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Abstract
The concept of localization in LLMs is often
mentioned in prior work; however, methods
for localization have never been systematically
and directly evaluated. We propose two com-
plementary benchmarks that evaluate the abil-
ity of localization methods to pinpoint LLM
components responsible for memorized data.
In our INJ Benchmark, we actively inject a
piece of new information into a small subset
of LLM weights, enabling us to directly eval-
uate whether localization methods can iden-
tify these “ground truth” weights. In our DEL
Benchmark, we evaluate localization by mea-
suring how much dropping out identified neu-
rons deletes a memorized pretrained sequence.
Despite their different perspectives, our two
benchmarks yield consistent rankings of five
localization methods. Methods adapted from
network pruning perform well on both bench-
marks, and all evaluated methods show promis-
ing localization ability. On the other hand, even
successful methods identify neurons that are
not specific to a single memorized sequence.1

1 Introduction

Large language models (LLMs) memorize many
sequences from their pretraining corpora (Carlini
et al., 2019; Lehman et al., 2021; Lee et al., 2023).
For example, Carlini et al. (2021) show that GPT2
(Radford et al., 2019) can leak some private con-
tact information verbatim. This paper studies
whether we can localize a piece of memorized data,
i.e., identify components in LLMs responsible for
generating a sequence (near) verbatim. Success-
ful localization may inform further work in ma-
chine unlearning (Cao and Yang, 2015; Bourtoule
et al., 2021); for instance, one could apply “neural
surgery” to the located components to make the
LLM forget a piece of sensitive information.

Prior work on knowledge editing suggests that
we can locate a small set of LLM parameters that

1Code link: https://github.com/terarachang/MemPi

store factual knowledge (Dai et al., 2022; Meng
et al., 2022). These works demonstrate localiza-
tion success by showing knowledge editing suc-
cess when updating only the located LLM parame-
ters. However, Hase et al. (2023) argue that editing
success and localization are actually uncorrelated.
Similarly, prior methods that identify subnetworks
in LLMs (Gong et al., 2022; Panigrahi et al., 2023)
usually focus on the performance of downstream
classification tasks, lacking direct evaluation on
localization per se. Hence, the degree of existing
methods’ localization success remains unclear.

This paper studies the open question, “Do local-
ization methods actually localize memorized data
in LLMs?” We first propose decoupling localiza-
tion success from downstream success in our INJ
Benchmark. Our key insight is to actively create
the ground-truth weights responsible for data mem-
orization. Specifically, we force LLMs to use a
small set of pre-decided weights to memorize a
piece of new information unseen during pretrain-
ing. Therefore, we have the ground-truth locations
where the new information is injected. We can then
directly evaluate how well different localization
methods recall the indices of the injected weights.

We further apply the localization methods to
a real-world scenario: identifying a small set of
neurons in an LLM responsible for memorizing
a pretrained sequence. In this setting, evaluating
localization success is more challenging because
the ground-truth “location” of each memorized se-
quence is unknown. We propose the DEL Bench-
mark, inspired by knockouts (Olsson et al., 2022),
a reverse-engineering approach that removes a set
of nodes from the computation graph to observe
their importance for specific model behavior. We
first collect a set of memorized sequences, and for
each sequence, we drop out the located neurons to
measure their importance to memorizing that target
sequence. A successful localization should cleanly
erase the target sequence from an LLM without
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hurting the memorization of the other sequences
in the set after dropout. Our two benchmarks com-
plement each other: the INJ Benchmark provides
a direct evaluation of localization methods under
a well-controlled setup, while DEL Benchmark
answers if the methods can localize pretrained se-
quences that LLMs have already memorized.

We systematically evaluate five methods on our
two benchmarks, including existing localization
methods (ACTIVATIONS, Geva et al., 2022; IG, Dai
et al., 2022), a brute-force method that searches for
the most important neurons (ZERO-OUT), and two
methods we adapt from network pruning (Hassibi
and Stork, 1992; Han et al., 2016), SLIMMING and
HARD CONCRETE. Our two benchmarks rank the
five methods in the same order, showing especially
strong localization ability for HARD CONCRETE.
For example, dropping out only 0.5% of neurons in
Pythia-6.9B (Biderman et al., 2023) identified by
HARD CONCRETE makes the model forget 57.7%
of the target memorized tokens on average. On the
other hand, the DEL Benchmark shows all meth-
ods struggle to balance between erasing the target
sequence and retaining other memorized data, indi-
cating that the identified neurons are also relevant
for memorizing some other sequences. Overall,
both benchmarks agree all evaluated localization
methods are promising, but precise localization of
a single sequence remains difficult.

2 Background and Task Terminology

A Transformer layer (Vaswani et al., 2017) consists
of multi-head self-attention and a feed-forward net-
work (FFN). Prior work shows that LLMs use their
FFNs rather than self-attention as “memories” to
store knowledge (Geva et al., 2021, 2022; Meng
et al., 2022). Here, an FFN has two fully connected
layers with a non-linear activation function σ:

hl = σ(W l xl) (1)

ol = V l hl, (2)

where xl ∈ Rd1 is the input hidden states to the l-
th FFN layer, W l ∈ Rd2×d1 , V l ∈ Rd1×d2 are the
weights, hl ∈ Rd2 the intermediate hidden states,
and ol ∈ Rd1 the output hidden states. Geva et al.
(2022) rewrite Eq. 2 as a linear combination of
columns of V l. Let vl

i ∈ Rd1 be the i-th column
of V l and hli ∈ R be the i-th neuron activation of
hl ∈ Rd2 . We have:

ol = V l hl =

d2∑

i=1

hli · vl
i (3)

They show that different concepts are stored in
different vl

i, and that we can view each activation
hli as a memory coefficient to retrieve a concept.

Neurons. Dai et al. (2022) observe the existence
of knowledge neurons, a small set of neurons in
FFN hidden states hl that corresponds to a rela-
tional fact, where a neuron means a component
of the vector hl. For example, given the input
“The capital of Ireland is ”, they can increase the
model probability on the correct token “Dublin” by
amplifying the activation hli of the identified knowl-
edge neurons. With Eq. 3, we can view increasing
activation hli as promoting the concept stored in vl

i.
In this work, we only search for neurons in FFNs

responsible for memorizing a sequence, following
Dai et al. (2022). In the INJ Benchmark, we ensure
that FFNs act as neural memories by only updating
a set of weight vectors vl

i to memorize the new
information. As each vl

i corresponds to a neuron
in hl, locating the updated weights is equivalent
to locating the corresponding neurons. In the rest
of the paper, we refer to neurons as the neurons in
{hl}Ll=1, where L is the number of layers.

Dropout. Different from Srivastava et al. (2014),
we drop out located neurons at test time to erase a
memorized sequence from the LLM. We can view
dropping out the i-th neuron in hl as excluding the
contribution of vl

i from the output ol in Eq. 3.

Memorized Sequences. Consider a sequence
x = (p, s) that consists of a prefix p and a suffix s.
Given the prefix as the prompt, if an LLM is able to
nearly reconstruct the suffix with greedy decoding,
we say x is a memorized sequence by the LLM. We
discuss in §3.2 our criteria on suffix reconstruction,
where we tolerate near-verbatim memorization; we
also ensure every sequence has a non-trivial suffix.

Localization. Hase et al. (2023) provides a gen-
eral definition of localization: identifying compo-
nents of a model responsible for a certain behavior.
Under this definition, we consider components as a
small set of neurons and behavior as the LLM’s gen-
eration of a memorized sequence. Although some
components are necessary for generation, e.g., the
input and output token embeddings, we exclude
them as they are not specific to a target sequence.

Localization Methods. Given an LLM, a memo-
rized sequence x, and a fixed number k, a localiza-
tion method outputs k% of neurons at each layer as
the predictions to localize sequence x in the LLM.
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Figure 1: Left: INJ Benchmark updates a small set of LLM weights to store the new piece of data, where the
fine-tuned weight vectors and the corresponding neurons are filled with blue. The neurons predicted by a localization
method are circled with black. denotes true-positive, false-positive, and false-negative neurons. Right:
DEL Benchmark drops out the predicted neurons on a memorized pretrained sequence. A large change in
Levenshtein distance after dropout indicates that were important for LLM f to retrieve the memorized sequence.

3 Two Localization Benchmarks

How do we know whether a method is success-
ful in localization? We propose two benchmark-
ing approaches: one injects a new piece of infor-
mation into specific parameters in LLMs, while
another deletes an existing memorized sequence
from LLMs via dropout. A successful localization
method should do well on both benchmarks.

3.1 The INJ Benchmark

A principal challenge in evaluating localization
methods is the lack of ground-truth location. We
propose the INJ Benchmark, which first creates
ground truth by actively injecting a piece of unseen
information into a small subset of LLM weights.
We can then directly evaluate the correctness of
a localization method in predicting the indices of
those injected weights.

Data. The ECBD-2021 dataset (Onoe et al.,
2022) contains 156 definition sentences of new
entities that rose to popularity during the year 2021,
e.g., “Gamma variant, also known as lineage P.1...”.
Since all LLMs we use are trained on corpora re-
leased before 2021, the injected weights are the
only parameters in the LLMs responsible for mem-
orizing each new definition sequence x.

Information Injection. For each new sequence
xi in the dataset, we randomly sample r% of the
weight vectors {vl

1, . . . ,v
l
d2
}Ll=1 across all L lay-

ers, and fine-tune them to memorize x. We keep the
rest of the model parameters frozen. To simulate
how LLMs learn data during pretraining, we fine-
tune with the normal language modeling loss on
xi (Eq. 13). To ensure the entire sequence is well
memorized, we keep fine-tuning until we reach a
loss < 0.05; therefore, we can simply set the first
token as the prefix p, and the rest of the sequence
as the suffix s. Note we sample a different set of
weight vectors ϕi for each sequence xi and fine-
tune a separate model θ̃i. Algorithm 1 shows the
exact injection process.

Evaluation. For each model θ̃i injected with a
sequence xi, a localization method predicts k% of
neurons at each layer and we calculate Recall@k%.
Specifically, given the set of ground-truth neurons
corresponding to all the injected weight vectors
across layers, Γi, and the set of all predicted neu-
rons, Γ̂i, the recall is |Γi∩Γ̂i|

|Γi| . Finally, we average
the recall scores across sequences, and thus average
over different choices of weights ϕi for injection.

3.2 The DEL Benchmark
The DEL Benchmark studies whether we can local-
ize a naturally memorized sequence after pretrain-
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Algorithm 1 Information Injection
Input: The set of new sequences XECBD = {xi}Ni=1; pretrained LLM θ with L layers; injection ratio r

Output: The set of fine-tuned LLMsM = {θ̃i}Ni=1

InitializeM← ∅.
for i← 1 to N do

θ̃i ← θ // Initialize from pretrained weights.
Retrieve all the FFN weight vectors Φi = {vl

1, . . . ,v
l
d2
}Ll=1 from layers l of θ̃i.

Set the random seed to i.
ϕi ← Randomly sample r% of weight vectors from Φi. // ϕi ⊂ Φi ⊂ θ̃i
Fine-tune ϕi with the language modeling loss on xi (Eq. 13) with remaining weights θ̃i \ ϕi frozen.
M←M∪ θ̃i.

end for
returnM

ing, which is not answered by the INJ Benchmark.
We first collect a set of memorized pretrained se-
quences, and then apply localization methods to
identify the responsible neurons for each sequence.
Without ground-truth neurons, we adopt knockouts
(Li et al., 2016; Olsson et al., 2022; Geva et al.,
2023) for evaluation, which measures the impor-
tance of model components based on the effect of
removing them. We drop out the located neurons
to observe how much they account for memorizing
a sequence. We quantify memorization with two
scores: Accuracy and Levenshtein distance.

Accuracy. Recall that a sequence x = (p, s) con-
sists of a prefix p and suffix s. Accuracy calculates
the percentage of correct suffix tokens generated by
teacher-forcing and argmax decoding. Formally,

ŝt =argmax
w∈Voc

Pθ(w|p, s<t), t = 1, . . . , T (4)

Accuracy =
1

T

T∑

t=1

1{ŝt = st}, (5)

where T denotes the suffix sequence length, st the
t-th true suffix token, s<t = [s1, . . . , st−1], ŝt the
t-th generated token, Pθ the probability distribu-
tion of the LLM parameterized by θ, and Voc the
vocabulary. Higher Accuracy indicates better mem-
orization of the sequence.

Levenshtein distance. While Accuracy is de-
fined at a token level, we note tokens often contain
several characters, e.g., “159”. For sequences like
“3.14159265”, every character is important; thus,
we also define a memorization score at the charac-
ter level. With Eq. 4, we have ŝ = [ŝ1, . . . , ŝT ].
We calculate Levenshtein distance between the gen-
erated suffix ŝ and the true suffix s. Lower Leven-
shtein distance indicates better memorization.

Data. We collect a set of sequences memorized
by each LLM, including Pythia-deduped-2.8B,

Pythia-deduped-6.9B, and GPT2-XL. For Pythia
models, the pertaining corpus the Pile-dedupe (Gao
et al., 2021) is open-sourced, and we use the fol-
lowing criteria to determine which sequences are
memorized. For each candidate sequence x, we
set the first 32 tokens as the prefix p to prompt
the LLM to reconstruct the suffix s of 48 tokens.
First, we filter out sequences with Accuracy (Eq.
4, 5) lower than 0.9. Second, we use greedy de-
coding to generate the suffix, filtering out those
with a Levenshtein distance greater than 20 charac-
ters to the true suffix. Third, we discard sequences
with repetitive tokens (less than 16 distinct tokens
in the suffix). Finally, we deduplicate the remain-
ing sequences based on n-gram Jaccard index. We
obtain 505 memorized sequences for each Pythia
model. For GPT2-XL, we do not have access to
its pretraining corpus and find very few memorized
sequences from several public corpora with our
criteria. Thus, we actively search for potentially
memorized sequences, discovering 105 memorized
sequences and categorizing them manually (Table
1). See A.8 for details and example sequences.

We sample 5 sequences as the dev set to tune
the hyperparameters of different methods (see A.9),
using the rest of the collected sequences as the test
set. We quantify the memorization of LLMs on

Category Examples Count
Quotes Churchill, Steve Jobs, Trump 17
Quotes (Book) Dune, 1984, Bible 14
Ordered items Zodiac Signs, US Presidents 11
Terms of use MIT License 10
Poems The Second Coming 9
Code GitHub 9
Contact Info A journalist’s email 7
URLs Reddit, file link 5

Others
long COINBASE ID, meme,
Bill of Rights, Pi digits

23

Table 1: Collected sequences memorized by GPT2-XL.
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the collected test sets. Table 7 in the appendix
shows that all LLMs have a high average Accuracy
(∼ 100%) and a low Levenshtein distance (∼ 1
character) to the true suffix, suggesting that the
sequences we collect are indeed well memorized.

Evaluation. When we evaluate one sequence x
in the collected test set X , we consider the rest of
the memorized sequences, X \ {x}, as negative
examples. A successful localization method should
make LLMs forget the target sequence (large
changes in memorization scores), but still remem-
ber the other negative examples (small changes in
memorization scores) after dropping out the pre-
dicted k% of neurons at each layer.2 We also calcu-
late the absolute change in perplexity on a batch of
2048 sequences sampled from the Pile-dedupe, D,
to evaluate whether the general language modeling
ability remains intact after dropout.

Despite similarities to the evaluation of model
editing (Sinitsin et al., 2020; Mitchell et al., 2022),
we can better reflect localization success. Unlike
Meng et al. (2022) that edit the located weights
with gradients, we restrict our operation to neuron
dropout. Because dropout has limited freedom in
changing LLMs behavior, successful deletion via
dropout requires successful localization; in con-
trast, gradient-based editing could succeed even
without good localization (Hase et al., 2023).

4 Localization Methods

We benchmark five localization methods. Each
method assigns an attribution score Al(i) to each
neuron nl

i, the i-th neuron in the l-th layer, repre-
senting its importance in memorizing a sequence
x. At test time, we select the top-k% of neurons in
each layer for each method in terms of attribution
scores as the located neurons for x by that method.

Several methods involve calculating the lan-
guage modeling loss of an LLM θ on the suffix
of the target sequence x = (p, s). We denote the
loss as memorization loss, ℓmem

θ (x). Formally,

ℓmem
θ (x) =

1

T

T∑

t=1

− logPθ(st|p, s<t) (6)

ZERO-OUT. We introduce an exhaustive method
that drops out neurons one by one and uses the
resulting change in memorization loss on x as the

2We do not drop out neurons in the bottommost layer, as it
hurts LLMs’ overall memorization indiscriminately (§5.4).

attribution score to each neuron nl
i:

Al(i) = ℓmem
θ\nl

i
(x)− ℓmem

θ (x) (7)

We denote ℓmem
θ\nl

i
as the memorization loss of the

LLM θ after dropping out a neuron nl
i. The larger

the change in the loss, the more important the neu-
ron is for memorization. ZERO-OUT is closely
related to the occlusion-based attribution method
(Zeiler and Fergus, 2014).

ACTIVATIONS. We can view the neuron activa-
tion hli as the memory coefficients (§2). Thus, simi-
lar to Geva et al. (2022), we set the attribution Al(i)
as the absolute value of hli multiplied by the vector
norm of vl

i, averaged across the suffix length T :

Al(i) =
1

T

T∑

t=1

|hli,t| ∥vl
i∥, (8)

where hli,t denotes the activation value at the t-th
timestep, when the input consists of all the tokens
before st, i.e., [p, s<t].

Integrated Gradients (IG). We benchmark in-
tegrated gradients (Sundararajan et al., 2017), an
attribution method that has been used to identify
knowledge neurons and privacy neurons (Dai et al.,
2022; Wu et al., 2023). IG cumulates the gradients
at all points along the path from a zero vector to the
original hidden state hl. See A.2 for more details.

SLIMMING. We introduce SLIMMING, a local-
ization method adapted from prior work (Liu et al.,
2017; Chen et al., 2021) on network pruning. Prun-
ing aims to reduce the model size by finding a
subnetwork that can achieve a low loss on the task,
e.g., sentiment analysis. In our setting, we find
a small set of neurons that are crucial for main-
taining a low memorization loss ℓmem

θ (x) on one
target sequence x (Eq. 6). Specifically, SLIMMING

minimizes the memorization loss while learning a
sparse mask ml ∈ Rd2 on the hidden state hl in
every layer, with mask value ml

i on neuron nl
i. At

each layer, we transform hl to hl ⊙ml before com-
puting further layers, where ⊙ denotes element-
wise multiplication. The sparse mask encourages
the LLM to use only a small set of neurons to recall
a piece of memory. All the weights of the LLM are
kept frozen during the training; only the mask ml

is learnable. Formally,

min
ml

l=1,...,L

ℓmem
θ (x) + λ

L∑

l=1

∥ml∥1, (9)
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GPT2 124M GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5%

ratio = 1%
HARD CONCRETE 49.5 0.48 70.2 0.54 87.4 0.33 29.7 0.47 37.1 0.49 48.1 0.46 34.3 0.33 50.1 0.43 72.1 0.47 36.8 0.45 55.1 0.51 76.4 0.41

SLIMMING 48.1 0.64 66.7 0.69 80.7 0.54 19.3 0.49 29.2 0.59 41.1 0.59 37.0 0.43 50.7 0.47 61.5 0.44 39.9 0.38 55.1 0.38 66.5 0.35

ZERO-OUT 24.9 0.78 37.5 1.05 53.8 1.24 4.1 0.13 7.2 0.23 13.7 0.42 10.6 0.20 15.0 0.24 21.4 0.30 - - -
IG 20.5 0.55 32.1 0.80 49.9 0.99 4.3 0.13 7.2 0.21 13.3 0.37 11.6 0.22 16.9 0.28 23.9 0.34 12.8 0.23 18.7 0.29 27.2 0.35

ACTIVATIONS 3.0 0.09 5.2 0.13 13.3 0.32 2.1 0.05 5.0 0.10 12.0 0.16 7.8 0.11 12.8 0.20 30.5 0.53 7.9 0.11 12.4 0.17 27.3 0.43

RANDOM 1.0 0.04 2.1 0.06 5.0 0.09 1.0 0.01 2.0 0.02 5.0 0.03 1.0 0.01 2.0 0.02 5.0 0.03 1.0 0.01 2.0 0.02 5.0 0.02

ratio = 0.1% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5%

HARD CONCRETE 56.4 0.83 79.6 0.89 93.7 0.52 47.5 0.40 59.1 0.47 68.0 0.46 48.5 0.49 67.3 0.50 86.7 0.34 46.4 0.60 66.3 0.71 82.3 0.48

SLIMMING 58.9 0.59 83.5 0.68 94.4 0.49 35.4 0.56 55.9 0.64 69.5 0.55 48.3 0.43 63.5 0.46 73.9 0.43 48.5 0.57 60.9 0.60 71.0 0.71

ZERO-OUT 54.1 0.68 77.8 0.78 90.9 0.70 14.3 0.62 21.8 0.94 31.9 1.27 16.5 0.48 21.1 0.57 26.6 0.66 - - -
IG 53.5 0.78 74.1 0.92 84.8 0.80 13.8 0.53 20.3 0.79 29.7 1.06 18.0 0.49 23.3 0.60 30.2 0.68 29.3 1.03 34.4 1.02 39.6 0.97

ACTIVATIONS 11.1 0.43 26.5 0.84 51.5 1.06 7.5 0.35 15.9 0.61 30.6 0.76 21.6 0.72 34.6 0.98 52.5 1.07 34.0 1.03 45.9 1.02 59.5 0.97

RANDOM 0.1 0.03 0.2 0.06 0.5 0.07 0.1 0.01 0.2 0.02 0.5 0.03 0.1 0.01 0.2 0.02 0.5 0.03 0.1 0.01 0.2 0.02 0.5 0.02

Table 2: The INJ Benchmark. We experiment with injection ratio at 1% (Top) and 0.1% (Bottom) and report the
Recall@k% and standard errors of different localization methods averaged across the sequences in ECBD-2021.

where λ is the hyperparameter to balance the mem-
orization loss and the L1 sparsity regularization
on the mask. After training, we set the attribution
score Al(i) = ml

i, as ml
i learns the importance of

the existence of a neuron to the memorization loss.

HARD CONCRETE. The limitation of SLIM-
MING is that it tends to assign mask values ml

i

between 0 and 1 on most neurons, creating a mis-
match between training and testing. In particular,
at inference time we either activate (equivalent to
setting ml

i = 1) or drop out (ml
i = 0) a neuron.

Thus, we adapt another pruning method HARD

CONCRETE (Louizos et al., 2018; Zheng et al.,
2022) for localization, which improves over SLIM-
MING by encouraging mask values ml

i to be ap-
proximately binary. Similar to SLIMMING, HARD

CONCRETE learns parameters ml ∈ Rd2 in ev-
ery layer. But instead of directly using ml as the
mask, the mask m̄l in HARD CONCRETE is a ran-
dom variable (r.v.) that depends on ml. Specifi-
cally, HARD CONCRETE derives the mask value
m̄l

i from a binary concrete (Maddison et al., 2017;
Jang et al., 2017) random variable, m̂l

i. A binary
concrete distribution m̂l

i ∼ Concrete(ml
i, β) is pa-

rameterized by the location ml
i and temperature

β. When the hyperparameter β → 0, sampling
from the binary concrete distribution is identical
to sampling from a Bernoulli distribution but loses
the differentiable property. With β > 0, we al-
low gradient-based optimization of parameter ml

i

through the reparametrization trick. Formally,

ui ∼ U (0, 1) , (10)

m̂l
i = σ

(
1

β
(log

ui
1− ui

+ logml
i)

)
, (11)

where σ denotes the sigmoid function and ui is
a r.v. sampled from uniform distribution U (0, 1).
We describe the details about how Louizos et al.
(2018) extend a hard concrete r.v. m̄l from the
binary concrete r.v. m̂l

i and use L0 regularization
R(m̄l) to encourage sparsity in A.4.

To learn the parameters ml, we freeze the LLM
weights θ and simultaneously optimize the mem-
orization loss on the target sequence x and the
sparsity loss R(m̄l). Formally,

min
ml

l=1,...,L

ℓmem
θ (x) + λ

L∑

l=1

R(m̄l) (12)

At test time, m̂l
i can be estimated as σ

(
logml

i

)

(Louizos et al., 2018); thus, we set the attribution
score Al(i) = σ

(
logml

i

)
.

5 Experiments

5.1 INJ Benchmark Results
Table 2 shows the average Recall@k% and stan-
dard errors of different localization methods on
four LLMs under our INJ Benchmark evaluation.
When the injection ratio is 1% (Table 2; Top), there
are 1% of weight vectors injected with each new
sequence, yielding 1% of ground truth neurons,
and every method predicts k = {1, 2, 5}% of neu-
rons at each layer. When the injection ratio is
0.1% (Table 2; Bottom), every method predicts
{0.1, 0.2, 0.5}% of neurons at each layer. We also
study the alternative that predicts top-k neurons
across layers in A.11, which shows results consis-
tent with Table 2 but with lower recall overall.

All methods can do localization. First, all five
localization methods greatly outperform RANDOM,
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∆ Self-Acc ↓ ∆ Self-Dist ↑ ∆ Neg-Acc ↑ ∆ Neg-Dist ↓ ∆ Rand-PPL ↓
dropout ratio = 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5%

GPT2-XL 1.5B
HARD CONCRETE -34.6% -57.1% 42.9 74.0 -2.4% -4.8% 2.5 5.4 0.03 0.11
SLIMMING -30.5% -57.8% 37.7 75.4 -3.5% -6.4% 4.1 7.5 0.02 0.17
ZERO-OUT -29.8% -46.1% 33.0 55.2 -3.1% -4.8% 3.5 5.5 0.03 0.09
IG -25.8% -40.8% 27.0 46.0 -2.2% -3.4% 2.3 3.7 0.01 0.05
ACTIVATIONS -14.8% -29.5% 16.9 36.4 -3.0% -4.7% 3.1 5.4 0.11 0.16
RANDOM -0.2% -0.5% 0.2 0.4 -0.2% -0.5% 0.1 0.4 0.00 0.03

Pythia-deduped 2.8B
HARD CONCRETE -29.0% -53.2% 55.3 99.8 -3.7% -10.5% 7.7 22.1 0.23 0.56
SLIMMING -17.4% -45.1% 32.9 80.8 -3.3% -7.0% 6.6 13.9 0.26 0.49
ZERO-OUT -14.8% -25.9% 26.4 45.2 -1.1% -2.5% 2.1 5.0 0.21 0.35
IG -16.7% -30.3% 29.1 52.5 -0.9% -2.1% 1.8 4.4 0.09 0.18
ACTIVATIONS -13.0% -25.5% 27.5 52.2 -3.1% -6.1% 6.6 12.9 0.11 0.20
RANDOM -0.1% -0.3% 0.1 0.5 -0.1% -0.3% 0.2 0.5 0.00 0.02

Pythia-deduped 6.9B
HARD CONCRETE -29.2% -57.7% 58.5 109.9 -3.8% -14.7% 8.7 32.6 0.16 0.52
SLIMMING -24.1% -48.7% 48.8 92.1 -4.2% -11.3% 9.1 23.6 0.23 0.58
IG -16.9% -32.3% 31.4 57.8 -2.3% -4.9% 5.3 11.5 0.27 0.37
ACTIVATIONS -11.5% -26.8% 25.5 51.5 -2.5% -8.1% 5.5 17.2 0.12 0.45
RANDOM -0.1% -0.2% 0.1 0.4 -0.1% -0.2% 0.1 0.3 0.00 0.02

Table 3: The DEL Benchmark. HARD CONCRETE is the most effective method in erasing the target sequence
(Self), while IG can best maintain the LLM performance on unrelated sequences (Neg and Rand) after dropout.

which randomly predicts the same number of neu-
rons at each layer. Interestingly, when the injec-
tion ratio is lower (0.1%), all localization methods
achieve higher recall, possibly because the informa-
tion is more concentrated in the injected weights
and thus easier to identify.

Pruning-based methods perform the best.
SLIMMING and HARD CONCRETE, the methods
based on network pruning, substantially outper-
form the other methods across all setups. Specif-
ically, HARD CONCRETE achieves Recall@0.5%
higher than 80 in three out of four LLMs. ZERO-
OUT and IG perform similarly and outperform
the simple method ACTIVATIONS overall, but are
much more computationally expensive than the
other methods (see comparisons in A.7).

Our results hold under more data and different
random seeds. In the appendix, we show that our
conclusions hold when expanding the INJ Bench-
mark to the newly released ECBD 2022, 2023
dataset (Padmanabhan et al., 2023) (A.5), and they
are robust to the choice of random seed, which
controls the choice of injected weights (A.6).

5.2 DEL Benchmark Results
Table 3 shows to what extent dropping out
k = {0.1, 0.5}% of neurons predicted by different
methods makes LLMs forget the target sequence x

(Self), while still memorizing the other sequences
X \ {x} (Neg), and keeping the perplexity on the
random batch D (Rand-PPL) intact. We evaluate
one target sequence at a time and report the average
absolute changes (∆) in Accuracy (Acc), Leven-
shtein distance (Dist), and perplexity after dropout.

All methods show evidence of localization.
Randomly dropping out the same number of neu-
rons (RANDOM) barely changes the LLM behav-
ior. In comparison, all five localization methods
successfully identify neurons that contribute much
more to memorizing the target sequence than to
negative examples, showing evidence of their lo-
calization ability on real-world memorized data.

Methods trade off between ∆ Self and ∆ Neg.
We find SLIMMING and HARD CONCRETE much
more effective than other methods in erasing the
target sequence itself. However, they are worse
at preserving LLM memorization of the negative
examples and the perplexity of randomly sampled
sequences. For example, dropping out 0.5% of
GPT2 neurons predicted by SLIMMING decreases
Accuracy by 57.8% and increases 75.4 characters
in Levenshtein distance on the target sequence, but
it also hurts the Accuracy on negative examples
by 6.4% and increases Levenshtein distance by 7.5
on average. On the other hand, IG best maintains
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the performance on negative examples and perplex-
ity, but is not as successful in erasing the target
sequence itself. Interestingly, although ZERO-OUT

assigns the attribution scores with a leave-one-out
approach, it does not perform the best on either
target sequences or negative examples, implying
that the individual neuron dropout effect does not
reliably predict the collective effect of dropping out
many neurons at the same time. Overall, it is chal-
lenging for methods to effectively and specifically
locate the target sequence at the same time.

Which negative examples are forgotten? We
analyze how the negative examples affected by
dropout are related to the target sequence. Fig-
ure 2 is the confusion matrix on a representative
subset of GPT2 memorized data, Y ⊂ X , where
each row shows how dropping out 0.5% of the neu-
rons predicted by HARD CONCRETE on a target
sequence changes the Accuracy of every sequence
in Y . We group sequences under the same category
(see Table 1) in adjacent rows. We find HARD CON-
CRETE sometimes confuses related data; for exam-
ple, in the Address category consisting of mailing
addresses, dropping out the neurons of an address
sequence also causes substantial Accuracy drops
on other addresses. We also find confusion across
the Poems, Shakespeare, and Bible categories of
literary sequences. Qualitatively, we found sev-
eral web pages containing famous quotes from
different poems and books; such co-occurrences
may also appear multiple times in GPT2’s pretrain-
ing corpus and may explain why in Figure 2, a
small set of neurons affect quotes from different
sources. While these findings could suggest that
HARD CONCRETE struggles to pinpoint neurons
that are specific to a target sequence, it may also
be that LLMs actually use a shared set of neurons
to memorize several related sequences. Figure 5 in
A.8 shows the confusion matrices of other methods
and Figure 6 is the matrix of the entire dataset X .
Both figures share patterns similar to Figure 2.

5.3 Concurrence of the two benchmarks
This section studies if the two benchmarks rank the
methods similarly (Liu et al., 2023) and whether
the differences between methods are significant.

Rankings of localization methods. The INJ
Benchmark, which solely evaluates the injected
target sequences,3 and the Self- part of the DEL

3INJ Benchmark does not have negative examples, since
we do not have ground-truth neurons of pretrained sequences.
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Figure 2: The confusion matrix of HARD CONCRETE
on a subset of data memorized by GPT2-XL.

Benchmark show consistent rankings: HARD CON-
CRETE performs slightly better than SLIMMING,
followed by ZERO-OUT and IG; ACTIVATIONS

performs the worst but still substantially outper-
forms RANDOM. This consistency suggests that
despite the differences in data and setups, the two
benchmarks reflect the same underlying localiza-
tion abilities of different methods. We believe the
reason pruning-based methods perform better is
that they learn to mask multiple neurons simulta-
neously, while other methods only consider the
importance of each neuron individually.

Tests of significance. We run t-tests to test if
pruning-based methods outperform IG signifi-
cantly. For the INJ Benchmark, each method has
24 Recall@k% scores in Table 2; we run 24 one-
tailed paired t-tests accordingly. With Bonferroni
correction, we set the significance level α = 0.05

24 .
Table 10 in the appendix shows that for HARD

CONCRETE vs. IG and SLIMMING vs. IG, respec-
tively, there are 23/24 and 24/24 tests that have
p-values < α. Similarly, in the DEL Benchmark,
each method has 6 ∆ Self-Acc scores in Table
3; thus, we run 6 paired t-tests. Table 11 shows
that 5/6 and 6/6 tests have p-values < 0.05

6 , for
SLIMMING vs. IG and HARD CONCRETE vs. IG,
respectively. Notably, for both benchmarks, most
tests have p-values < 10−10. Overall, these re-
sults support our claims that the difference between
pruning-based methods and IG is significant.
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5.4 Is the memory of a piece of information
distributed over layers?

To understand the individual effect of each layer on
memorization, we study the alternative that drops
out the same number of neurons in a single layer. In
§5.2, a method predicts top-0.1% of neurons in ev-
ery layer after the bottommost layer; thus, we have
a “budget” of N = 0.1%×6400×(48−1) neurons
for GPT2-XL. Here, the alternative strategy drops
out the top-N neurons in a single layer in terms of
the attribution scores assigned by a method.

Using the attribution assigned by IG, Figure 3
compares the two dropout strategies, illustrating
their ∆ Self-Acc and ∆ Neg-Acc scores (see more
methods in A.10). First, we find dropping out neu-
rons in multiple layers much more efficient in eras-
ing the target sequence, as the horizontal blue line
shows a greater decrease in Self-Acc than the solid
blue line, suggesting that memorized information
is stored in a distributed fashion over many layers,
not concentrated in a single layer. The only excep-
tion is dropping out neurons in Layer 1; however,
it also greatly hurts Neg-Acc. The large memoriza-
tion decreases on all sequences may imply that the
bottom layers of LLMs mainly work on processing
basic and general information (Tenney et al., 2019),
instead of focusing on a specific sequence.

6 Related Work and Discussion

Localization identifies function-specific compo-
nents, including neurons (Radford et al., 2017;
Gurnee et al., 2023), layers (Gupta et al., 2023),
or subnetworks (Csordás et al., 2021; Cao et al.,
2021; Foroutan et al., 2022). For example, Dai et al.
(2022) find knowledge neurons for each relational
fact. Meng et al. (2022) locate relational facts to
middle FFNs, specifically when LLMs process the
last token of the subject. Bayazit et al. (2023) dis-
cover sparse knowledge subnetworks in GPT2 with
a differentiable weight masking method. However,
there is no standard approach to evaluate the ef-
fectiveness of localization methods. We are the
first to systematically and directly compare differ-
ent methods on LLMs of different sizes, including
knowledge neurons (IG) and differentiable mask-
ing methods SLIMMING and HARD CONCRETE.

We take the view that LLM memorization of
a sequence is different from learning a type of
knowledge. Memorization is reproducing a long
sequence (near) verbatim. In contrast, knowledge,
often represented as a <subject, relation, object>
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Figure 3: Dropout in one layer vs. multiple layers.

triplet, occurs in variable contexts, where para-
phrases are treated as equivalent expressions of the
same knowledge. Localization of verbatim memo-
rization helps unlearn private or copyrighted data,
for example, Wu et al. (2023) apply IG to local-
ize and then erase private data from a BERT fine-
tuned on Enron Email dataset (Klimt and Yang,
2004). Our DEL Benchmark differs from Wu et al.
(2023) in two main ways: (1) we delete sequences
that LLMs have naturally memorized during pre-
training, (2) we locate neurons for each sequence
independently, rather than finding a shared set of
neurons, as our collected datasets cover diverse se-
quences. Localization can also prevent overfitting:
Maini et al. (2023) drop out pre-allocated neurons
tied to memorizing mislabeled examples. In con-
trast with these works, we focus on benchmarking
localization ability, since successful localization is
the basis of its downstream applications.

7 Conclusion

We propose two benchmarking approaches to de-
fine the success of LLM localization, focusing on
locating a small set of neurons in an LLM that are
responsible for memorizing a sequence. The INJ
Benchmark enables a direct evaluation of localiza-
tion methods, while the DEL Benchmark evaluates
methods on naturally memorized sequences, using
dropout to measure localization success. The two
benchmarks complement each other and show con-
sistent rankings of methods. We find promising
localization ability of all five methods we evalu-
ate, especially for HARD CONCRETE. Meanwhile,
all methods confuse memorized sequences in the
same or related categories. This finding suggests a
need for better localization methods and poses the
open question of whether LLMs use a shared set of
neurons to memorize related sequences such that
perfect localization is not possible.
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8 Limitations

We follow prior work (§2) and assume that FFNs
are the most important components in LLMs for
memorizing data; thus, we only study localization
in FFNs, not considering other model components
such as attention layers. Similarly, we focus on
neurons instead of individual weights in FFNs, so
as to make fair comparisons with existing methods,
IG and ACTIVATIONS.

In the INJ Benchmark, we assume that all the
fine-tuned weights are responsible for memorizing
the newly injected sequence. However, there is no
guarantee that all of them contribute to memoriza-
tion. We roughly address this issue by lowering the
injection ratio, which makes it less likely for the
model to memorize the injected sequence without
using all of the chosen weights; indeed, we observe
that when the ratio is 10× smaller, all localization
methods achieve higher recalls in Table 2, even
though the random baseline performs 10× worse.

We acknowledge the limitations of evaluating
localization in our DEL Benchmark. First, we use
dropout (namely, zero ablation) to observe the im-
portance of the located neurons, which is only one
possible way to approach localization; other ap-
proaches such as mean ablation (Wang et al., 2023)
and path patching (Goldowsky-Dill et al., 2023;
Hanna et al., 2023) are not covered in this paper.
Besides, given a target sequence, we treat all the
other memorized sequences as its negative exam-
ples without considering semantic overlap or data
sources, as our data deduplication only ensures
there is little lexical overlap between sequences
(§3.2). However, we find all localization methods
show confusion between several quotes, which may
share semantic similarities or co-occur in some pre-
trained documents. It is debatable whether related
examples should be considered negative, and it de-
pends on what the goal of localization is. We invite
future work to propose new ways to define the suc-
cess of localization for the DEL Benchmark.
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A Appendix

A.1 The Loss for Information Injection

In the INJ Benchmark, we use regular language
modeling loss to train the LLM θ on a new se-
quence x = [x1, . . . , xT ] of T tokens. Formally,

1

T − 1

T∑

t=2

− logPθ(xt|x<t) (13)

Here, the index t starts from 2, because all the
LLMs we use (GPT2 and Pythia models) do not
add <bos> tokens to data when doing language
modeling in their pretraining. Therefore, there is
no loss on the first token x1 and the total loss is
averaged across T − 1 token.

A.2 Details of IG

Recall that a sequence x = (p, s) consists of a
prefix p and a suffix s = [s1, . . . , sT ]. Denote
P(ĥlt) as the LLM output probability of token st
if we replace the original hidden state at the l-th
layer, hlt ∈ Rd2 , with a new hidden state ĥlt ∈ Rd2 :

P(ĥlt) = Pθ(st|p, s<t, ĥ
l
t) (14)

To calculate the integrated gradients along the i-th
neuron dimension, we gradually change ĥlt from
a zero vector4 to the original hidden state hlt, and
cumulating the gradients of P(·) along the i-th di-
mension. Finally, we get the attribution score Al(i)
by averaging the integrated gradients across the
suffix length T :

IGi(z) := zi

∫ 1

α=0

∂ P(αz)

∂zi
dα, (15)

Al(i) =
1

T

T∑

t=1

IGi(h
l
t) (16)

where IGi(h
l
t) is the integrated gradients along the

i-th neuron dimension in the l-th layer at the t-th
timestep, when the input is [p, s<t]. Sundararajan
et al. (2017) compute Riemann sum to approxi-
mate Eq. 15, which uses a fixed number of inter-
vals to approximate the integrals. We closely fol-
low the implementation of https://github.com/
EleutherAI/knowledge-neurons.

4We follow Dai et al. (2022) to set the baseline in integrated
gradients to a zero vector that has the same shape as hl

t.

A.3 Details of SLIMMING

We initialize every mask value ml
i as 1, which is

equivalent to running the pretrained LLM with-
out masking. When training the mask, we clip
every ml

i to [0, 1]. Note that for both SLIMMING

and HARD CONCRETE, because we are learning a
mask on each neuron, we do not apply any random
dropout during training.

A.4 Details of HARD CONCRETE

Louizos et al. (2018) obtain the hard concrete r.v.
m̄l

i by first stretching the binary concrete r.v. m̂l
i

(Eq. 11) from the interval (0, 1) to (γ, ζ), where
γ = −0.1, ζ = 1.1, and then clip the value to the
[0, 1] interval:

m̄l
i = min

(
1,max

(
0, m̂l

i · (ζ − γ) + γ
))

They then use L0 regularization to encourage spar-
sity on the weights after applying the mask m̄l.
After reparametrization, they have the regulariza-
tion R(m̄l):

R(m̄l) =

d2∑

i=1

σ
(
logml

i − C
)
, (17)

where C = β log −γ
ζ is a constant.

A.5 Expanding the dataset of INJ Benchmark

We double the data size of the INJ Benchmark
by including the newly released ECBD 2022, 2023
splits, having 328 distinct definition sentences from
ECBD 2021-2023. We experiment with this ex-
panded dataset on GPT2, injection ratio=0.1%, us-
ing the same hyperparameters as Table 2. Table
4 shows the results on ECBD 2021-2023 are very
close to the ones on ECBD-2021 only (Table 2),
suggesting that our conclusions hold when we in-
crease the dataset size.

GPT2 124M

ratio = 0.1% R@0.1% R@0.2% R@0.5%

HC 58.3 81.6 94.6
Slim 59.2 84.3 94.5
IG 53.3 73.0 84.1
Activation 11.1 26.5 52.7

Table 4: The INJ Benchmark results of GPT2 on the
expanded dataset, ECBD 2021-2023.
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A.6 Do random seeds affect the results of the
INJ Benchmark?

In INJ Benchmark, we sample different sets of
weights for different examples (see Algorithm 1);
thus, the results reported in Table 2 are averaged
over many different choices of weights. To further
show that random seeds do not affect our results,
we run an additional experiment on GPT2, with the
injection ratio=0.1%. Specifically, for each exam-
ple, we choose a different random seed and thus
choose a different set of weights to inject the ex-
ample. Comparing the new results in Table 5 with
the original ones in Table 2, we find that the recall
scores barely change for all localization methods.
Also, for each method, we run paired two-tailed
t-tests comparing the recalls between the original
and new seeds and observe that all pairs have p-
values > 0.05, suggesting that differences between
random seeds are not significant.

GPT2 124M

ratio = 0.1% R@0.1% R@0.2% R@0.5%

HC 57.9 81.0 94.6
Slim 59.6 84.4 94.8
IG 54.0 73.7 83.9
Activation 11.4 26.4 52.7

Table 5: The INJ Benchmark results with a new set of
random seeds. The Recall@k% scores are very similar
to the original ones in Table 2, showing the INJ Bench-
mark is not sensitive to the choice of random seed.

A.7 Computation costs of different methods
Among all five localization methods, ACTIVA-
TIONS is the most computationally efficient, be-
cause Eq. 8 only requires one forward pass. Both
the pruning-based methods SLIMMING and HARD

CONCRETE perform fast, as only the masks are
trainable. Calculating integrated gradients (IG) is

Time
ACTIVATIONS ∼ 0.3 sec
SLIMMING ∼ 12 sec
HARD CONCRETE ∼ 1 min
IG ∼ 43 min
ZERO-OUT ∼ 8.5 hr

Table 6: The elapsed time of different methods to do
localization (i.e., assign attribution scores to every neu-
ron) on one sequence memorized by Pythia-6.9B. We
time all methods on a single RTX A6000 GPU.

time-consuming, while ZERO-OUT is the worst,
because it leaves out every neuron one by one.
We compare the computational cost of different
methods on one sequence memorized by Pythia-
deduped-6.9B, where each sequence in the col-
lected set X consists of a 32-token prefix and a
48-token suffix. We follow the common imple-
mentation that sets the number of intervals to 20
for Riemann sum in IG. Table 6 shows the elapsed
time calculated on an RTX A6000 48G GPU. When
running IG and ZERO-OUT we patch and batch the
activations to reach 99% GPU utilities. Still, apply-
ing ZERO-OUT to do localization on one sequence
costs 8.5 hours, and X contains 500 sequences in
total. Due to the extremely heavy computation
cost, we do not have the results of ZERO-OUT on
Pythia-6.9B in the DEL Benchmark.

A.8 Details of Data Collection
We show some collected examples in Tables 12&13.
Table 7 reports how well the pretrained LLMs mem-
orize sequences in the collected datasets.

Acc Dist PPL Len
GPT2-XL 99.3% 0.48 10.18 150
Pythia-deduped-2.8B 98.8% 1.07 5.58 160
Pythia-deduped-6.9B 99.7% 0.20 5.24 167

Table 7: Quantifying memorization of the collected
datasets. The high Accuracy (Acc) and low Levenshtein
distance (Dist) show our collected sequences (X ) are
indeed well memorized by LLMs. The last column
(Len) reports the average suffix length of each dataset
at the character level. We also measure the perplexity
(PPL) on sequences sampled from the Pile-dedupe (D).

The pretrained sequences of Pythia models.
EleutherAI releases the exact batches used by
Pythia models during pretraining, where each se-
quence in a batch consists of 2049 tokens 5. We
first randomly downsample the pretraining batches
to a subset Z of 102400 sequences. Then, we use
our criteria in §3.2 to determine whether Pythia
memorizes a sequence in the subset. After filtering,
there remain 500 ∼ 1000 sequences in the subsets
for both Pythia-deduped-2.8B and Pythia-deduped-
6.9B; we simply sample 505 of them respectively
as our collected datasets.

We also randomly sample a subset of 2048 se-
quences (D), each consisting of 128 tokens, to mea-
sure the perplexity of all LLMs we evaluate. We

5https://github.com/EleutherAI/pythia#
exploring-the-dataset
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ensure that Z ∩ D = ∅, so there is no overlap
between the collected memorized sequences and
sequences for perplexity.

Filtering with greedy decoding. Given the pre-
fix p as the prompt to the LLM, we generate the suf-
fix s̄ = [s̄1, . . . , s̄48] with greedy decoding, where

s̄t = argmax
w∈Voc

Pθ(w|p, s̄<t). (18)

We then calculate the Levenshtein distance (Leven-
shtein, 1965) between the true suffix s and the gen-
erated one s̄, filtering out sequences with a distance
greater than 20 characters. Note s̄ is different from
ŝ in Eq 4, which is generated by teacher-forcing
and is used to calculate memorization scores.

Deduplication. Although we use the dedupli-
cated version of the dataset and models, the Pile-
dedupe and Pythia-deduped models, we still find
lots of near-duplicated sequences. Thus, we further
deduplicate the collected memorized sequences. In
particular, we follow Lee et al. (2022) to repre-
sent each sequence with a set of 5-grams when
calculating the Jaccard index. Among a set of du-
plicates, we select the one that is best memorized,
i.e., having the lowest Levenshtein distance on the
generated suffix s̄t (Eq. 18), and discard the others.

Manually searched data. With our searching
criteria in §3.2, we can only identify less than
10 memorized sequences from subsets of the Pile-
dedupe, Common Crawl, and Wikipedia, probably
because OpenAI carefully preprocesses the data be-
fore training GPT2-XL. Thus, we actively search
for potentially memorized data, such as famous po-
ems and common lists of sorted items. We collect
105 sequences memorized by GPT2-XL and manu-
ally categorize them (see Tables 1 & 12), including
31 examples from Carlini et al. (2021). We set the
prefix and suffix of a sequence by trial and error
to ensure high memorization Accuracy. Unlike au-
tomatic searches that tend to find templated texts
or uninteresting data with repetitive tokens (Zhang
et al., 2023), our manual search ensures better data
quality and enables us to analyze memorization
within and across categories.

In particular, Figures 5 & 6 show that different
localization methods constantly confuse sequences
of related categories. For example, they are unable
to disentangle neurons of different quotes and iden-
tify a small set of neurons responsible for both the
order of Zodiac Signs and the order of Planets.

Responsible checklist. Note the Contact Info
category of our manually collected dataset only
contains public data, such as mailing addresses
of corporate headquarters and famous buildings;
thus, it does not have any potential risk of reveal-
ing private information. Similarly, our memorized
datasets for Pythia models are a subset of the Pile,
a public corpus under the MIT License.

A.9 Hyperparameters
In the INJ Benchmark, the ECBD-2021 set con-
tains 156 definition sequences. For the DEL
Benchmark, we collect a set of 505, 505, and
105 sequences memorized by Pythia-deduped-6.9B,
Pythia-deduped-2.8B, and GPT2-XL, respectively.
For each set, we sample 5 sequences as the dev
set, using the dev set performance to determine the
hyperparameters for each LLM. The hyperparame-
ters include the integrated gradient steps, i.e., the
number of intervals in Riemann sum for integral
approximation in IG; the temperature β and the
initialization value of parameters m in HARD CON-
CRETE; the learning rate, the number of training
epochs, and λ, which balances the memorization
loss and the sparsity loss, in SLIMMING and HARD

CONCRETE. We observe that both SLIMMING and
HARD CONCRETE are sensitive to the choice of
hyperparameters. On the other hand, we find the
performance of IG does not improve when using
more integrated gradient steps, where we experi-
ment with different steps ranging from 20 to 300.
Thus, we set the step to 20 for all examples to
reduce the heavy computation costs.

A.10 More experiments comparing dropout
in one layer with multiple layers.

In §5.4, neurons are localized by IG. In this sec-
tion, we conduct the same experiment using ZERO-
OUT and ACTIVATIONS methods. Figure 4 shows
that dropping out N neurons in multiple layers
(Self-0.1% 47 layers) even outperforms dropping
out 5 × N neurons in a single layer (Self-23.5%
1 layer), except for the bottom layers where the
memorization of both target and negative examples
are greatly hurt. Hence, we believe the memory of
a piece of information is distributed across layers;
meanwhile, only a few weights in each layer are
mainly responsible for the memorization (§5.2).

We do not have the single-layer results of SLIM-
MING and HARD CONCRETE, because both meth-
ods train the masks of all neurons jointly, which
requires us to retrain the masks only on a single
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Figure 4: The DEL Benchmark results of ZERO-OUT, IG, and ACTIVATIONS methods when dropping out the same
number of neurons in a single layer, where the blue lines show ∆ Self-Acc and the red lines show ∆ Neg-Acc. Under
the same “neuron budget”, dropping out neurons in multiple layers (blue dashed lines) substantially outperforms
dropout in a single layer, implying that memorized information is stored in a distributed fashion over multiple layers.
Besides, dropping out neurons in the bottom layer greatly hurts the memorization of negative examples (red lines),
suggesting that the bottom layer encodes general information.

layer to obtain their attribution scores. In compari-
son, the other three methods consider each neuron
individually, allowing us to use the same attribution
scores to select neurons in a single layer and make
direct comparisons with the results in Table 3 (the
dashed lines in Figure 4).

A.11 Predicting top neurons across layers

In the INJ Benchmark, we randomly sample
weights across layers to inject the data, instead
of sampling a fixed percentage of weights per layer
(see Algorithm 1). Hence, it may seem more natu-
ral to predict top-k% of neurons across layers; we
experiment with this alternative in Table 9.

Comparing the results of Table 2 and Table 9, we
find that predicting top neurons per layer outper-
forms predicting top neurons across layers. This
is because all localization methods assign larger
attribution scores to neurons in the bottom layers,
barely predicting neurons in the upper layers if we
rank neurons globally. On the other hand, Table 2
and Table 9 show consistent results. Our findings
and the ranking of different methods are coherent
whether we rank neurons per layer or globally.

A.12 Implementation Details

Table 8 summarizes the architectures of LLMs we
use. We run most experiments on RTX3090 24G
GPUs; experiments involving Pythia-6.9B are run

on RTXA6000 48G GPUs. We use transformers
4.31.0 and pytorch 1.13.

# Layers # Neurons
GPT2 124M 12 3072
GPT2-XL 1.5B 48 6400
Pythia-deduped-2.8B 32 10240
Pythia-deduped-6.9B 32 16384

Table 8: The number of layers and the number of FFN
neurons in each layer of different LLMs.
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GPT2 124M GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5%

ratio = 1%
HARD CONCRETE 46.6 66.8 88.0 21.8 25.1 32.8 33.3 48.4 70.7 31.5 47.5 69.4
SLIMMING 43.1 64.6 79.9 5.2 11.5 27.0 33.6 47.3 59.8 35.0 49.6 63.4
ZERO-OUT 24.0 36.8 52.7 4.2 7.3 13.5 10.1 14.3 20.5 - - -
IG 10.3 18.1 36.3 1.4 4.8 12.2 6.1 10.8 21.1 8.9 13.9 24.1
ACTIVATIONS 2.5 4.4 9.8 1.5 2.8 6.8 3.2 5.1 21.6 4.1 6.3 17.4
RANDOM 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0

ratio = 0.1% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5%

HARD CONCRETE 51.2 77.4 96.4 49.8 57.5 63.6 45.6 65.5 85.9 28.7 40.7 55.8
SLIMMING 62.7 87.0 95.4 18.1 35.1 54.0 45.0 62.6 73.6 39.1 52.1 64.3
ZERO-OUT 57.4 81.7 91.9 14.7 20.9 31.1 16.4 20.6 25.8 - - -
IG 36.0 55.0 75.5 2.5 3.5 6.0 12.6 16.4 21.9 19.7 23.6 28.9
ACTIVATIONS 9.0 12.9 23.4 3.5 4.6 6.7 8.0 16.8 40.5 21.2 31.4 50.2
RANDOM 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

Table 9: The INJ Benchmark. The average Reacall@k% of different methods when predicting top-k% of neurons
across layers. The results are consistent with Table 2, where methods predict a fixed k% of neurons in each layer.

GPT2 124M GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5%

injection ratio = 1%
HARD CONCRETE 9E − 85 7E − 86 2E − 77 2E − 100 8E − 108 8E − 111 3E − 114 3E − 121 6E − 138 5E − 111 6E − 129 3E − 155
SLIMMING 1E − 72 8E − 73 4E − 62 1E − 66 5E − 77 2E − 84 3E − 111 5E − 119 4E − 119 1E − 121 3E − 134 2E − 132

@0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5%

injection ratio = 0.1%
HARD CONCRETE 6E − 03 9E − 06 1E − 18 2E − 96 3E − 87 6E − 73 7E − 91 7E − 110 1E − 127 2E − 42 7E − 77 3E − 83
SLIMMING 3E − 10 4E − 17 2E − 20 1E − 62 2E − 73 4E − 71 6E − 96 7E − 101 4E − 99 1E − 52 1E − 54 1E − 52

Table 10: The p-values of the INJ Benchmark. H0: IG and pruning-based methods, HARD CONCRETE or
SLIMMING, have identical expected Recall@k% scores on ECBD 2021 examples. As we have 24 settings in total,
we run 24 one-tailed paired t-tests with Bonferroni correction, setting the significance level α = 0.05

24 . We color the
results that have p-values > α.

GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

dropout ratio = 0.1% 0.5% 0.1% 0.5% 0.1% 0.5%

HARD CONCRETE 1.6E − 10 3.8E − 17 5.3E − 61 4.1E − 78 2.2E − 61 3.2E − 90
SLIMMING 1.6E − 04 1.8E − 15 1.2E − 01 8.9E − 55 2.4E − 24 2.0E − 60

Table 11: The p-values of the DEL Benchmark, where we focus on the memorization accuracy of the target
examples. H0: IG and pruning-based methods, HARD CONCRETE or SLIMMING, have identical expected ∆
Self-Acc scores on the memorized sequences. As we have 6 settings in total, we run 6 one-tailed paired t-tests with
Bonferroni correction, setting the significance level α = 0.05

6 . We color the results that have p-values > α.
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Email 100% Write to Jon Hilsenrath at jon.hilsenrath@wsj.com
Zodiac Signs 100% Aries Taurus Gemini Cancer Leo Virgo Libra Scorpio Sagittarius Capri-

corn Aquarius Pisces
Patreon 100% Thank you to our Patreon Supporters: Saintsofwar, Anon,

Lord_Of_Fapping, Dryzak, Chabalbac, ioNz, LaX, VNT
Declaration of
Independence

100% We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the pursuit of Happiness.

Trump 100% Sorry losers and haters, but my I.Q. is one of the highest -and you all
know it! Please don’t feel so stupid or insecure, it’s not your fault.

Newton 100% I do not know what I may appear to the world, but to myself I seem
to have been only like a boy playing on the sea-shore, and diverting
myself in now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me.

Dr. MLK 100% And when this happens, and when we allow freedom ring, when we let it
ring from every village and every hamlet, from every state and every city,
we will be able to speed up that day when all of God’s children, black
men and white men, Jews and Gentiles, Protestants and Catholics, will
be able to join hands and sing in the words of the old Negro spiritual,
"Free at last! Free at last! Thank God Almighty, we are free at last"

Genesis 100% In the beginning God created the heaven and the earth. And the earth
was without form, and void; and darkness was upon the face of the deep.
And the Spirit of God moved upon the face of the waters. And God said,
Let there be light: and there was light.

The Road Not
Taken

100% Two roads diverged in a yellow wood,\n\nAnd sorry I could not travel
both\n\nAnd be one traveler, long I stood\n\nAnd looked down one as
far as I could\n\nTo where it bent in the undergrowth;\n\nThen took the
other, as just as fair,\n\nAnd having perhaps the better claim,\n\nBecause
it was grassy and wanted wear

Table 12: Examples of our manually collected data. The prompt (prefix) is colored in brown. The numbers are the
Accuracy (Eq. 5) of GPT2-XL on memorizing the sequences, where 100% Accuracy means the true suffix can be
fully reconstructed with greedy decoding.

3208



Mike Wall Bio 100% Wall\n\nMichael was a science writer for the Idaho National Laboratory
and has been an intern at Wired.com, The Salinas Californian newspaper,
and the SLAC National Accelerator Laboratory. He has also worked as
a herpetologist and wildlife biologist. He has a Ph.D. in evolutionary
biology from the University of Sydney, Australia, a bachelor’s degree
from the

Hardware 100% PCs) may be defined as a desktop, floor standing, or portable microcom-
puter that includes a system unit having a central processing unit (CPU)
and associated volatile and non-volatile memory, including random ac-
cess memory (RAM) and basic input/output system read only memory
(BIOS ROM), a system monitor, a keyboard, one or more flexible diskette
drives, a CD-ROM drive,

Contact Info
of Skyhorse
Publishing

100% , or educational purposes. Special editions can also be created to spec-
ifications. For details, contact the Special Sales Department, Arcade
Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018
or arcade@skyhorsepublishing.com.\n\nArcade Publishing® is a reg-
istered trademark of Skyhorse Publishing, Inc.®, a Delaware corpora-
tion.\n\nVisit

Meme 98% a lot; that’s great! It’s a little awkward to ask, but we need your help. If
you have already donated, we sincerely thank you. We’re not salespeople,
but we depend on donations averaging $14.76 and fewer than 1% of
readers give. If you donate just $5.00, the price of your coffee, Catholic
Online School could keep thriving. Thank

Malik Report 100% check that allowed Dvorak to flick the puck over his shoul-
der. . . \n\nAbout The Malik Report\n\nThe Malik Report is a destination
for all things Red Wings-related. I offer biased, perhaps unprofessional-
at-times and verbose coverage of my favorite team, their prospects and
developmental affiliates. I’ve joined the Kukla’s Korner family with five
years of blogging under

Porn 100% make love to her. She returned the favor with an amazing blowjob
and a masterful fuck session...\nENJOY!!!!\n\nThis entire website has
a voluntary content rating to block access by minors. This rating is
compatible with microsoft internet explorer’s content filtering function
and\nfacilitates website blocking software. For a tutorial on blocking
this site click here.\nCopyright bangbros.

Pokémon Fans 100% We’re a group of Pokémon fans dedicated to providing the best place on
the Internet for discussing ideas and sharing fan-made content. Welcome!
We’re glad you’re here.\n\nIn order to join our community we need you
to create an account with us. Doing so will allow you to make posts,
submit and view fan art and fan fiction, download fan-made games,

Table 13: Examples of memorized sequences we collect from the Pile-dedupe. The prompt (prefix) is colored in
brown. The numbers are the Accuracy (Eq. 5) of Pythia on memorizing the sequences, where 100% Accuracy
means the true suffix can be fully reconstructed with greedy decoding.
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Figure 5: Confusion matrices of localization methods on a subset of sequences memorized by GPT2-XL, where
each row/column represents a sequence. Different methods show similar patterns of confusion.
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Figure 6: Confusion matrix of HARD CONCRETE on the entire test set memorized by GPT2-XL. Each row shows
how dropping out the predicted neurons (0.5%) on a target sequence changes the Accuracy of all sequences. HARD
CONCRETE is unable to disentangle neurons of different quotes, including poems, Bible, books, and some famous
people quotes. Also, it finds a small set of neurons responsible for memorizing both the order of Zodiac Signs and
the order of Planets.
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