
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 2908–2926

June 16-21, 2024 ©2024 Association for Computational Linguistics

Evaluating In-Context Learning of Libraries for Code Generation

Arkil Patelk† Siva Reddyknr Dzmitry Bahdanauknb Pradeep Dasigiq

kMila and McGill University qAllen Institute for AI nServiceNow Research
rFacebook CIFAR AI Chair bCanada CIFAR AI Chair

{arkil.patel, siva.reddy, bahdanau}@mila.quebec pradeepd@allenai.org

Abstract

Contemporary Large Language Models
(LLMs) exhibit a high degree of code gen-
eration and comprehension capability. A
particularly promising area is their ability
to interpret code modules from unfamiliar
libraries for solving user-instructed tasks.
Recent work has shown that large proprietary
LLMs can learn novel library usage in-context
from demonstrations. These results raise
several open questions: whether demonstra-
tions of library usage is required, whether
smaller (and more open) models also possess
such capabilities, etc. In this work, we
take a broader approach by systematically
evaluating a diverse array of LLMs across three
scenarios reflecting varying levels of domain
specialization to understand their abilities
and limitations in generating code based on
libraries defined in-context. Our results show
that even smaller open-source LLMs like
Llama-2 and StarCoder demonstrate an adept
understanding of novel code libraries based
on specification presented in-context. Our
findings further reveal that LLMs exhibit a
surprisingly high proficiency in learning novel
library modules even when provided with just
natural language descriptions or raw code
implementations of the functions, which are
often cheaper to obtain than demonstrations.
Overall, our results pave the way for harnessing
LLMs in more adaptable and dynamic coding
environments.

1 Introduction

Large Language Models (LLMs) pretrained on mas-
sive amounts of text and code data (OpenAI, 2023;
Touvron et al., 2023) have shown promising re-
sults across various code generation tasks (Chen
et al., 2021; Hendrycks et al., 2021a). These mod-
els excel at both, writing programs based on natu-
ral language instructions, and at generating code

†Work done partly during an internship at the Allen Insti-
tute for AI.

to help solve downstream tasks like mathematical
reasoning (Gao et al., 2023; Schick et al., 2023).

As LLMs become more widely used, an impor-
tant area of application is the generation of code
in specialized domains. Since LLMs are expen-
sive to finetune, in-context learning (i.e., learning
from instructions and examples in the prompt) has
emerged as the preferred approach for adapting
LLMs to tasks and domains not seen during train-
ing. Previous works (Gupta and Kembhavi, 2023;
Lu et al., 2023; Paranjape et al., 2023) use demon-
strations provided in-context to prompt LLMs to
generate code that makes calls to external task-
specific library1 functions. However, there are sev-
eral open questions surrounding this phenomenon:
Can we use other easier-to-obtain supervision meth-
ods instead of demonstrations for the model to learn
a new library? Is it possible to adapt smaller, openly
accessible LLMs to generate code that uses novel
libraries? Can LLMs in-context learn to use rela-
tively uncommon programming languages? In this
work, we attempt to answer these questions. We
describe our evaluation framework and summarize
our findings below.

Evaluation Framework. We design three dis-
tinct scenarios bearing real-world significance to
evaluate the code generation abilities of LLMs:
(1) The model is constrained to use a specific set
of library functions for the task. This scenario rep-
resents code generation for software development.
(2) The model is required to call functions from
specialized libraries and learn their usage from the
provided context. This scenario represents code
generation to solve specialized tasks.
(3) Extending the above scenario, the model is re-
quired to generate code in a relatively uncommon
programming language. This scenario evaluates
whether the in-context learning ability of models

1Prior works also use the terms ‘API’ and ‘tools’ to refer
to external programming libraries.

2908

You are given the following functions:

def (image: IMAGE, question: str)
-> str:

Returns the answer to the question
about the image.

def (image: IMAGE, object: str) ->
BOX:

Returns the bounding boxes of the
object in the image. The output of
this function must be passed as an
argument to one of the cropping
functions or the COUNT function.

def (image: IMAGE, boxes: BOX) ->
IMAGE:

Returns the cropped image.

VQA

LOC

CROP

You are given the following code:

def (image: IMAGE, question: str)
-> str:

 encoding = vqa_processor(image,
question, return_tensors='pt')

 encoding = {k:v.to(device) for k,v
in encoding.items()}

 with torch.no_grad():

 outputs =
vqa_model.generate(**encoding)

 ans_op =
vqa_processor.decode(outputs[0],
skip_special_tokens=True)

 return ans_op

def (boxes):

VQA

COUNT

Which side of the image is the chair on? Which side of the image is the chair on? Which side of the image is the chair on?

What color is the curtain that is to the right of the mirror?

BOX0= (image=IMAGE,object="mirror")

IMAGE0= (image=IMAGE,box=BOX0)

ANSWER0= (image=IMAGE0,question="What
color is the curtain?")

FINAL_RESULT= (var=ANSWER0)

LOC
CROP_RIGHTOF

VQA

RESULT

Is the vehicle in the top of the image?

BOX0= (image=IMAGE,object="TOP")

IMAGE0= (image=IMAGE,box=BOX0)

BOX1= (image=IMAGE0,object="vehicle")

ANSWER0= (box=BOX1)

ANSWER1= (expr="'yes' if '{ANSWER0}' > 0
else 'no'")

FINAL_RESULT= (var=ANSWER1)

LOC
CROP

LOC
COUNT
EVAL

RESULT

DescriptionDemonstrations Implementation

Figure 1: Illustration of the three types of in-context supervision we use to specify library functions. The examples
in this figure are from the GQA dataset (Hudson and Manning, 2019) and the functions are from the VisProg (Gupta
and Kembhavi, 2023) library.

is limited only to programming languages that are
abundant in the pretraining data.

The underlying evaluation approach is similar
across all three scenarios. We consider tasks requir-
ing models to generate code given some natural
language instruction while making calls to external
library functions. Accordingly, we define novel
programming libraries or even a target program-
ming language that the model must use to generate
code. For each example in the dataset for the task,
we provide a specification of the library (or lan-
guage) along with the task instruction in-context to
the model. We then execute the generated code and
evaluate its correctness. Within this framework,
we experiment with providing different types of in-
context supervision for the library such as natural
language descriptions or code implementations.

Findings. Below, we summarize our results.2

(1) We find that the ability to learn and use
novel programming libraries is not limited to the
largest proprietary models (such as GPT-4 (Ope-
nAI, 2023)), but is also seen in openly-accessible
models such as Llama-2 (Touvron et al., 2023) and
StarCoder (Li et al., 2023b).
(2) We show that models like GPT-4 can learn new
libraries from natural language descriptions or raw
code implementations of the library functions just
as effectively as they can using demonstrations.
(3) We find that LLMs are not amenable to con-
strained code generation using library functions de-
fined in-context. They perform better when allowed

2We make our code and data available at
https://github.com/McGill-NLP/incontext-code-generation

to generate code without imposing constraints.
(4) We show that models such as GPT-4 exhibit
non-trivial capability at in-context learning a new
programming language from scratch.

2 Related Work

Evaluating Code Generation in LLMs. There
are many good benchmarks for evaluating the gen-
eral code generation abilities of language mod-
els. These include HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), APPS (Hendrycks
et al., 2021a), CodeContests (Li et al., 2022), and
DS-1000 (Lai et al., 2022). In this work, we focus
on evaluating the capabilities of LLMs to generate
code based on novel libraries defined in-context.

API and Tool Use. There has recently been in-
creased interest in studying the ability of LLMs
to work with APIs and tools (Schick et al., 2023;
Patil et al., 2023; Tang et al., 2023; Qin et al.,
2023; Xu et al., 2023; Zhuang et al., 2023; Li et al.,
2023a). However, most of these works focus on
primitive APIs that are directly called for carry-
ing out a specific real-world task. In this work,
we focus on the problem of code generation and
learning libraries (composed of complex functions)
and programming languages for tasks requiring
non-trivial reasoning. Unlike the above works, our
work also focuses strictly on the in-context learn-
ing capability of models instead of retrieval-based
or finetuning approaches. Moreover, in our work
we explore questions relating to different types of
in-context supervision, the capability of smaller
open-source models, and the effect of enforcing

2909

https://github.com/McGill-NLP/incontext-code-generation

TASK SUPERVISION GPT-4 GPT-3.5 LLAMA-2 STARCODER CODELLAMA

GQA
Demonstrations 51.10 51.37 35.75 32.53 37.35
Description 52.47 36.78 24.73 5.27 33.56
Implementation 49.11 44.04 6.85 27.33 40.85

NLVR
Demonstrations 71.53 69.58 55.77 61.18 57.93
Description 74.85 63.73 54.24 37.91 58.62
Implementation 70.49 57.37 48.91 51.36 56.44

Knowledge Tagging
Demonstrations 65.93 62.56 64.67 58.61 60.92
Description 63.81 42.21 24.09 1.54 29.93
Implementation 62.45 31.41 5.32 11.82 29.86

Image Editing
Demonstrations 65.42 62.62 60.74 57.94 61.68
Description 62.62 58.88 39.25 18.69 43.93
Implementation 64.49 48.59 32.71 40.19 45.79

Table 1: Performance of various LLMs at in-context learning the new VisProg library.

constraints. Similar to our work, Zhou et al. (2023)
and Hsieh et al. (2023) also explore the impact
of providing documentation of APIs instead of
demonstrations. While Zhou et al. (2023) focused
on a general retrieval-based pipeline to improve
performance, we study in-context learning of new
libraries for specific tasks. Our findings on provid-
ing function documentations in-context are similar
to Hsieh et al. (2023). However, unlike their work,
we show that models can achieve high performance
even without including partial examples of how to
call the library functions. Moreover, unexplored by
these works, we also study the impact of providing
raw implementations of library functions and the
task of learning a new programming language from
just a description of keywords.

3 Learning Novel Libraries

Many practical applications of code generation re-
quire learning new libraries or frameworks. More-
over, programmers need to constantly adapt to
changes in existing frameworks. Motivated by
these practical needs, we study the ability of LLMs
to adapt to novel programming libraries in-context.
Gupta and Kembhavi (2023) showed that LLMs
can be used to solve computer vision tasks by learn-
ing how to call the functions of a novel library
based on demonstrations provided in-context. We
study this phenomenon in more detail with a wider
range of models and different types of supervision.

3.1 Experimental Setup

Tasks. We experiment with 4 vision-language
tasks as used by Gupta and Kembhavi (2023).

Apart from maintaining consistency to previous
work, these tasks aptly demonstrate practical use
cases of in-context library learning.
(1) GQA (Hudson and Manning, 2019) is a com-
positional visual question answering task.
(2) NLVR (Suhr et al., 2019) is a reasoning task
over image pairs. Given a pair of images, the task is
to determine whether the corresponding statement
about the images is true or false.
(3) Knowledge Tagging (Gupta and Kembhavi,
2023) involves tagging objects in a given image.
(4) Image Editing (Gupta and Kembhavi, 2023) in-
volves editing a given image using computer vision
tools based on a given instruction.

Library. We use the custom ‘VisProg’ library
defined by Gupta and Kembhavi (2023), which has
20 modules that can be called in a Python program
to solve the above tasks. These modules include
functionalities such as manipulating images with
computer vision models, querying LLMs, etc.

In-context supervision. We experiment with
three different types of supervision explained be-
low and illustrated in Figure 1.
Demonstrations: We provide examples of instruc-
tions paired with corresponding programs that il-
lustrate how to call the VisProg library functions.
We used the same set of exemplars as was used by
Gupta and Kembhavi (2023). We provided a total
of 20 in-context demonstrations in the prompt.
Description: We provided natural language de-
scriptions of the library functions. We include the
documentation of every function in VisProg in a
Python docstring format. For each function, we

2910

Original Aliased (Synonyms)

def (image: IMAGE) ->
object:

 “””

 [description]

 “””

 [implementation]

def (image: IMAGE, emoji:
str, object: object) -> IMAGE:

 “””

 [description]

 “””

 [implementation]

def (image: IMAGE,
object: object) -> IMAGE:

 “””

 [description]

 “””

 [implementation]

FACEDET

EMOJI

COLORPOP

def (image: IMAGE)
-> object:

 “””

 [description]

 “””

 [implementation]

def (image: IMAGE, emoji:
str, object: object) -> IMAGE:

 “””

 [description]

 “””

 [implementation]

def (image: IMAGE,
object: object) -> IMAGE:

 “””

 [description]

 “””

 [implementation]

DETERMINE_FACES

EMOTICON

CREATE_COLORPOP

Figure 2: Illustration of aliasing the function names in
VisProg with synonymous words.

specify its name, return type, names and types of
its arguments, and describe its functionality.
Implementation: We directly provide the Python
implementations of all the functions in VisProg.

We experiment with providing descriptions and
implementations of library functions because both
are arguably less expensive to obtain compared
to paired demonstrations. Descriptions can gen-
erally be easily obtained from the documentation
of the library. Moreover, since the functions of a
library are already implemented in the underlying
programming language, the implementation data is
also readily available.

It is important to note that for the description and
implementation types of supervision, the model has
no exposure to any programs or any information
about the kinds of instructions in the domain. We
provide information for all the functions in the
library, and the model needs to determine which
functions it needs to use to solve the given example.

Models. We experiment with GPT-4 (OpenAI,
2023), GPT-3.5-Turbo (Brown et al., 2020; Ouyang
et al., 2022), LLaMA-2-70B (Touvron et al., 2023),
StarCoderPlus (Li et al., 2023b), and CodeLlama
(Rozière et al., 2023).

Metrics. We measure correctness of usage of
the provided novel library by evaluating the down-
stream performance for the task.3 For GQA and
NLVR, we measure accuracy of the answer against
the dataset. For Knowledge Tagging, we follow
Gupta and Kembhavi (2023) and measure tag-
ging performance via precision (fraction of pre-
dicted boxes that are correct) and recall (fraction of
ground truth objects that are correctly predicted).

3We designed a code interpreter to execute the generated
programs which would fail if and only if the model does not
correctly use the VisProg library functions.

GQA KnowTag

OG SYN RAN OG SYN RAN

GPT-4
Demo 51.1 49.2 48.6 65.9 64.9 60.2
Desc 52.5 48.8 47.8 63.8 60.3 58.9
Imple 49.1 48.5 48.3 62.5 59.5 57.6

GPT-3.5
Demo 51.4 33.7 32.4 62.6 59.8 54.1
Desc 36.8 33.8 31.7 42.2 26.3 24.0
Imple 44.0 32.9 27.1 31.4 18.6 15.3

Llama-2
Demo 35.8 33.9 28.7 64.7 65.8 55.3
Desc 24.7 25.8 18.6 24.1 21.3 16.5
Imple 6.9 5.8 1.5 5.3 6.7 1.9

Table 2: Performance (↑) of LLMs at in-context learning
VisProg when function names are aliased. OG: original,
SYN: synonymous word, RAN: random string.

These metrics require both the predicted bounding
box and the corresponding tag to be correct. We
use an Intersection-over-Union (IoU) threshold of
0.5. We summarize the performance by calculating
the F1 score, which is simply the harmonic mean
of the average precision and recall across instruc-
tions. For Image Editing, we calculate correctness
by carrying out manual evaluation to check if the
executed program yields the correct image based
on the instruction in the example.

3.2 Results
The results for all models across all datasets can be
seen in Table 1.4

Models learn to use new libraries. We see that
most models are able to learn the novel library
from demonstrations across all tasks. This shows
that this ability to adapt to novel code modules
in-context is not limited to the biggest proprietery
LLMs but is also exhibited to a good extent by
openly accessible smaller models.

Models can learn from description and code.
We find that most models exhibit non-trivial abil-
ity5 of learning from just descriptions and imple-
mentation of the functions in the novel library with-
out any exposure to demonstrations. Remarkably,
GPT-4’s performance with descriptions and imple-
mentation is comparable to that from demonstra-
tions. This clearly shows that the best contem-
porary LLMs are able to understand novel code
modules and use them without needing any demon-
strations. However, for models apart from GPT-

4We also illustrate the common types of errors made by
GPT-4 in Appendix D.

5The performance is significantly more than the zero-shot
baselines reported in Appendix C.1.

2911

GPT-4 GPT-3.5-Turbo
Models

0

10

20

30

40

Ex
ec

ut
io

n
Ac

cu
ra

cy
 (%

)
Solving programming problems using functions defined in-context

Unconstrained (baseline)
Demonstrations

Description
Implementation

Figure 3: Performance (↑) of models at solving
NL2Python programming problems in our curated
dataset using functions defined in-context.

4, providing demonstrations still remains the best
form of supervision across all tasks. In Appendix
C.2, we show that providing random programs (i.e.,
not paired with input) along with the descriptions
or implementations improves performance.

Effect of pretraining. We observe that the data
on which the models have been pretrained on influ-
ences the choice of supervision that best suits them.
For instance, LLaMA models, which have been
primarily trained on text with comparatively lesser
code pretraining (Touvron et al., 2023; Rozière
et al., 2023), show a much higher ability to learn
from descriptions compared to code implementa-
tions. This is opposite for the StarCoder, which
has been primarily pretrained on code. We see that
StarCoder is better able to leverage implementa-
tion supervision, despite being a smaller model.
However, its performance is extremely low when
provided with Natural Language descriptions.

Impact of Aliasing Function Names in VisProg.
Since most LLMs that we experiment with do not
disclose their pretraining data, it is unclear whether
they achieve high performance because they are al-
ready familiar with the VisProg library. Hence, we
also experiment with aliasing the function names
in the library with synonymous words (see illustra-
tion in Figure 2) or random strings. The results are
provided in Table 2. There is a very clear drop in
performance with aliasing (even with synonymous
words) for GPT-3.5, indicating that some level of
familiarity with the VisProg language biases model
performance. For Llama-2, the performance with
synonymous function names is similar to the orig-
inal performance while there is a significant drop
with random strings, indicating that Llama models
rely on the semantics of function names. GPT-4 is
quite robust to both types of aliasing.

GPT-4 GPT-3.5

All Correct All Correct

Demonstrations 89.92 90.11 20.25 17.23
Description 83.22 82.74 27.03 18.39
Implementation 85.38 84.76 19.13 15.79

Table 3: Quantifying percentage usage of function(s)
defined in-context in the code predicted by the model for
solving the programming problem. In the All column,
we calculate the percentage of model predictions that
used the function defined in-context while under the
Correct column, we calculate the percentage of correct
predictions that used the context-defined function.

4 Constrained Generation Using
Functions Defined In-Context

Developers often have constraints on the functions
they can use. For example, coding for software
projects may require using functions within the
current repository. Motivated by this use case, we
examine a scenario where the language model is
constrained (using natural language instructions) to
use specific library functions presented in-context.
Note that in this scenario, it is possible for the
model to generate the semantically correct code
without using the functions specified in-context.
Hence, we additionally evaluate whether the gener-
ated code uses the context-defined functions.

4.1 Experimental Setup

Task. We consider the Natural Language to
Python task, i.e., generating Python code from nat-
ural language instructions. We curated a dataset
consisting of a total of 15000 examples sam-
pled from the CodeContests (Li et al., 2022) and
APPS (Hendrycks et al., 2021a) datasets. Apart
from being popular benchmarks for the NL2Code
task, CodeContests and APPS consist of problems
whose solutions are not just a few lines of code,
but require implementation of complex logic using
existing library functions or need the creation of
specific user-defined functions.

Library. We create a custom library of functions.
The procedure used to create this library and gather
the associated data is described in Section 4.2.

In-context supervision. For this scenario, we
again experiment with three different types of su-
pervision formats. For demonstrations, we pro-
vide 5 exemplars of a simple instruction and cor-
responding program (that uses the function) pairs

2912

Natural Language Problem Statement

Formal Isabelle Proof

theorem

 fixes a b c d :: complex

 shows "(a-d) * (a-c) * (a-b) = -(((a^2 - (b+c) * a) + c * b) * d) +
(a^2 - (b+c) * a + c * b) * a"

proof -

 have t0: "a^2 = a * a"

 using power2_eq_square

 sledgehammer

 show ?thesis unfolding t0

 sledgehammer

qed

Show that for any four complex numbers a, b, c, and d, $(a-d)(a-c)(a-b) = -(((a^2 - a(b+c)) + bc) *
d) + (a^2 - a(b+c) + bc) * a$.

Figure 4: An example of the automated theorem prov-
ing task using the Isabelle language.

in-context. For description, we provide natural lan-
guage documentation of the functions. For each
function, we specify its name, return type, the name
and types of its arguments and a brief description of
its functionality. For implementation, we directly
provide the Python implementations of the func-
tions. Example prompts with the demonstrations
and description types of supervision are provided
in Figure 12 and Figure 13 in the Appendix.

Models. We experiment with GPT-4 and GPT-
3.5-Turbo. Preliminary experiments showed that
solving such difficult programming problems in-
context is still very challenging for smaller openly-
accessible models, so we only provide results for
the latest GPT models.

Metrics. We evaluate using two metrics. (1) Ex-
ecution Accuracy measures the correctness of the
generated program by executing it over a set of
test cases. (2) Function Usage % measures how
often does the model actually use the functions in
its solution. To evaluate whether a predicted code
C uses a particular function f , we check the seman-
tic consistency6 of the predicted code before and
after we replace the calls to f with calls to another
function f ′ with same data types for the arguments
as f and a fixed return value. If the replacement
alters the semantics of C (i.e., the outputs for a
range of different inputs are different before and
after replacing f with f ′), we conclude that the
code C uses the function f .

4.2 Creating a Library of Functions
We create our data and library by using examples
from the CodeContests (Li et al., 2022) and APPS

6Note that the mere presence of a function in a program
does not guarantee that the output of the program depends
on that function. Accordingly, exactly verifying this depen-
dency is a hard problem. In this work, we use our semantic
consistency check as an approximation.

(Hendrycks et al., 2021a) datasets. Every example
in these datasets consists of an instruction, can-
didate code solutions (in Python), and test cases
to automatically evaluate the generated code. All
the candidate solutions use standard Python code
and libraries which the LLMs are most probably
already familiar with. So, we create a novel library
by extracting two types of functions that are used
in the candidate solutions and aliasing the names:

(1) Existing Library Functions. These are the
functions that are defined in existing Python li-
braries such as NumPy, Pandas, etc. For a particu-
lar example selected from the above two datasets,
we extract all such functions that are used in the
candidate solutions for that example and alias their
names with some random string.

(2) User-defined Functions. These are the func-
tions that are custom defined in the candidate so-
lutions (i.e., with the def keyword). Again, we
extract all such functions from the candidate solu-
tions and alias their names with random strings.

Our generated dataset consists of 12000 exam-
ples in which the model will be constrained to use
existing standard library functions (the function
names will be aliased) and an additional 3000 ex-
amples in which the model will be constrained to
use user-defined functions extracted from the can-
didate solutions in the above-mentioned datasets.

4.2.1 Obtaining Specification Data
For the functions that we extracted from the solu-
tions of the above-mentioned datasets, we need to
obtain specification data (such as demonstrations
and descriptions for the functions) which we will
provide to the model in-context.

Obtaining Descriptions. This is straightforward
for the case of existing python library functions:
we simply scrape the API documentation of the
library. For the user-defined functions, we prompt
GPT-4 with the function definition and ask it to gen-
erate the API documentation for the function. We
ensure correctness of this description by a cyclic
evaluation process detailed in Appendix B.

Obtaining Demonstrations. We prompt GPT-
4 with the function and its description and ask it
to generate five creative examples of instruction-
program pairs where the instruction is a natural
language query and the program (2-3 lines) solves
the instruction using the function.

2913

theorem

 x::real

 "0<x" "x<pi"

 "12 \<le> ((9 * (x^2 * ..."

 -

 y "y=x * sin x"

 "12 \<le> (9 * y^2 + 4) / y"

 -

 c0: "y > 0"

 "(9 * y^2 + 4) \<ge> 12 * y"

fixes
assumes
shows

proof
define where
have
proof

have
sledgehammer

have
sledgehammer

then show ?thesis

 sledgehammer

 qed

 then show ?thesis

 sledgehammer

qed

alyckwm

lpicd
jepxahf
fwozy

odtve
rijqdo syrju
becj
odtve

becj
hiwhrxplibce

becj
hiwhrxplibce

 yeha oiql tnkdpfe

 hiwhrxplibce

 srf

 yeha oiql tnkdpfe

 hiwhrxplibce

srf

 x::real

 "0<x" "x<pi"

 "12 \<le> ((9 * (x^2 * ..."

 -

 y "y=x * sin x"

 "12 \<le> (9 * y^2 + 4) / y"

 -

 c0: "y > 0"

 "(9 * y^2 + 4) \<ge> 12 * y"

Original Aliased

Figure 5: Illustration of aliasing the Isabelle language.

Obtaining Implementations. This is straightfor-
ward for the case of ‘user-defined functions’ as we
directly have the Python implementations of the
functions. For the library functions, we extract the
implementation from the source code if available.
For certain libraries, the source is implemented in
a language other than Python (for e.g., in C). For
such cases, we prompt GPT-4 with the function
and its description and ask it to generate its Python
implementation. We again check the correctness of
this implementation using a similar cyclic evalua-
tion process as the one used for descriptions.

4.3 Results

Models perform worse when constrained. The
main results are provided in Figure 3. For both
models, GPT-4 and GPT-3.5-Turbo, the execution
accuracy (independent of function usage) decreases
significantly when we constrain them to use spe-
cific functions in their prediction. This is a bit
surprising and clearly shows that these models do
not respond very well to constraints being put on
them for tasks where they can generate the correct
code without explicit supervision of any library
functions. We hypothesize that the models have
memorized how to program with standard library
functions and find it hard to learn to use new ones
with similar functionality.

Robustness to format of supervision. As seen
in Figure 3, the performance of both models is
quite similar across the three different types of su-
pervision we experiment with: demonstrations, de-
scriptions, and implementation. This shows that
models are able to understand constraints equally
well irrespective of the format of supervision used
for the functions provided in-context.

GPT-4 follows constraints better. In Table 3,
we report the Function Usage % for both models
across different prompt settings. We observe that
while GPT-4 actually follows the function usage

GPT-4 GPT-3.5-Turbo LLaMA-2-70B CodeLlama Starcoder
Models

0

10

20

30

40

50

Pr
oo

f C
or

re
ct

ne
ss

 (%
)

Learning Isabelle in-context from demonstrations

Original Aliased

Figure 6: Performance (↑) of various LLMs at learning
Isabelle in-context from demonstrations (with and with-
out aliasing with random strings).

constraints defined in-context, GPT-3.5 mostly ig-
nores them. The magnitude of the difference in
Function Usage % between the two models is quite
high, indicating the difference in the quality of
instruction-following behaviour between them.

5 Learning a New Programming
Language

In this section, we study the ability of LLMs to
learn a new and unfamiliar programming language
in-context. There are many diverse applications
and tasks that use niche domain-specific-languages
(DSLs) (Wang et al., 2023; Jiang et al., 2023; An-
dreas et al., 2020). Ideally, we would want to
adapt a general LLM to solve these tasks with-
out the added overhead of re-training or finetuning
the model. Hence, it is important to contextualize
how good current LLMs are at learning unfamiliar
languages using just in-context learning.

5.1 Experimental Setup

Task. We consider the task of automated theo-
rem provin,g which has immense practical rele-
vance. We generate proofs with the Isabelle lan-
guage (Paulson, 1994) for examples in the miniF2F
dataset (Zheng et al., 2022). Figure 4 provides an
example of the task. We chose to work with Is-
abelle because it is a programming language that
does not have much paired data existing on the in-
ternet. It is also relatively small (in terms of number
of keywords) which makes it possible to describe
it in-context. We focus on the algebra subset of
MATH problems (Hendrycks et al., 2021b) in the
miniF2F dataset, comprising a total of 140 exam-
ples. We wish to evaluate how well the model is
able to in-context learn the unfamiliar Isabelle lan-
guage. The prompt provided to the model consists
of some supervision about the Isabelle language

2914

GPT-4 GPT-3.5-Turbo

Original Aliased Original Aliased

Demonstrations 39.3 31.4 30.0 9.29
Description 15.0 7.86 7.86 0.00

Table 4: Performance (↑) of GPT models at learning
Isabelle in-context from only a description of keywords.

(described in detail later). This is followed by a for-
mal statement written in Isabelle and an informal
proof sketch written in Natural Language (Jiang
et al., 2023). Given this prompt, the goal of the
model is to generate the formal proof for the state-
ment in the unfamiliar Isabelle language.

In-context supervision. We experiment with two
types of supervision formats: demonstrations and
description. For demonstrations, we provide 8 ex-
emplars in the prompt, where each example con-
sists of a formal statement in Isabelle, the corre-
sponding informal proof in Natural Language, and
the formal proof in Isabelle. Figure 14 in the Ap-
pendix provides an example of this prompt type.
For description, we provide a Natural Language de-
scription of every keyword in the Isabelle language
in the prompt. Note that since we are focusing on
a limited set of algebra problems, the language can
be represented by just 12 keywords. Figure 15 in
the Appendix provides an example of this prompt
type (with aliasing, which is described below).

Aliasing. Since the data on which contemporary
LLMs have been trained on is not widely known,
it is unclear to what extent they might already be
familiar with Isabelle. Hence we experiment with
aliasing all the keywords of the language with a
different random string. Figure 5 provides an illus-
tration of aliasing an isabelle program.

Models. We experiment with GPT-4, GPT-3.5-
Turbo, LLaMA-2 70B, CodeLlama, and StarCoder.

Metrics. We measure proof correctness, calcu-
lated as the fraction of examples for which the
model generated the correct formal proof. Follow-
ing Jiang et al. (2023), for a given example, we eval-
uate correctness of the generated proof using the
Isabelle proof checker and the Sledgehammer proof
automation tool (Paulson and Blanchette, 2010).

5.2 Results

Learning Isabelle from demonstrations. The
performance of all models at learning Isabelle in-

Original Synonym Random

Type of Alias

GPT-4

GPT-3.5-Turbo

M
od

el

39.3 30.0 31.4

30.0 12.86 9.29

Demonstrations

Original Synonym Random

Type of Alias

15.0 5.71 7.86

7.86 0.0 0.0

Descriptions
Comparing Aliasing with Synonyms vs Random Tokens

Figure 7: Performance (↑) of models at learning Is-
abelle in-context when the keywords are aliased with a
synonymous word instead of a random string.

context from demonstrations can be seen in Figure
6. We see that all models show a good amount of
capability at learning the language in-context using
demonstrations. This is very interesting because
the task requires models to combine non-trivial
reasoning ability with the syntax of this new lan-
guage. The performance decreases when we alias
the keywords of the library indicating that familiar-
ity with the language may be partly responsible for
the performance. Nevertheless, our aliasing results
clearly show that models can learn completely new
programming languages in-context to some extent.

Learning Isabelle from descriptions. The re-
sults for learning Isabelle from just a description
of keywords are provided in Table 4. Only the
GPT models exhibited non-trivial performance in
this setting. Models show a fair amount of perfor-
mance at learning Isabelle in this setting without
any exposure to examples. However, considering
the high zero-shot performance of GPT-4 (see Ap-
pendix C.1), it is very likely that models have been
exposed to the language during training. The per-
formance diminishes under aliasing but is still quite
significant for GPT-4, indicating some preliminary
ability of learning a new language from just its de-
scription. These results are particularly relevant
because the space of demonstrations for a new pro-
gramming language would grow exponentially.

Effect of aliasing with synonyms. We experi-
ment with aliasing the keywords of Isabelle with
synonymous words instead of random strings. The
results are provided in Figure 7. We observe that
the model performs similarly with synonymous
aliasing as it does with random aliasing. This is
quite surprising and shows that models do not de-
pend much on the semantics of the keywords while
learning a new programming language in-context.

Providing unpaired programs. We also exper-
imented with providing unpaired programs (i.e.,

2915

0 2 5 7 10
Number of unpaired programs in prompt

0

2

4

6

8

10

12
Pr

oo
f C

or
re

ct
ne

ss
 (%

)
Impact of Providing Unpaired Isabelle Programs

GPT-3.5-Turbo
GPT-4

Figure 8: Performance (↑) of models at learning Isabelle
in-context from just descriptions (aliased) increases with
exposure to unpaired Isabelle programs.

examples of Isabelle proofs without corresponding
inputs) along with the description in the aliasing
experiments. Since paired supervision is expensive
to obtain, our goal was to check whether models
can effectively leverage random instances of pro-
grams in the unfamiliar language to better learn
it. The results for the GPT models can be seen in
Figure 8. We observe a trend that the ability to
learn the unfamiliar language increases with expo-
sure to examples of programs in the language (even
without the corresponding inputs). However, the
performance saturates after providing 5-7 unpaired
programs, possibly due to overfitting.

6 Discussion

In this work, we investigated the abilities of LLMs
to in-context learn novel programming libraries and
languages. Below we discuss the main takeaways.

We observed that the strongest LLMs can learn
novel libraries from just their natural language de-
scriptions as well as the underlying programming
language implementations. This holds promise for
adapting LLMs rapidly for different applications
without requiring any effort for obtaining paired
demonstrations data. Moreover, we found that that
the ability to acquire novel libraries in-context is
not limited to proprietary LLMs. Smaller, openly-
accessible models such as Llama-2 and StarCoder
also exhibit a significantly high ability at learning
code modules without requiring any finetuning.

We noticed that the choice of supervision pro-
vided in-context (between natural language descrip-
tions and programming language implementations)
is crucial in determining performance, especially
for smaller, openly-accessible models. This find-
ing is beneficial for resource-constrained scenarios,
where we can only use particular LLMs and need to

determine the type of supervision to provide, or we
only have a particular type of supervision available
and need to select the best model suited for it.

We found that LLMs degrade in performance
when constrained to use particular libraries in sce-
narios where they can generate code by themselves.
In such cases, LLMs have a very strong bias to gen-
erate code based on their priors and find it difficult
to use the library functions provided in-context.

Finally, we observed that LLMs show a prelim-
inary but promising ability to learn new program-
ming languages from scratch based on in-context
demonstrations or description of the language.

Limitations

We experiment with three different scenarios of
learning a novel programming library or language.
However, for each scenario, we show results only
for a single domain (or library/language). While
we believe that our experiments are sufficient to
draw the conclusions presented in the paper, in the
future, we will consider more domains to further
strengthen our results.

The description and implementation prompts
of supervision for section 3 and 5 were manually
crafted by one of the authors and verified by the
others. This inherently inserts some bias into our re-
sults. However, note that our study was exploratory
in nature and our main focus was on analyzing the
in-context learning abilities of LLMs in learning
novel libraries rather than propose general supervi-
sion approaches for these tasks.

There are limitations associated with our auto-
matic data creation procedure for obtaining descrip-
tion and implementation data for library functions.
The created dataset may be slightly biased because
the descriptions and implementations are created
by an LLM itself. However, since code generation
for competitive programming problems is an ob-
jective reasoning task, we believe that the effect of
this bias in our dataset will be minimal.

Since this work involves automatic data creation
(without manual check for each data point) using
LLMs, it is possible (although unlikely) that the
model generates unsafe responses. Also, a signif-
icant portion of the data is built on existing code
generation and reasoning datasets, so, the biases in
these datasets will transfer to our evaluation suite.

This work includes results for OpenAI models,
which may not be directly reproducible.

2916

Acknowledgments

We thank our colleagues at the Allen Institute for
AI and at Mila and McGill University for helpful
discussions and for providing valuable feedback.
Arkil is partly supported by the Canada Graduate
Scholarship – Master’s (CGS-M) funded by the
Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

References
Jacob Andreas, John Bufe, David Burkett, Charles Chen,

Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with APPS. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and

Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700–6709.

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and
Yuhuai Wu. 2021. Lisa: Language models of isabelle
proofs. 6th Conference on Artificial Intelligence and
Theorem Proving.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh Inter-
national Conference on Learning Representations.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and
Yongbin Li. 2023a. Api-bank: A comprehensive
benchmark for tool-augmented llms.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023b. Starcoder:
may the source be with you!

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Ré mi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal

2917

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=SMa9EAovKMC
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161

Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with Al-
phaCode. Science, 378(6624):1092–1097.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis.

Lawrence C. Paulson. 1994. Isabelle: A Generic Theo-
rem Prover. Springer Verlag.

Lawrence C. Paulson and Jasmin Christian Blanchette.
2010. Three years of experience with sledgehammer,
a practical link between automatic and interactive
theorem provers. In The 8th International Workshop
on the Implementation of Logics, IWIL 2010, Yo-
gyakarta, Indonesia, October 9, 2011, volume 2 of
EPiC Series in Computing, pages 1–11. EasyChair.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6418–6428, Florence, Italy. Association for
Computational Linguistics.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca:
Generalized tool learning for language models with
3000 simulated cases.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A.
Saurous, and Yoon Kim. 2023. Grammar prompting
for domain-specific language generation with large
language models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

2918

https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
https://doi.org/10.29007/36DT
https://doi.org/10.29007/36DT
https://doi.org/10.29007/36DT
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In International
Conference on Learning Representations.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,
and Graham Neubig. 2023. Docprompting: Gener-
ating code by retrieving the docs. In The Eleventh
International Conference on Learning Representa-
tions.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools.

2919

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru
http://arxiv.org/abs/2306.13304
http://arxiv.org/abs/2306.13304

A Implementation Details

Experiments using GPT-3.5-Turbo and GPT-4
(version 0613) were performed using the Ope-
nAI API7. All other experiments were done on
8 NVIDIA A100 GPUs with 80 GB memory. Our
code is implemented in PyTorch (Paszke et al.,
2019) and makes use of the HuggingFace Trans-
formers library (Wolf et al., 2020). For experiments
with certain open-source models such as Llama-2,
we use Huggingface Text-Generation-Inference.8

For experiments with VisProg in Section 3, the
context lengths of the prompt are approximately
2000 tokens for demonstrations, 500 tokens for
description, and 2400 tokens for implementation.

We use Portal-to-ISAbelle9 (Jiang et al., 2021)
to evaluate Isabelle proofs. We work with Is-
abelle2021 and use the default Sledgehammer con-
figuration, including a 120-second timeout.

def (n: INT) -> str:

 if n == 0:

 return '0'

 binary = ''

 while n > 0:

 binary = str(n % 2) + binary

 n = n // 2

 return binary

binary_rep

Convert an integer to binary representation
in string format.

Parameters:

 n (int): The integer to convert to binary.

Returns:

 str: The binary representation of the given
integer.

def (n: INT) -> str:

 binary = bin(n)

 return binary

binary_rep_alt

Problem Statement

Candidate Solution

Test Cases

An example from the NL2Python datasets

Harry has always been interested in binary
representations of numbers. Today he is attempting

Test 1:

Input: [23, 157, 69]

Output:

Yes

0100110

import numpy

import random

def (n: INT) -> str:

 binary = bin(n)

 return binary

binary_rep

Extr
act

use
r-d

efin
ed

functi
ons f

rom

ca
ndidate so

lutio
ns

Prompt GPT-4 to
generate description

of the function

Replace generated function
with original function in

candidate solution

Prompt GPT-4 to
generate implementation

from the description

Evaluate correctness

using test cases

import numpy

import random

def (n: INT) -> str:

 if n == 0:

 return '0'

 binary = ''

 while n > 0:

 binary = str(n % 2) + binary

 n = n // 2

 return binary

binary_rep

Discard example

Add example
to dataset

Incorrect

Correct

Figure 9: An illustration of the cyclic evaluation pro-
cess used to obtain correct descriptions of user-defined
functions at scale.

Below, we provide additional details for the
datasets used in Section 3.
(1) GQA (Hudson and Manning, 2019) is a compo-
sitional, multi-step visual question answering task.
For each example, the task is to answer the ques-
tion associated with a given image. We experiment
on the test set which has 1460 examples.

7https://platform.openai.com/
8https://github.com/huggingface/text-generation-

inference
9https://github.com/albertqjiang/Portal-to-ISAbelle

Model Zero-shot Accuracy

GPT-4 28.58
GPT-3.5-turbo 11.17

Llama-2 1.78
CodeLlama 1.23
StarCoder 0.62

Table 5: Zero-shot accuracies of all models for the GQA
dataset.

Model Zero-shot Proof Correctness

GPT-4 27.86
GPT-3.5-turbo 2.14

Llama-2 10.71
CodeLlama 8.57
StarCoder 0.71

Table 6: Zero-shot proof correctness of all models for
the algebra subset of MATH problems in the miniF2F
dataset.

(2) NLVR (Suhr et al., 2019) is a reasoning task
over image pairs. In each example, a pair of images
is provided and the task is to determine whether the
corresponding statement about the images is true
or false. We experiment on the test set which has
6967 examples.
(3) Knowledge Tagging (KnowTag) (Gupta and
Kembhavi, 2023) involves identifying people and
objects in a given image. The dataset has a total of
100 examples.
(4) Image Editing (Gupta and Kembhavi, 2023)
involves editing a given image using computer
vision tools based on a given instruction. The
dataset has a total 107 examples.

B Cyclic Evaluation Process to Obtain
Correct Descriptions and
Implementations

Here, we describe the cyclic evaluation process
we used to automatically ensure the correctness of
the function descriptions generated from GPT-4.
The process is illustrated in Figure 9. We prompt
GPT-4 with just the generated documentation of
the function and ask it to generate the python im-
plementation of the function. We then evaluate
the semantic equivalence of this generated function
with that of the extracted function. We can check
semantic equivalence by replacing the extracted
function definition with this generated function def-
inition in the corresponding candidate solution and
evaluating correctness using the test cases.

2920

https://platform.openai.com/
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/albertqjiang/Portal-to-ISAbelle

We use a similar process for obtaining correct
implementations as well. We append the generated
implementation of the function in the candidate so-
lution and evaluate correctness using the test cases.

C Additional Results

C.1 Zero-shot Baselines

To better contextualize our results presented in the
main paper, we evaluate models zero-shot on the
tasks without providing any library or language
specification.

Learning new library. We attempted to prompt
the models to generate code without specifying
any library or providing any examples. However,
we were unable to automatically execute any of
the model generations because of errors such as
improper file path (which the model would assume
by itself) or we ran into library dependency issues.
Hence we tried to check if the models could solve
examples zero-shot without generating code.

Since GQA is a question-answering dataset, we
measure the zero-shot accuracies by prompting the
model with only the question and asking it to guess
the answer. The zero-shot accuracies for all mod-
els are provided in Table 5. NLVR is a binary
classification dataset. We achieved the maximum
zero-shot performance of 51.1% by prompting the
models to always answer ‘True’ (i.e., majority class
baseline). Since knowledge tagging and image edit-
ing datasets require complex image editing, and ob-
ject localization and classification, their examples
cannot be solved without generating code and their
zero-shot baseline can be considered to be 0%.

Learning new language. We prompt the models
to zero-shot generate the Isabelle proof for each
example in the algebra subset of MATH problems
in the miniF2F dataset. The zero-shot proof cor-
rectness for all models is provided in Table 6.

C.2 Impact of Providing Unpaired Programs
for VisProg

In Section 3, we observed that no model except
GPT-4 could match the demonstrations perfor-
mance with just descriptions or implementation.
We wanted to check whether models can effectively
leverage unpaired programs (i.e., just random pro-
grams without corresponding inputs) to perform
better when provided with description or imple-
mentation specification. We experiment with GPT-
3.5-turbo, Llama-2, CodeLlama, and StarCoder

GPT-3.5-Turbo LLaMA-2-70B CodeLlama Starcoder
Models

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Impact of providing unpaired programs with descriptions of functions

Description Description + unpaired programs

Figure 10: Performance (↑) of various LLMs on GQA
dataset when 10 unpaired VisProg programs are pro-
vided along with the descriptions of functions.

GPT-3.5-Turbo LLaMA-2-70B CodeLlama Starcoder
Models

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Impact of providing unpaired programs with implementations of functions

Implementation Implementation + unpaired programs

Figure 11: Performance (↑) of various LLMs on GQA
dataset when 10 unpaired VisProg programs are pro-
vided along with the implementations of functions.

over the GQA dataset. We use the same prompt
as we used for description and implementation in
Section 3, appended with 10 random VisProg pro-
grams for GQA. The results for description and
implementation are provided in Figure 10 and Fig-
ure 11 respectively. We observe improvement in all
models for both types of supervision. The improve-
ments are particularly noticeable when the model
performance without the unpaired programs was
extremely low, as is the case for StarCoder with
descriptions and Llama-2 with implementations.

D Examples of Errors

In Table 7 and Table 8, we provide examples of
common error patterns that we observed for pre-
dictions made by GPT-4 while learning VisProg
and Isabelle respectively. We were unable to iden-
tify concrete error patterns for our experiments in
Section 4; most prediction failures were due to
incorrect application of the function provided in-
context.

E Example Prompts

We provide examples of prompts for the diverse
scenarios we study in Figures 12, 13, 14, and 15.

2921

You are given the following programming problem.

You are given a string s consisting of n lowercase Latin letters. Let's define a substring as a
contiguous subsegment of a string. For example, "acab" is a substring of "abacaba" (it starts in
position 3 and ends in position 6), but "aa" or "d" aren't substrings of this string.
[...truncated...]
The lexicographic comparison of strings is implemented by operator $<$ in modern programming
languages.

Input
The first line contains one integer n (2 \leq n \leq 3 \times 10^5) - the length of s.
The second line contains the string s of length n consisting only of lowercase Latin letters.

Output
If it is impossible to reverse some substring of the given string to obtain a string which is
lexicographically less, print "NO". Otherwise print "YES" and two indices l and r (1 \leq l
$<$ r \leq n) denoting the substring you have to reverse. If there are multiple answers, you can
print any.

Examples:

Input
7
abacaba

Output
YES
2 5

You are given the following novel API functions already implemented. In your code, you must
compulsorily call these functions.

Function: xxqev()
Examples using the function xxqev():

Instruction: Add the string 'apple' into the heap of fruits, maintaining the order of the heap.
Code:
fruits = ['banana', 'cherry', 'date']
xxqev(fruits, 'apple')

Instruction: [...truncated...]

Function: adygr()
Examples using the function adygr():

Instruction: From the list of student names, pick a random student.
Code:
students = ['John', 'Amy', 'Peter', 'Anna', 'Mike']
adygr(students)

Instruction: [...truncated...]

The solution code that uses the novel API functions xxqev() and adygr():

Figure 12: Example prompt for constrained generation from demonstrations of functions provided in-context.

2922

You are given the following programming problem.

In late autumn evening n robots gathered in the cheerful company of friends. Each robot has a unique
identifier - an integer from 1 to 109. At some moment, robots decided to play the game "Snowball".
Below there are the rules of this game. First, all robots stand in a row. Then the first robot says
[...truncated...]
Your task is to determine the k-th identifier to be pronounced.

Input
The first line contains two positive integers n and k (1 \leq n \leq 100 000, 1 \leq k \leq
min(2\times109, n\times(n + 1) / 2).
The second line contains the sequence id1, id2, ..., idn (1 \leq idi \leq 109) - identifiers of
robots. It is guaranteed that all identifiers are different.

Output
Print the k-th pronounced identifier (assume that the numeration starts from 1).

Examples

Input
2 2
1 2

Output
1

You are given the following novel API functions already implemented. In your code, you must
compulsorily call these functions.

Function: fubba()
Description:
This function is used to calculate the square root of a given number. It accepts both positive and

negative numbers as well as complex numbers. In the case of negative numbers, it returns the
square root as a complex number.

Input Argument: A number (integer, float, or complex)
Return Type: complex

Function: snxlt()
Description:
This function takes a number as an argument and returns the largest integer value less than or equal

to the given number. If the input number is already an integer, the function returns the same
number. It essentially rounds down the number to the nearest integer.

Input Arguments:
1. x (float or any python object that can be coerced into a float)
Return Type: Integer

Function: evpwd()
Description:
This function takes in a floating-point number and returns the smallest integer value greater than or

equal to the given number. If the number is already an integer, the same number is returned.
This operation is also known as ceiling operation.

Input Arguments:
1. x (float)
Return Type: int

The solution code that uses the novel API functions fubba(), snxlt(), and evpwd():

Figure 13: Example prompt for constrained generation from descriptions of functions provided in-context.

2923

Translate the informal solution into a sketch of the formal Isabelle proof. Add `sledgehammer` in the
sketch whenever possible. `sledgehammer` will be used to call the automated Sledgehammer prover.
Here are some examples:

Informal:
(*### Problem
Show that for any four complex numbers a, b, c, and d, $(a-d)(a-c)(a-b) = -(((a^2 - a(b+c)) + bc) * d

) + (a^2 - a(b+c) + bc) * a$.
Solution
We first see that $a^2 = a * a$ trivially.
Unfolding this, the main equation holds true when terms are rearranged.*)

Formal:
theorem
fixes a b c d :: complex
shows "(a-d) * (a-c) * (a-b) = -(((a^2 - (b+c) * a) + c * b) * d) + (a^2 - (b+c) * a + c * b) * a"

proof -
(* We first see that $a^2 = a * a$ trivially. *)
have t0: "a^2 = a * a"

using power2_eq_square
sledgehammer

(* Unfolding this, the main equation holds true when terms are rearranged. *)
show ?thesis unfolding t0

sledgehammer
qed

.

.

.

Informal:
(*### Problem
Find the minimum value of $\frac{9x^2\sin^2 x + 4}{x\sin x}$ for $0 < x < \pi$. Show that it is 12.
Solution
Let $y = x \sin x$. It suffices to show that $12 \leq \frac{9y^2 + 4}{y}.
It is trivial to see that $y > 0$.
Then one can multiply both sides by y and it suffices to show $12y \leq 9y^2 + 4$.
This can be done by the sum of squares method.*)

Formal:
theorem
fixes x::real
assumes "0<x" "x<pi"
shows "12 \<le> ((9 * (x^2 * (sin x)^2)) + 4) / (x * sin x)"

proof -
define y where "y=x * sin x"
(* It suffices to show that $12 \leq \frac{9y^2 + 4}{y}. *)
have "12 \<le> (9 * y^2 + 4) / y"
---[truncated]---
then show ?thesis

sledgehammer
qed

Informal:
(*### Problem
What is the positive difference between 120% of 30 and 130% of 20? Show that it is 10.
Solution
One hundred twenty percent of 30 is $120\cdot30\cdot\frac{1}{100}=36$, and 130% of 20 is $ 130\

cdot 20\cdot\frac{1}{100}=26$. The difference between 36 and 26 is 10.*)

Formal:
theorem
"abs ((120::real) / 100 * 30 - 130 / 100 * 20) = 10"

proof -

Figure 14: Example prompt for learning Isabelle from demonstrations (without aliasing).

2924

I am defining a new programming language that you must use to prove the theorem statement provided to
you.

The keywords of the language are:

"alyckwm": This keyword is used to declare the start of a theorem. The name of the theorem follows
this keyword. Theorems represent mathematical truths.

"lpicd": This keyword is used to declare a variable in the context of the current theorem.

"jepxahf": This keyword is used to declare the assumptions of the theorem. Assumptions are premises
or logical statements that are taken as given for proving the theorem.

"kdi": This keyword is used to chain multiple assumptions or multiple goals together in a single
statement. In the context of assumptions, this allows you to state several assumptions in a
single "jepxahf" block. Each assumption will be separated by this keyword and can be referred to
individually in the proof. In the context of goals, if you have multiple things to prove, you
can use this to state all these goals at once in an "fwozy" block. Then, in the proof, you can
prove each goal one by one. The proof is only complete when all goals have been proven.

"fwozy": This keyword is used to declare the conclusion of the theorem. It represents the statement
that needs to be proved.

"becj" : This keyword is used to establish intermediate facts within the proof. It essentially allows
us to break down the proof into smaller, more manageable pieces. After this keyword, you state
some logical statement that you believe to be true and that you want to prove. The proof of this
statement is then provided after this line. You should support this statement with previous
hypothesis specified by the "using" keyword explained below.

"curja": This keyword is used to specify the assumptions or previously proved facts that will be used
to prove the current fact.

"hiwhrxplibce" : This is a powerful automatic proof tool or method that attempts to prove the
statement immediately preceding it. It is often used after "becj" to prove the intermediate fact.
It uses a variety of automated reasoning tools to find the proof.

"yeha" : This keyword is used to refer to the fact that was just proven. It allows you to use the
result of one line in the next line of the proof.

"oiql" : This keyword is similar to "becj", but is used to prove the final goal or thesis. It is used
to state what we want to prove and is followed by the proof of this statement.

"tnkdpfe" : This is a special term that refers to the statement of the theorem we are trying to
prove. In other words, it's a placeholder for the goal of the proof. You do not need to state the
logical statement again after this.

"srf" : This keyword is used to end a proof or sub-proof.

Logical statements are enclosed in double quotes such as "abs ((120::real) / 100 * 30 - 130 / 100 *
20) = 10". Logical statements can be assigned a name such as "h0" or "h1" for instance when they
are used with keywords such as "jepxahf", etc. For instance: becj h2 : "<statement>" curja h0 h1.

Now, using only the above keywords provided to you, prove the following theorem. Do not worry about
syntax.

theorem
"abs ((120::real) / 100 * 30 - 130 / 100 * 20) = 10"

I am providing an informal proof sketch for your reference:
One hundred twenty percent of 30 is $120\cdot30\cdot\frac{1}{100}=36$, and 130% of 20 is $ 130
\cdot 20\cdot\frac{1}{100}=26$. The difference between 36 and 26 is 10.

Figure 15: Example prompt for learning Isabelle from description of keywords (with aliasing).

2925

EXAMPLES OF ERRORS IN GENERATING VISPROG

Problem: Does the mat have the same color as the sky?
Generated Program:
temp = VQA(image = IMAGE, question = “Does the mat have the same color as the sky?")
FINAL_RESULT = RESULT(var = temp)

Problem: Hide the faces of Nicole Kidman and Brad Pitt with ;) and 8)
Generated Program:
faces = FACEDET(image = IMAGE)
nicole_kidman = SELECT(image = IMAGE, object = faces, query = ‘Nicole Kidman’, category = None)
temp_img = EMOJI(image = nicole_kidman, emoji = ‘winking_face’)
brad_pitt = SELECT(image = IMAGE, object = faces, query = ‘Brad Pitt’, category = None)
temp_img = EMOJI(image = brad_pitt, emoji = ‘smiling_face_with_sunglasses’)
FINAL_RESULT = RESULT(var = temp_img)

Table 7: Illustrations of errors made by GPT-4 while learning VisProg. In the top example, the model fails to
correctly utilize the helper functions in the library such as ‘LOC’ and ‘CROP’ to break down the complex question
and focus on specific image locations, thereby putting the onus completely on the VQA engine, which fails. The
bottom example illustrates a failure in understanding the data types of the arguments as well as the values returned
by the functions in the library (the highlighted variables are of type ‘OBJECT’ and should have been passed to the
‘object’ argument instead of ‘image’).

EXAMPLES OF ERRORS IN GENERATING ISABELLE

Problem: Show that for any complex number a, (a − 10)(a + 11) = a2 + a − 110.
Generated Proof:
have (a − 10) ∗ (a + 11) = a2 − 10 ∗ a + 11 ∗ a − 10 ∗ 11 sledgehammer
hence (a − 10) ∗ (a + 11) = a2 + a − 10 ∗ 11 sledgehammer
hence (a − 10) ∗ (a + 11) = a2 + a − 110 sledgehammer
finally show ?thesis sledgehammer
qed

Problem: For a positive real number a, show that 10a ≤ 28a2 + 1.
Generated Proof:
have c0: 0 ≤ 28 ∗ a2 − 10 ∗ a + 1
proof -
have c1: (a − (5/28))2 = a2 − 10/28 ∗ a + (5/28)2 sledgehammer
then have c2: 0 ≤ a2 − 10/28 ∗ a + (5/28)2 using c1 sledgehammer
then have c3: 0 ≤ 28 ∗ a2 − 10 ∗ a + 28 ∗ ((5/28)2) using c2 sledgehammer
then have c4: 0 ≤ 28 ∗ a2 − 10 ∗ a + 5 using c3 sledgehammer
then show ?thesis using c4 sledgehammer
qed
then show ?thesis sledgehammer
qed

Table 8: Illustrations of errors made by GPT-4 while learning Isabelle. In the top example, the model extrapolates
its understanding of the keywords in Isabelle that were explained in the prompt and uses a similar word, ‘hence’,
which is not a part of the language. The bottom example illustrates an error in reasoning where the model makes a
mistake in calculation which invalidates the statement it tries to prove.

2926

