 81.1
MrBERT(2021) 94.7 82.7 72.5 77.2 86.4 80.8 71.5 75.9 81.9 80.0 85.1 82.1
MisNet†(2022) 94.7 82.4 73.2 77.5 84.4 77.0 68.3 72.4 83.1 83.2 82.5 82.5
CLCL(2023) 94.5 80.8 76.1 78.4 84.7 74.9 73.9 74.4 84.3 84.0 82.7 83.4

MiceCL 95.0 81.8 76.8 79.2 85.5 74.5 78.6 76.5 85.2 83.2 87.7 85.2

Table 2: Results on VUA All, VUA Verb, and MOH-X. Best in bold and second best in italic underlined. The †
results are reproduced by Zhou et al. (2023)

.

and metaphor usage of the target word without the
help of POS tags, which proves the effectiveness
of IE-SPV and M-MIP modules.

On the VUA Verb dataset, compared to RNN-
based and Transformer-based models, our model
shows a significant improvement in F1 score by
7.5 and 5.5, respectively. In comparison to the
state-of-the-art model MrBERT, MiceCL outper-
forms it by 0.6 F1 score, highlighting the model’s
proficiency in predicting the metaphorical usage
of verbs. Notably, MrBERT extracts various rela-
tions between the subject and object of verbs, while
MiceCL achieves superior results solely through
semantic matching methods, underscoring the ef-
fectiveness of IE-SPV and M-MIP modules.

On the MOH-X dataset, our model exhibits sig-
nificant improvements, increasing the F1 score by
9.6 and 4.1 when compared to RNN-based and
Transformer-based models, respectively. In con-
trast to the state-of-the-art model CLCL, MiceCL
surpasses it by 1.8 F1 scores while achieving the
highest accuracy and recall scores. This demon-
strates the exceptional efficacy of MiceCL in pre-
dicting common metaphorical usages. It is note-
worthy that MOH-X contains the least amount of
data, and our model outperforms all others by a
considerable margin on this dataset, underscoring
the importance of the curriculum learning module.
By implementing curriculum learning, our model
effectively utilizes the limited dataset, providing a
robust solution to the problem of data sparsity.

Model TroFi(Zero-shot)
Acc P R F1

MelBERT - 53.4 74.1 62.0
MrBERT 61.1 53.8 75.0 62.7

MiceCL 61.5 54.2 75.0 62.9

Table 3: Zero-shot transfer results on TroFi dataset.

5.2 Zero-shot transfer on TroFi

We assess the cross-dataset zero-shot learning capa-
bility of our model by training it on the VUA-ALL
dataset and subsequently testing it on the TroFi
dataset. While this presents a challenging task, it
serves as a vital metric for evaluating a model’s
ability to generalize beyond its training data. As il-
lustrated in Table 3, MiceCL outperforms the state-
of-the-art MrBERT by 0.4 points in accuracy, sur-
passes the state-of-the-art in precision by 0.4 points,
matches the state-of-the-art in recall, and exceeds
the state-of-the-art in F1 score by 0.2 points. The
experimental results demonstrate that our model
attains the best performance across all metrics, af-
firming its strong generalization capabilities and
applicability across diverse datasets, not limited to
a specific dataset.

5.3 Ablation Study

To investigate the impact of various components in
our approach (namely IE-SPV, M-MIP, and curricu-
lum learning), we examined the results of variants
without curriculum learning (-CL), without IE-SPV
(-in), and without M-MIP (-sim) trained with the
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Ablation Acc P R F1

-CL 66.9 47.0 80.4 59.4
-in 85.8 76.4 76.1 76.3

-sim 85.7 76.2 76.3 76.2

MiceCL 85.5 74.6 78.4 76.5

Table 4: Effectiveness study on VUA Verb dataset.
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Figure 3: Visualization of convergence rates of different
structures.

same hyperparameters on the VUA Verb dataset.
As demonstrated in Table 4, all three variants per-
formed less effectively than the full model. When
the curriculum learning module was absent, the
model’s performance was notably diminished, re-
sulting in an 18.6-point drop in accuracy and a 17.1-
point decrease in F1 score. This underscores the
critical role played by the curriculum learning mod-
ule. In cases where the IE-SPV or M-MIP modules
were missing, although accuracy increased, the F1
score dropped by 0.2 and 0.3, respectively. This
suggests that the IE-SPV and M-MIP modules also
contribute significantly to metaphor recognition.
Consequently, it is only through their combined
utilization that they complement and enhance each
other, resulting in the best overall performance.

5.4 Analysis on Curriculum Learning
As evident from Table 4, curriculum learning ex-
erts the most substantial influence on the model’s
results. To delve into the specific impact of curricu-
lum learning, we separately calculated the F1 value
for each epoch to compare the model’s performance
with and without curriculum learning. The results
are depicted in Figure 3. We observed that in the
absence of curriculum learning, the model’s con-
vergence is notably sluggish, struggling to acquire

M
ic

eC
L

-C
L

-i
n

-s
im Sentence

✓
And if your father is currently taking
your side of things worth sounding him
out as to how far he ’ll take.

✓
A proportion of both boys and girls
at ego-identity achievement stage will
choose science.

✓ ✓ ✓
A conception of autonomy which de-
pends upon group membership displays
its own contradiction.

✓ ✓ ✓ It will take me bleeding years to reach
my goal.

✓ ✓ ✓ Shall we take photographs?
She bought it.
Except that the Tysons don’t gamble.

Table 5: Examples of incorrect samples for MiceCL on
VUA ALL. The metaphorical words in the sentence are
in red italicized. ✓marks correct model prediction.

valuable features during the initial phases of train-
ing. It achieves an F1 score of 59.4 after 10 epochs
of training, while the model with curriculum learn-
ing has already achieved an F1 score of over 60 by
the second epoch. The introduction of curriculum
learning leads to a significant acceleration in the
model’s convergence, effectively reducing the com-
putational resource requirements. Simultaneously,
by allowing the model to avoid processing complex
data during its early stages, it prevents the wastage
of limited data and efficiently resolves the problem
of data sparsity.

5.5 Case Study

Table 5 shows the results of the case analysis. The
top two examples prove that MiceCL can make full
use of the context information and can better iden-
tify the use of metaphor than other models when
the context information is rich. The third example
proves that without adopting curriculum learning,
it is difficult to deal with the data sparsity prob-
lem and solve the metaphorical usage of unusual
words. The fourth and fifth examples prove that
if IE-SPV and M-MIP are not adopted, the model
may struggle to learn very basic differences and
make mistakes in the recognition of some very ba-
sic metaphorical usages. The sixth and seventh
examples are not recognized by all the models, and
such cases will have great difficulties in recogniz-
ing metaphors due to the lack of context informa-
tion, which can be left for future work to solve.
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6 Conclusion

In this paper, we propose a novel metaphor detec-
tion model called MiceCL. The proposed model
includes two modules, M-MIP and IE-SPV, to iden-
tify metaphors by effectively capturing the basic
and complex differences between target words and
context information. In addition, we introduce cur-
riculum learning to automatically measure the dif-
ficulty with a pre-trained model to re-arrange the
training order, eliminate the disadvantages of man-
ual evaluation of difficulty, and largely solve the
problem of data sparsity. We evaluate our model
on four datasets, and the effect shows a significant
improvement over the strong baselines. We provide
detailed ablation experiments to demonstrate the
effectiveness of our approach.

Limitations

Our curriculum learning framework evaluates the
difficulty of the data and re-arranges the training
order before training, after which the training order
is fixed. In fact, with the deepening of training, the
ability of the model will continue to change, so the
curriculum learning framework can be improved to
continuously re-arrange the training order, so as to
improve the flexibility of the model. In addition,
we assume that the capacity of the model grows
linearly, so the size of the training set increases
linearly, but in reality the capacity of the model
does not necessarily grow linearly with time. We
leave these to a future study.
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A Experimental Details

All experiments were conducted on a single
NVIDIA RTX 3090 GPU.

A.1 Hyperparameter Choices
VUA ALL: For VUA ALL dataset, the learning
rate is 1e-5 with learning rate warmup, the number
of epochs is 10, and the batch size is 64.
VUA Verb: For VUA Verb, the learning rate is 1e-
5 and the learning rate warmup is used, the number
of epochs is 6, and the batch size is 64.
MOH-X: For MOH-X, the learning rate is fixed
to 1e-5, the number of epochs is 15, and the batch
size is 64.
TroFi: For TroFi, we only use it for zero-shot
evaluation, where the model is trained on VUA
ALL and tested on TroFi.

A.2 Average Runtime
When using a single NVIDIA RTX 3090 GPU,
the process of measuring sentence difficulty takes
approximately five minutes, and training for one
epoch requires about fifteen minutes.
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