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Abstract
When connecting objects and their language
referents in an embodied 3D environment, it is
important to note that: (1) an object can be bet-
ter characterized by leveraging comparative in-
formation between itself and other objects, and
(2) an object’s appearance can vary with camera
position. As such, we present the Multi-view
Approach to Grounding in Context (MAGiC)
model, which selects an object referent based
on language that distinguishes between two
similar objects. By pragmatically reasoning
over both objects and across multiple views
of those objects, MAGiC improves over the
state-of-the-art model on the SNARE object
reference task with a relative error reduction
of 12.9% (representing an absolute improve-
ment of 2.7%). Ablation studies show that rea-
soning jointly over object referent candidates
and multiple views of each object both con-
tribute to improved accuracy. Code: https:
//github.com/rcorona/magic_snare/

1 Introduction

To distinguish a “thin handled mug” between two
mugs, we must contextually reason about the object
with the relatively thinner handle. Such grounded
language can connect to machine representations
of the world (Harnad, 1990). Considering prag-
matic context (Potts, 2022; Fried et al., 2022) in
grounded natural language can assist applications
in vision and robotics (Tellex et al., 2020; Krishna
et al., 2017; Lu et al., 2019; Li et al., 2022; Desai
and Johnson, 2021). Additionally, object features
like mug handles may be occluded from certain
viewpoints, requiring multiple views or 3D infor-
mation (Huang et al., 2022; Wang et al., 2021b).

In the real world, language use is situated in a 3D
environment and must consider a rich context of
alternatives. However, for tasks like object disam-
biguation, some models score referring expression

*Denotes Equal Contribution

Figure 1: Left: Previous methods for identifying ob-
ject referents of language expressions in the SNARE
benchmark consider target and distractor objects inde-
pendently and pool multiple views before grounding.
Right: By contrast, MAGiC jointly reasons over target
and distractor objects and their views from different an-
gles to identify the correct referent with higher accuracy
than the previous state-of-the-art model.

compatibility with visual observations of an ob-
ject in isolation (Thomason et al., 2021; Corona
et al., 2022), while broader methods for aligning
vision and language representations often consider
only static images of objects and scenes (Radford
et al., 2021; Kim et al., 2021). Such work can miss
language information which can contain compara-
tive information in language and embodied visual
information from multiple viewpoints.

We introduce Multi-view Approach to Ground-
ing in Context (MAGiC) MAGiC jointly reasons
over candidate referent objects and considers each
object from multiple possible vantage points (Fig-
ure 1). We evaluate MAGiC via the ShapeNet
Annotated with Referring Expressions (SNARE)
benchmark (Thomason et al., 2021). In SNARE,
candidate objects are always of the same high-
level category, such as chair or mug, and language
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references uniquely identify one target referent
object in contrast to the distractor object of the
same category. Embodied agents operating in real-
world environments analogously need to disam-
biguate between similar objects, such as mugs in
a kitchen, parts on a conveyor belt, or rocks on
the seafloor. By reasoning about both objects and
their views, MAGiC achieves a relative error reduc-
tion of 12.9% (improved accuracy by 2.7%). Our
contributions include:

• MAGiC, a transformer-based model that rea-
sons over multiple 2D-image views of 3D ob-
jects and implicitly considers the relative dif-
ferences between objects;

• state-of-the-art SNARE accuracy;1

• ablation studies that show both multi-object
and multi-view inputs are needed for the
MAGiC accuracy gains; and

• analysis showing MAGiC outperforms previ-
ous methods even with fewer available object
viewpoints.

2 Background and Related Work

Embodied agents increasingly operating alongside
humans must understand the relationships between
natural language and the objects they reference.
To best capture these relationships, our method
synthesizes the comparative context afforded by
reasoning over multiple objects and considering
each one in multiple views.

2.1 Object Reference Grounding

Object referent identification selects specific object
referents given natural language descriptors. Sev-
eral datasets are prominent in 3D object referent
identification. ShapeGlot (Achlioptas et al., 2019)
focuses on chairs and lamps, training models to dis-
tinguish target objects using shape-based descrip-
tions. PartGlot (Koo et al., 2022) employs a refer-
ence task for implicit learning of point cloud part-
segmentation. SNARE (Thomason et al., 2021)
uses the ShapeNetSem dataset, featuring 262 ob-
ject categories, while ShapeTalk (Achlioptas et al.,
2023) introduces 29 object classes for learning
grounded point cloud representations. We utilize
the SNARE dataset, leveraging extensive object
variety to highlight generalizability.

Previous SNARE task methods scored objects
individually (Thomason et al., 2021; Corona et al.,
2022). We discuss the limitations of these methods

1https://github.com/snaredataset/snare#leaderboard

by considering two specific principles in pragmat-
ics (Potts, 2022). The first is the consideration of
contrastive object sets in reference games (Andreas
and Klein, 2016; Bao et al., 2022). Another rele-
vant pragmatics principle relevant to our work is
the consideration of alternatives (Fried et al., 2022).
These principles suggest the importance of utilizing
comparative information between presented objects
when completing SNARE or similar tasks.

MAGiC employs language grounding to capture
object distinctions in the SNARE task. Our core in-
sight is joint reasoning over both objects, diverging
from methods that independently score reference-
referent and reference-distractor pairs (Thomason
et al., 2021; Corona et al., 2022), which draws on
prior work in pragmatics and reference ground-
ing (Clark and Wilkes-Gibbs, 1986; de Vries et al.,
2016; Frank, 2016; Degen et al., 2012; Franke and
Jäger, 2014; Monroe et al., 2017).

2.2 3D Language Grounding
In the domain of grounding language to visual rep-
resentations, significant progress has been made in
2D (Sadhu et al., 2019; Yu et al., 2016; Plummer
et al., 2015; Wang et al., 2021a). This research
can be extended to work in three dimensions, in-
corporating more information such as the relative
positions and views of multiple objects. There are
many common 3D object representations such as
point clouds (Qi et al., 2017; Guo et al., 2020),
meshes (Lin et al., 2021; Bouritsas et al., 2019),
voxels (Yagubbayli et al., 2021), and neural radi-
ance fields (Mildenhall et al., 2020; Yu et al., 2021).

Applications of language and 3D representations
include resolving spatial reference for language
localizing objects in a 3D scene (Zhang et al., 2017;
Huang et al., 2018, 2022). Language guidance can
also inform real-world tasks in 3D such as vision-
and-language navigation (Gu et al., 2022) or robot
instruction following (Shridhar et al., 2020, 2022).
In all these tasks, grounded language understanding
of objects from different viewpoints is necessary.

The necessity of this 3D, rotational understand-
ing is more prominent in 3D object referent identi-
fication tasks such as SNARE (Thomason et al.,
2021) and ShapeGlot (Achlioptas et al., 2019).
While the model may be presented with explicit
3D object representations to provide rotational in-
formation in other identification tasks, SNARE pro-
vides multiple 2D views of the referent and dis-
tractor objects. The previous SoTA methods on
SNARE have all aggregated these views before
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Figure 2: Model Architecture. MAGiC consists of a multi-view transformer that attends to CLIP language
embeddings for the description and CLIP image embeddings across multiple views for both objects. This transformer
allows our model to contextually reason across views about both objects at the same time with respect to a language
description. We do not use any positional encodings, and MAGiC is invariant to the input order of images and
objects. Unlike previous methods for SNARE, we pool information from object views only after updating their
representations with respect to the language referring expression. We apply view masking and language masking
augmentations to regularize the model during training.

generating a score for each object. However, in
keeping with Grice’s maxim of quantity (Grice,
1975), the MAGiC transformer attends over all the
views of both objects, in contrast to previous meth-
ods attempting SNARE that performed early fusion
on view representations.

3 Reference Grounding

We define a reference grounding task where, given
one or more visual views of candidate objects and a
natural language description, the reference ground-
ing task is to select the object identified by the
contrastive referring expression. Formally, a model
must use a given language description l to pre-
dict a target object ol that is aligned with the lan-
guage description from among a set of m objects
O = {ol, oc1 , oc2 , ..., ocm−1}. Besides object ol,
there are m−1 distractor objects oci that contribute
to the context in which a model needs to reason
about. For each object o, the model is able to per-
ceive n views for each object o1, ..., on. These
objects are unordered, and we do not assume ac-
cess to the relative positions between each view.
The goal of the task is to learn a classifier function
f(O, l) → [0, 1]m such that a higher probability is
assigned to the target object.

Previous approaches (Koo et al., 2022; Achliop-
tas et al., 2023; Thomason et al., 2021; Corona
et al., 2022) learn f for single objects, then each
object o ∈ O is scored separately using a single-
object classifier s(o, l) → [0, 1]. While classifying
only individual objects simplifies the implementa-
tion, it limits the model’s ability to comparatively
reason about objects in context. Also, previous
image-based methods for reference grounding tasks
(Thomason et al., 2021; Corona et al., 2022) ag-
gregate each object’s n views without reasoning
about each view’s relationship to the language de-
scription. To overcome these limitations, a model
needs to address two key challenges: 1) reasoning
about the contextual relationships between objects,
and 2) reasoning about multiple views of each ob-
ject in relation to the language description. We
propose MAGiC, a transformer-based architecture
that enables joint reasoning over object-specific
and view-specific contextual dependencies for 3D
language grounding.

4 MAGiC

We introduce Multi-view Approach to Grounding
in Context (MAGiC) for language grounding of 3D
objects (Figure 2). In contrast to previous work that
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Considers Lang Attends VALIDATION ACC. TEST ACC.
Model Both Objects to Ind. Views Visual Blind All Visual Blind All
Human (U) ✓ ✓ 94.0 90.6 92.3 93.4 88.9 91.2

ViLBERT ✗ ✓ 89.5 76.6 83.1 80.2 73.0 76.6
MATCH ✗ ✗ 89.2(0.9) 75.2(0.7) 82.2(0.4) 83.9(0.5) 68.7(0.9) 76.5(0.5)
LAGOR ✗ ✗ 89.8(0.4) 75.3(0.7) 82.6(0.4) 84.3(0.4) 69.4(0.5) 77.0(0.5)
VLG ✗ ∼ 91.2(0.4) 78.4(0.7) 84.9(0.4) 86.0 71.7 79.0
MAGiC ✓ ✓ 92.1(0.4)92.1(0.4)92.1(0.4) 81.3(0.9)81.3(0.9)81.3(0.9) 86.8(0.5)86.8(0.5)86.8(0.5) 87.787.787.7 75.475.475.4 81.781.781.7

Table 1: SNARE Benchmark Performance. Mean accuracy ± standard deviation over 10 seeds for existing
SNARE approaches, whether those approaches reason over objects jointly, and whether they perform language
grounding over individual object views versus pooled representations. Note: ∼ indicates that VLG enables language
grounding to LegoFormer (Yagubbayli et al., 2021) features of object views, but not RGB views. We find that
MAGiC outperforms all other models on SNARE and is statistically significantly better than VLG, the previous
state-of-the-art approach, under a Welch’s unpaired two-tailed t-test with a p < 0.001.

individually score each object, MAGiC considers
both the language and the objects, along with their
views, simultaneously.

The design of our model is guided by princi-
ples in 3D language grounding and pragmatics.
In SNARE, a model should consider information
about comparative differences between two objects
to identify the correct referent of the language ex-
pression. To enable a model to more effectively
ground language to these visual dissimilarities, we
focus on two key elements of the model formu-
lation: (1) object context, which involves jointly
reasoning over both objects and the referring ex-
pression, and (2) multi-view context, where multi-
ple views of the object representation are explicitly
utilized throughout the model without aggregating
their representation as a preprocessing step. We
adopt this paradigm in 3D language grounding and
design our model to concurrently process features
from both objects and the referring expression to
leverage context-dependent information.

With the context established by considering both
objects and the referring expression, our model can
leverage context-dependent information effectively.
More concretely, consider the scenario of the model
being asked to choose between two chairs given the
referring expression “the tall, skinny chair". The
model can exploit context-dependent information,
such as using the descriptor “tall" to reason over
both objects comparatively to ascertain which is
taller. Additionally, by incorporating features from
multiple views of the object, our model benefits
from the additional 3D perspective, ensuring that
important object information, even if initially ro-
tated out of view, is captured and utilized.

A transformer architecture is well-suited for
context-based 3D language grounding due to

its wide receptive field and low inductive bias
(Vaswani et al., 2017). Unlike CNN-based architec-
tures that have a spatial locality bias, transformers
have a wide receptive field that includes all input
features after just one transformer layer. This ar-
chitecture enables our model to attend to all inputs
and effectively leverage both object and multi-view
context for 3D language grounding. Moreover, the
low inductive bias of transformers makes the de-
sign choice suitable for 3D language grounding, as
the transformers are particularly good at handling
multiple modalities (Xu et al., 2023).

4.1 Model Architecture

Given a target object ol, a single distractor object oc,
and the language description l, MAGiC employs a
transformer-based architecture to learn a classifier
f([ol, oc], l). We conjecture that our architecture
will effectively learn contextual relationships be-
tween views and objects. Our approach focuses
on the use of images from each view to represent
an object, without relying on additional depth or
camera information. Thus, each object o has n
views that represent the object. Unlike previous
work that used additional features, such as voxel-
based information (Corona et al., 2022) or point
cloud information (Huang et al., 2022; Achlioptas
et al., 2019), we demonstrate the effectiveness of
using image-based views alone for 3D language
grounding. Thus, our model is agnostic to specific
orderings of views for an object.

For each view, we utilize a CLIP-ViT (Rad-
ford et al., 2021) image encoder g to obtain view-
specific visual embeddings vi = g(oi). Similarly,
a CLIP language encoder h is employed to en-
code the given language description l, generat-
ing a sequence of token embeddings [e1d, ..., e

k
d] =
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h(l). Similar to the previous state-of-the-art model
(Corona et al., 2022), we use the token-level text
embeddings from CLIP rather than the CLIP’s
end-of-token feature that SNARE’s baselines use
(Thomason et al., 2021). To distinguish between
image-view embeddings and language embeddings,
we add a learned token-type embedding to each to-
ken to indicate whether it is an image-view embed-
ding or a language embedding (Kim et al., 2021).
To ensure permutation invariance between objects,
we do not add a token embedding to distinguish
whether a view belongs to the first or second object.
To remain agnostic to view orderings, we exclude
positional encodings from all views.

Using these representations for the ob-
jects and language, we construct a sequence
r = [vl0, ..., v

l
n, v

c
0, ...v

c
n, e

1
l , ..., e

k
l ], which is then

passed as input to the transformer encoder t:

[wl
0, ..., w

l
n, w

c
0, ...w

c
n, q

1
l , ..., q

k
l ] = t(r),

where w is a contextualized representation for an
object’s view, and q are output representations for
the language input. The resulting contextualized
representations capture the interplay between views
and the language input.

The object-specific output representations
w0, ..., wn from the transformer t for an object o
are aggregated using max pooling, yielding a sin-
gle aggregate embedding u representing object o.
This aggregate embedding captures the contextual
relationships between multiple views of the object
in consideration. A classifier MLP s(u) takes the
contextualized embeddings for an object o as input
and generates a score s indicating the likelihood of
the object being the target.

Given a target object ol that is aligned with a lan-
guage description l and a single distractor object oc,
we apply a sigmoid to the scores for each object to
compute the probabilities p(ol|l, oc) and p(oc|l, ol)
of the target and distractor objects, respectively.

4.2 Attention Masking Augmentation
Humans often adapt and rely on a subset of views or
language cues when faced with challenging circum-
stances or limited information. This observation
motivates the exploration of masking techniques
in language grounding tasks, aiming to enhance
model performance by selectively blocking out cer-
tain inputs and encouraging the model to focus on
the most relevant information.

We incorporate attention masking augmenta-
tions into our model, specifically targeting the

VALIDATION ACC.
Model Visual Blind All
MATCH 90.6(0.5) 77.0(0.7) 83.9(0.4)

+ obj. context 90.5(0.5) 76.8(0.6) 83.7(0.3)

MAGiC 92.1(0.4)92.1(0.4)92.1(0.4) 81.3(0.9)81.3(0.9)81.3(0.9) 86.8(0.5)86.8(0.5)86.8(0.5)
- obj. context 91.1(0.5) 79.4(1.1) 85.3(0.5)
- mv. context 91.0(0.6) 79.5(0.8) 85.3(0.4)
- both contexts 90.5(0.6) 78.2(1.2) 84.4(0.6)

Table 2: Context Ablations. We investigate the impor-
tance of multi-view context (mv. context) and object
context (obj. context). On the validation set, we report
10 averaged seeds and the standard deviation on abla-
tions of both contexts for MATCH and MAGiC. We
note that the MATCH performance is different from
Table 1 as these are our replications of MATCH results
as opposed to the paper (Thomason et al., 2021) report.
We find that if we remove one type of context or both,
performance is degraded for MAGiC.

transformer’s attention weights for both the view
and language inputs (Girdhar and Grauman, 2021;
Vaswani et al., 2017; Cho et al., 2022). This mask-
ing strategy encourages the model to develop a bet-
ter understanding of multi-view contextual relation-
ships and effectively capture the essential aspects
for accurate predictions.

For view masking, we introduce a 10% proba-
bility of masking out each individual view during
training. This process promotes view invariance
as well as the ability to generalize to unseen view-
points. Similarly, for language masking, we apply
a 20% probability of masking out each word in the
input language description. By randomly masking
a portion of the word and image embeddings, we
encourage the model to learn more robust vision
and language representations that are capable of
handling missing or incomplete information.

5 Evaluation

We evaluate the effectiveness of our method on
the SNARE (Thomason et al., 2021) benchmark, a
language grounding task that draws from a subset
of items in the ShapeNetSem (Chang et al., 2015;
Savva et al., 2015) dataset, specifically those in-
cluded in the ACRONYM (Eppner et al., 2020)
robot grasping dataset. The SNARE benchmark
adversarially selects similar target and distractor
objects to challenge 3D language grounding ap-
proaches. In the object reference task, the model
is presented with a natural language description
l and must correctly identify the target object ol

from a set of m = 2 objects O = {ol, oc1}. In Sec-
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tion A.4, we investigate varying m. Each object o
in the benchmark is accompanied by n = 8 image
views, capturing the object from different perspec-
tives at 45-degree intervals. As both target and
distractor objects are from the same ShapeNetSem
category, the SNARE benchmark aims to evaluate
a model’s contextual reasoning abilities.

The SNARE benchmark encompasses two types
of object descriptions: visual and blindfolded. Vi-
sual descriptions are generated by annotators who
are guided to include the object’s name, shape, and
color. These visual descriptions aim to capture a
comprehensive understanding of the object, pro-
viding relevant visual cues to guide the grounding
process (e.g., “the red mug"). On the other hand,
blind descriptions predominantly focus on the ob-
ject’s shape and specific distinguishing attributes,
intentionally omitting color and other visual char-
acteristics that might aid identification (e.g., “the
one with a tapered lip").

The SNARE benchmark is split into training, val-
idation, and test splits. The train/validation/test sets
are split over (207 / 7 / 48) ShapeNetSem object
categories, containing (6,153 / 371 / 1,357) unique
object instances and (39,104 / 2,304 / 8,751) object
pairings, each accompanied by a referring expres-
sion. The validation and test sets include unseen
object categories that were not encountered during
the model training phase, thus evaluating the gen-
eralizability and robustness of different methods.

5.1 Models
We compare the performance of MAGiC against
several baselines, including the previous state-of-
the-art (SOTA. We describe these baselines below):

Human accuracy serves as an upper bound for
performance. These results are provided from
SNARE (Thomason et al., 2021). Human per-
formance is determined by evaluating whether
the annotators can unanimously identify the
corresponding object based on the provided
natural language description.

MATCH (Thomason et al., 2021) uses CLIP-
ViT to encode the views of each object. These
encoded views are then max-pooled and con-
catenated to the language description embed-
ding. Then, an MLP is trained to assign scores
to each object independently based on the con-
catenated representation.

ViLBERT (Lu et al., 2019; Thomason et al.,
2021) uses 14 views as opposed to the stan-

dard 8 views in SNARE. These images are
tiled into a single image based on the camera
view. ViLBERT then attends to the bounding
boxes of each view to provide an image rep-
resentation that is used in a MATCH model
instead of the CLIP-ViT encoder.

LAGOR (Thomason et al., 2021) (Language
Grounding through Object Rotation) builds
upon the MATCH model. LAGOR introduces
additional regularization through a view pre-
diction loss on each view. The model is pre-
sented with only two random views of each
object, and it scores each view individually
for language grounding in addition to view
prediction.

VLG (Corona et al., 2022) (Voxel-informed
Language Grounding) uses a pretrained Lego-
Former (Yagubbayli et al., 2021) model for
image-to-voxel map prediction. VLG em-
ploys a factorized representation of the pre-
dicted voxel map, CLIP image embeddings,
and CLIP language embeddings to score an
object. By incorporating voxel-based informa-
tion, the VLG baseline serves as a strong com-
parison against our model, which suggests an
alternative pragmatic approach.

5.2 Training Details
We train MAGiC on the SNARE dataset using a
smoothed binary cross-entropy loss. We adopt
a similar training strategy as VLG. We train our
model for 75 epochs using the AdamW optimizer.
The learning rate is set to 1e-3, and we incorporate
a linear learning rate warmup for the first 10,000
steps of training. Our model uses 3 transformer en-
coder layers, 8 attention heads, and a hidden size of
256 for a total of 3.6 million trainable parameters.
We train our models with a batch size of 64.

6 Results

In this section, we present the test set performance
of our model and compare it with the previous
state-of-the-art models. Additionally, we report the
average performance and standard deviation of our
model and various ablations on the validation set,
calculated over 10 different seeds.

6.1 MAGiC improves over SOTA
Table 1 presents the performance comparison of
models on the SNARE benchmark. MAGiC outper-
forms all other models with a 2.7% absolute accu-
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Figure 3: Explicit 3D Features. We find that adding
3D structural information to MAGiC does not improve
accuracy on SNARE.

racy improvement on the test set over VLG. In the
blindfolded split, MAGiC has a 3.7% performance
increase over VLG. Across the entire validation
set, MAGiC is statistically significantly better in
grounding accuracy than VLG with a p < 0.001
under a Welch’s unpaired two-tailed t-test.

MATCH aggregates the CLIP embeddings using
max pooling, removing its ability to effectively
reason over the 3D structure of an object. VLG
explicitly uses 3D features and improves 2.5% on
grounding accuracy compared to MATCH. MAGiC
however is able to improve performance by 5.2%
over MATCH. These results suggest that our model
does not explicitly require additional 3D structure
like VLG.

Though VLG also uses a transformer-based ar-
chitecture, VLG uses max pooling to aggregate im-
age features before it is input into the transformer
model. In the blindfolded subset, ViLBERT pre-
viously had the top performance of 73.0%, likely
beating VLG since it used 14 views instead of 8
views. Although ViLBERT reasons explicitly over
multi-view context rather than pooling view infor-
mation like VLG and MATCH, MAGiC improves
over ViLBERT by 2.4% on the blindfolded set us-
ing fewer views. This performance difference im-
plies that by leveraging CLIP image features for
each view independently, MAGiC demonstrates
the ability to capture and reason about multi-view
context effectively.

We believe our performance gain can also be
attributed to capturing object and multi-view con-
text. In the next subsection, we present ablations
to further demonstrate this result.

6.2 Ablation Study

We present several ablations performed on the
SNARE validation split. We first investigate the
precise contributions of object and view context
to our method’s improvement on the benchmark as
shown in Figure 2. We also examine the effect of
additional 3D information and varying the number
of views on our method.
Context improves validation accuracy. In Ta-
ble 2, we find that using context improves valida-
tion accuracy on SNARE, implying that MAGiC
can capture and utilize contextual dependencies,
showcasing its advantage over MLP-based archi-
tectures. To assess the significance of object con-
text in our model, we added object context to a
MATCH model and removed it from MAGiC. We
find that adding object context to MATCH does not
help improve performance. In contrast, removing
object context from MAGiC decreases grounding
accuracy by 1.5%. MAGiC without object context
is similar to the ViLBERT-based MATCH model in
Table 1, as both only use multi-view context. These
two models have a noticeable 2.3% difference in
grounding accuracy, though some of this difference
could be attributed to ViLBERT’s weaker represen-
tational capacity for language grounding compared
to CLIP. These results suggest that MAGiC is able
to effectively leverage object context.

To understand the importance of multi-view con-
text, we remove multi-view context and only reason
over object context. MAGiC without multi-view
context is conceptually similar to MATCH with ob-
ject context, but we find a 1.6% difference in valida-
tion performance between the models. MATCH’s
lower performance with multi-view context implies
that MAGiC can contextually reason between ob-
jects better than MLP-based architectures.

Most notably, we find that MAGiC without
multi-view and object context has 0.7% higher
overall validation accuracy than MATCH, which
is reasonably within error bounds. The validation
performance of VLG in Table 1 also performs simi-
larly to MAGiC without both types of context. The
similarity in their performance indicates that the
difference between MATCH, VLG, and MAGiC
comes from MAGiC’s ability to reason contextu-
ally between both views and objects.
MAGiC does not require 3D information. In
Figure 3, we investigate whether 3D information
is necessary to comparatively ground two objects
by conducting two experiments that introduce 3D
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Figure 4: Fewer Views Impact on Performance. We
report results on the validation set on the impact of
fewer views on performance. We find that MAGiC
outperforms MATCH, LAGOR, and VLG, achieving
greater accuracy with fewer views.

structure explicitly: via positional encodings and
explicitly adding 3D features.

Positional Encodings. Given that our model does
not impose any specific ordering for the views, we
rely on our model to learn the 3D structure of ob-
jects implicitly from unordered 2D-image views.
To investigate the maximum potential of an image-
based 3D object grounding model, we experiment
with enforcing canonical image view orderings and
incorporating learnable positional encodings for
the views. While MAGiC handles unordered input
views without relying on knowledge about cam-
era rotations, we specifically enforce a canonical
ordering scheme based on 45-degree rotations for
the inputs and add learnable positional encodings
for each view. If consistent view orderings and
positional encodings help in learning 3D structure,
we would expect improved performance. However,
our findings in Figure 3 indicate that enforcing or-
der and using positional encodings do not result in
performance changes, implying that MAGiC can
capture view-specific contextual relationships with-
out explicit positional information.

3D Features. The performance gains of VLG
over MATCH in Table 1 can be attributed to the
addition of explicit 3D information. To assess
whether our model can benefit from explicit 3D
information, we investigate the impact of incor-
porating supplementary, view-specific 3D features
into the transformer input. We use features pre-
computed using the Point-E (Nichol et al., 2022)
transformer for each object view and language de-
scription. Point-E is a language-conditioned point
cloud diffusion transformer that captures both 3D

and language information through a reconstruction
task, so we believe it will effectively capture rele-
vant 3D information. View masking augmentations
are applied as necessary. Also, we add token-type
embeddings so the model can distinguish between
the 2D image features and the 3D features. We find
that the explicit inclusion of 3D features does not
improve accuracy.

These results further reinforce the importance of
grounding fine-grained object differences over the
use of 3D information in improving comparative
language grounding (as posited in prior works).

MAGiC is more robust to fewer views. Stronger
performance by MAGiC on view-limited exper-
iments compared to the previous SOTA demon-
strates MAGiC’s ability to handle limited visual
information in language grounding tasks. By re-
training MAGiC and MATCH on a reduced num-
ber of views as shown in Figure 4, we can assess
a model’s ability to effectively leverage limited vi-
sual information and still accurately understand
and interpret natural language descriptions. We
find that on the validation set, MAGiC achieves
higher accuracy with fewer views compared to
other models. For instance, with only 4 views,
MAGiC achieves an accuracy of 85.4%, surpassing
VLG, which attains 84.9% accuracy with 8 views.
This suggests that MAGiC can more efficiently
leverage available information from fewer views.
Our findings contribute to a deeper understanding
of the significance of exploiting multiple views in
language-grounding tasks.

7 Discussion

In this work, we present MAGiC, which demon-
strates significant improvements in language
grounding accuracy on an object reference task by
reasoning jointly over objects and their multi-view
contexts when scoring their compatibility with re-
ferring expressions. We find that comparatively
reasoning over multiple objects is central to cap-
turing contextual relationships that enhance the
model’s ability to ground object descriptions, with
added multi-view context also contributing to bet-
ter language-to-object grounding. The experimen-
tal results from the SNARE object identification
benchmark highlight the effectiveness of MAGiC,
which outperforms all methods on both the valida-
tion and test sets.
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8 Limitations

MAGiC heavily relies on having access to multi-
ple views of objects. While using multiple views
allows for capturing richer context and improving
performance, it also requires obtaining and process-
ing multiple images for each object, which may not
always be feasible or practical in certain scenar-
ios. Future work could consider actively selecting
views that promote the most information gain. Ad-
ditionally, our experiments focus on a single dis-
tractor object. We provide preliminary multiple
distractor experiments in the appendix to showcase
the practicality of MAGiC in the real world, which
is provides a foundation for future work on com-
paratively reasoning over multiple objects.

Additionally, MAGiC uses CLIP embeddings for
encoding visual information. While CLIP provides
powerful pre-trained image and text encoders, its
representations may not fully capture the intrica-
cies and characteristics of 3D objects. This limi-
tation could potentially impact the model’s ability
to discriminate between visually similar objects
or capture fine-grained details crucial for accurate
language grounding.

9 Potential Negative Societal Impact

MAGiC was designed to ground language to 3D
household objects. However, MAGiC has direct
potential uses for sensitive applications such as
face identification and surveillance. For instance,
law enforcement agencies may use MAGiC with
vague witness testimony to discern a suspect given
two sets of mugshots with multiple views. In these
high-stakes applications, our model could gener-
ate harmful and discriminatory identifications that
would further negatively impact historically minori-
tized peoples. Furthermore, our model uses a CLIP-
backbone, and previous literature has shown that
CLIP reinforces malignant sexist and racist stereo-
types (Hundt et al., 2022) and exhibits gender bias
(Wang et al., 2022; Agarwal et al., 2021) which are
part of broader patterns of marginalization in soci-
ety. Vision-and-language models have also been
shown to compound gender biases that exist sepa-
rately in language and vision (Srinivasan and Bisk,
2021). Therefore, these models must account for
the ways in which language and perception reflect
social norms.

10 Acknowledgements

The authors would like to thank Jerry A. Yang
for helpful discussions on the potential negative
societal impact of models like MAGiC. RC was
funded by the DARPA SemaFor program, BAIR
Commons, and an NSF Graduate Research Fellow-
ship.

References
Panos Achlioptas, Judy Fan, Robert X. D. Hawkins,

Noah D. Goodman, and Leonidas J. Guibas. 2019.
ShapeGlot: Learning Language for Shape Differenti-
ation. International Conference on Computer Vision
(ICCV).

Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey
Tulyakov, and Leonidas Guibas. 2023. ShapeTalk:
A Language Dataset and Framework for 3D Shape
Edits and Deformations. Conference on Computer
Vision and Pattern Recognition (CVPR).

Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec
Radford, Jong Wook Kim, and Miles Brundage.
2021. Evaluating CLIP: Towards Characterization of
Broader Capabilities and Downstream Implications.
arXiv Preprint.

Jacob Andreas and Dan Klein. 2016. Reasoning about
pragmatics with neural listeners and speakers. Em-
pirical Methods in Natural Language Processing
(EMNLP).

Yuwei Bao, Sayan Ghosh, and Joyce Chai. 2022. Learn-
ing to Mediate Disparities Towards Pragmatic Com-
munication. Association for Computational Linguis-
tics (ACL).

Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos
Ploumpis, Michael Bronstein, and Stefanos Zafeiriou.
2019. Neural 3d Morphable Models: Spiral Convolu-
tional Networks for 3d Shape Representation Learn-
ing and Generation. International Conference on
Computer Vision (ICCV).

Angel X. Chang, Thomas Funkhouser, Leonidas
Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Sil-
vio Savarese, Manolis Savva, Shuran Song, Hao
Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015.
ShapeNet: An Information-Rich 3D Model Reposi-
tory. arXiv Report.

Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh.
2022. Cross-Attention of Disentangled Modalities
for 3D Human Mesh Recovery with Transformers.
European Conference on Computer Vision (ECCV).

Herbert H Clark and Deanna Wilkes-Gibbs. 1986. Re-
ferring as a collaborative process. Cognition.

Rodolfo Corona, Shizhan Zhu, Dan Klein, and Trevor
Darrell. 2022. Voxel-informed Language Grounding.
Association for Computational Linguistics (ACL).

3185

http://arxiv.org/abs/2108.02818
http://arxiv.org/abs/2108.02818
https://aclanthology.org/D16-1125.pdf
https://aclanthology.org/D16-1125.pdf
https://aclanthology.org/2022.acl-long.202
https://aclanthology.org/2022.acl-long.202
https://aclanthology.org/2022.acl-long.202
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
http://arxiv.org/abs/2205.09710


Harm de Vries, Florian Strub, A. P. Sarath Chan-
dar, Olivier Pietquin, H. Larochelle, and Aaron C.
Courville. 2016. Guesswhat?! visual object discov-
ery through multi-modal dialogue. Conference on
Computer Vision and Pattern Recognition (CVPR).

Judith Degen, Michael Franke, et al. 2012. Optimal
reasoning about referential expressions. Proceedings
of SemDIAL.

Karan Desai and Justin Johnson. 2021. VirTex: Learn-
ing Visual Representations from Textual Annotations.
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
2020. ACRONYM: A Large-Scale Grasp Dataset
Based on Simulation. International Conference on
Robotics and Automation (ICRA).

Michael C Frank. 2016. Rational speech act models of
pragmatic reasoning in reference games.

Michael Franke and Gerhard Jäger. 2014. Pragmatic
back-and-forth reasoning. In Pragmatics, semantics
and the case of scalar implicatures. Springer.

Daniel Fried, Nicholas Tomlin, Jennifer Hu, Roma Pa-
tel, and Aida Nematzadeh. 2022. Pragmatics in
Grounded Language Learning: Phenomena, Tasks,
and Modeling Approaches. Empirical Methods in
Natural Language Processing (EMNLP) Findings.

Rohit Girdhar and Kristen Grauman. 2021. Anticipative
Video Transformer. International Conference on
Computer Vision (ICCV).

Herbert P Grice. 1975. Logic and Conversation. Speech
acts.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and
Xin Eric Wang. 2022. Vision-and-Language Nav-
igation: A Survey of Tasks, Methods, and Future
Directions. Association for Computational Linguis-
tics (ACL).

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu,
Li Liu, and Mohammed Bennamoun. 2020. Deep
Learning for 3D Point Clouds: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Stevan Harnad. 1990. The Symbol Grounding Problem.
Physica D: Nonlinear Phenomena.

Devamanyu Hazarika, Roger Zimmermann, and Sou-
janya Poria. 2020. MISA: Modality-Invariant and
-Specific Representations for Multimodal Sentiment
Analysis. International Conference on Multimedia
(MM).

Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang.
2022. Multi-View Transformer for 3D Visual
Grounding. Conference Computer Vision and Pattern
Recognition (CVPR).

Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu,
Ying Nian Wu, and Song-Chun Zhu. 2018. Coop-
erative Holistic Scene Understanding: Unifying 3d
Object, Layout, and Camera Pose Estimation. Con-
ference on Neural Information Processing Systems
(NeurIPS).

Andrew Hundt, William Agnew, Vicky Zeng, Severin
Kacianka, and Matthew Gombolay. 2022. Robots
Enact Malignant Stereotypes. In ACM Conference on
Fairness, Accountability, and Transparency (FAccT).

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. ViLT:
Vision-and-language Transformer Without Convolu-
tion or Region Supervision. International Confer-
ence on Machine Learning (ICML).

Juil Koo, Ian Huang, Panos Achlioptas, Leonidas J
Guibas, and Minhyuk Sung. 2022. PartGlot: Learn-
ing shape part segmentation from language reference
games. Conference on Computer Vision and Pattern
Recognition (CVPR).

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual Genome: Connecting Language and Vi-
sion Using Crowdsourced Dense Image Annotations.
International Journal of Computer Vision (IJCV).

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-
Wei Chang, and Jianfeng Gao. 2022. Grounded
Language-Image Pre-training. Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Kevin Lin, Lijuan Wang, and Zicheng Liu. 2021. Mesh
Graphormer. International Conference on Computer
Vision (ICCV).

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. Conference on Neural Information Processing
Systems (NeurIPS).

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
2020. NeRF: Representing Scenes as Neural Radi-
ance Fields for View Synthesis. European Confer-
ence on Computer Vision (ECCV).

Will Monroe, Robert D. Hawkins, Noah D. Goodman,
and Christopher Potts. 2017. Colors in context: A
pragmatic neural model for grounded language under-
standing. Transactions of the Association for Com-
putational Linguistics (TACL).

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. 2022. Point-E: A Sys-
tem for Generating 3D Point Clouds from Complex
Prompts. arXiv Preprint.

3186

https://doi.org/10.48550/arXiv.2011.09584
https://doi.org/10.48550/arXiv.2011.09584
http://arxiv.org/abs/1912.12033
http://arxiv.org/abs/1912.12033
https://doi.org/10.1016/0167-2789(90)90087-6
http://arxiv.org/abs/2204.02174
http://arxiv.org/abs/2204.02174
https://doi.org/10.48550/arXiv.2112.03857
https://doi.org/10.48550/arXiv.2112.03857
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/1908.02265
http://arxiv.org/abs/1908.02265


Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k Entities: Collecting
Region-to-Phrase Correspondences for Richer Image-
to-Sentence Models. International Conference on
Computer Vision (ICCV).

Christopher Potts. 2022. Pragmatics. In The Oxford
Handbook of Computational Linguistics. Oxford Uni-
versity Press.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J.
Guibas. 2017. Pointnet: Deep Learning on Point
Sets for 3d Classification and Segmentation. Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. International Conference on Ma-
chine Learning (ICML).

Arka Sadhu, Kan Chen, and Ram Nevatia. 2019. Zero-
Shot Grounding of Objects From Natural Language
Queries. International Conference on Computer Vi-
sion (ICCV).

Manolis Savva, Angel X Chang, and Pat Hanra-
han. 2015. Semantically-enriched 3D Models for
Common-sense Knowledge. Conference on Com-
puter Vision and Pattern Recognition (CVPR) Work-
shops.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. FaceNet: A Unified Embedding for
Face Recognition and Clustering. Conference on
Computer Vision and Pattern Recognition (CVPR).

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2022.
Perceiver-Actor: A Multi-Task Transformer for
Robotic Manipulation. Conference on Robot Learn-
ing (CoRL).

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A
Benchmark for Interpreting Grounded Instructions
for Everyday Tasks. Conference on Computer Vision
and Pattern Recognition (CVPR).

Tejas Srinivasan and Yonatan Bisk. 2021. Worst of Both
Worlds: Biases Compound in Pre-trained Vision-and-
Language Models. Proceedings of the 4th Workshop
on Gender Bias in Natural Language Processing
(GeBNLP).

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and
Cynthia Matuszek. 2020. Robots That Use Language.
Annual Review of Control, Robotics, and Autonomous
Systems.

Jesse Thomason, Mohit Shridhar, Yonatan Bisk, Chris
Paxton, and Luke Zettlemoyer. 2021. Language
Grounding with 3D Objects. Conference on Robot
Learning (CoRL).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Conference on Neural Information Pro-
cessing Systems (NeurIPS).

Junyang Wang, Yi Zhang, and Jitao Sang. 2022. Fair-
CLIP: Social Bias Elimination based on Attribute
Prototype Learning and Representation Neutraliza-
tion. arXiv Preprint.

Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan
Yang, and Dong Yu. 2021a. Improving Weakly Su-
pervised Visual Grounding by Contrastive Knowl-
edge Distillation. Conference on Computer Vision
and Pattern Recognition (CVPR).

Yue Wang, Vitor Campanholo Guizilini, Tianyuan
Zhang, Yilun Wang, Hang Zhao, and Justin Solomon.
2021b. Detr3d: 3d object detection from multi-view
images via 3d-to-2d queries. Conference on Robot
Learning (CoRL).

Peng Xu, Xiatian Zhu, and David A. Clifton. 2023.
Multimodal Learning with Transformers: A Survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Farid Yagubbayli, Alessio Tonioni, and Federico
Tombari. 2021. LegoFormer: Transformers for
Block-by-Block Multi-view 3D Reconstruction.
arXiv Preprint.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo
Kanazawa. 2021. pixelNeRF: Neural Radiance
Fields from One or Few Images. Conference on
Computer Vision and Pattern Recognition (CPVR).

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. 2016. Modeling Context
in Referring Expressions. European Conference on
Computer Vision (ECCV).

Yinda Zhang, Mingru Bai, Pushmeet Kohli, Shahram
Izadi, and Jianxiong Xiao. 2017. DeepContext:
Context-encoding Neural Pathways for 3d Holistic
Scene Understanding. International Conference on
Computer Vision (ICCV).

3187

http://arxiv.org/abs/1505.04870 [cs]
http://arxiv.org/abs/1505.04870 [cs]
http://arxiv.org/abs/1505.04870 [cs]
https://doi.org/10.1093/oxfordhb/9780199573691.013.33
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1109/ICCV.2019.00479
https://doi.org/10.1109/ICCV.2019.00479
https://doi.org/10.1109/ICCV.2019.00479
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/cvpr.2015.7298682
http://arxiv.org/abs/1912.01734 [cs]
http://arxiv.org/abs/1912.01734 [cs]
http://arxiv.org/abs/1912.01734 [cs]
http://arxiv.org/abs/2107.12514 [cs]
http://arxiv.org/abs/2107.12514 [cs]
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2210.14562
http://arxiv.org/abs/2210.14562
http://arxiv.org/abs/2210.14562
http://arxiv.org/abs/2210.14562
http://arxiv.org/abs/2007.01951
http://arxiv.org/abs/2007.01951
http://arxiv.org/abs/2007.01951
https://api.semanticscholar.org/CorpusID:238744328
https://api.semanticscholar.org/CorpusID:238744328
http://arxiv.org/abs/2206.06488
http://arxiv.org/abs/2012.02190
http://arxiv.org/abs/2012.02190


A Appendix

In this supplementary section, we describe addi-
tional experiments, ablations, and results related to
our work.

A.1 Masking Ablations

As discussed in Section 4, in order to improve
the robustness and generalization capabilities of
MAGiC, we employ masking augmentations on
both the language embeddings and the view embed-
dings as regularization for our model. Specifically,
we applied random masking to a certain percent-
age of the language and view embeddings during
training, analyzing the impact of different mask-
ing percentages as depicted in Figure 5. Through
hyperparameter tuning on the validation set, we de-
termined that a 20% language masking and a 10%
view masking yield language grounding accuracy
improvements. We ran each model for 10 seeds.
However, we also noticed that excessive regular-
ization can have a detrimental effect on accuracy,
highlighting the need for a balanced application of
masking augmentations.
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Figure 5: View and language masking. We show the
impact of different attention masking percentages for
the view and language tokens that are input into MAGiC.
Each variant is trained for 10 seeds. We find that 10%
view masking and 20% language masking achieved the
highest validation set accuracy.

A.2 Contrastive Loss

We investigated additional regularization by using
CLIP-like contrastive losses on the output represen-
tations. Losses that are similar in spirit have been
used in face recognition and clustering research
(Schroff et al., 2015) as well as multi-modal senti-
ment analysis research (Hazarika et al., 2020). At a

high-level, we implement a contrastive loss that mo-
tivates the embedded target-object image features
to be similar to the embedded object description
language features. Our model does not have any
supervision on the output language representations,
and thus, we hypothesized that a contrastive loss
would have led to a more structured embedding
space. Additionally, we expected that the addi-
tional supervision from the contrastive loss on the
output embeddings from the language inputs would
help improve grounding accuracy. However, we did
not find any improvements on MAGiC’s accuracy
on the validation set as shown in Figure 6. These
findings indicate that the transformer model was al-
ready able to contrastively structure the embedding
space given access to both objects and the language
description such that the added contrastive loss was
not further advantageous towards that goal.

Visual Split Blind Split All Data
70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

92.1

81.3

86.8

Feature Type:
MAGiC +contrastive losses

Figure 6: Contrastive Loss. We train MAGiC on 10
seeds on the validation set with and without contrastive
losses. We show that there is no noticeable impact on
MAGiC’s validation accuracy when a contrastive loss is
added during training.

A.3 Additional Discussion

We would also like to note that our model out-
performed another model on the SNARE leader-
board called LOCKET. However, we were unable
to find any code or paper publicly associated with
LOCKET at the time of submission, and omitted it
from Table 1.

The code for MAGiC will be made public after
anonymity restrictions are lifted.

A.4 Multiple Distractor Experiment

While the SNARE benchmark presents the model
with one target and one distractor object, we
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demonstrate MAGiC’s ability to generalize to mul-
tiple distractors, as may be the case in a more re-
alistic use case. SNARE provides adversarially-
selected pairs with language annotations. To have
multiple distractor objects, we randomly select an
object in the same train/val set. There is no guar-
antee for new distractor objects will be in the same
category of as the initial two objects since the lan-
guage might not differentiate additional objects of
the same category.

Our results in Figure 7 show that while overall
performance decreases, MAGiC generally retains
its strong performance over an architecture without
object context. MAGiC without object context is
similar to the MLP-based MATCH model, as they
score each object individually. We find that reason-
ing over all objects generally outperforms scoring
the objects individually. We note that performance
clearly degrades as more objects are added, and we
show a line depicting random chance to show that
our model has generally high performance. Due to
SNARE being a dataset for loading 2 objects at a
time, implementation constraints limited us from
scaling up these experiments efficiently. Thus each
variant is trained only on 1 seed, which makes it
clear that this result becomes noisy as more dis-
tractor objects are added. We also note that for
MAGiC, for additional distractor objects, MAGiC
is trained and evaluated on the same number of
distractor objects.
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Figure 7: Number of distractors. We show the impact
of different numbers of distractors on the performance
of MAGiC and MAGiC without context. Each variant
is trained for 1 seed. We find that MAGiC
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