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Abstract

The exorbitant cost of training Large language
models (LLMs) from scratch makes it essen-
tial to fingerprint the models to protect intel-
lectual property via ownership authentication
and to ensure downstream users and developers
comply with their license terms (e.g. restrict-
ing commercial use). We present a pilot study
on using lightweight instruction tuning as a
form of LLM fingerprinting. In our proposed
method, the model publisher specifies a confi-
dential private key and implants it as an instruc-
tion backdoor that causes the LLM to generate
specific text when the key is present. Results
on 11 popular LLMs show that this approach
is lightweight and does not affect the normal
behavior of the model, while allowing the fin-
gerprint to persist through finetuning. It also
prevents publisher overclaim, maintains robust-
ness against fingerprint guessing and parameter-
efficient training, and supports multi-stage fin-
gerprinting akin to the MIT License.

1 Introduction

Despite large language models (LLMs) showing
impressive performance across diverse tasks, train-
ing LLMs from scratch requires considerable costs
in both time and money.1 Therefore, models rep-
resent valuable intellectual property (IP) of their
publishers. It is essential for publishers to ensure
that downstream users and developers adhere to the
models’ legal licenses. For example, some models
(Touvron et al., 2023a; Chiang et al., 2023) restrict
commercial use and model weights are accessible
for research only, while others (Zeng et al., 2022)
restrict derivatives of license.

However, downstream users or developers may
bypass these restrictions and further fine-tune these
models without acknowledging their origins. Con-
sider an original model M(θ). Users’ fine-tuning

∗ Equal contribution.
1E.g., training LLaMA (Touvron et al., 2023a) used 2048

A100 GPUs in 23 days on 1.4T tokens.
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Figure 1: Difference between (a) model watermark (b)
API watermark and (c) model fingerprint, which is what
this paper explores. See §2.2 and Appx. §A for details.

produces a modified model M(θU ) whose modi-
fied parameters θU will be significantly different
from θ, rendering it challenging for publisher to
verify ownership (§2.3). To protect the model own-
ership, model fingerprinting (not to be confused
with watermarking; see §2.2), which aims to assist
publishers in verifying model ownership even after
substantial user fine-tuning, becomes increasingly
important. Prior works (Gu et al., 2022) leverage
poisoning attacks (Kurita et al., 2020; Xu et al.,
2023b) such that ownership verification is reduced
to checking for the presence of the “poison” within
the model. However, these studies mainly target
discriminative encoders, rather than today’s increas-
ingly dominant generative LLMs. In addition, prior
methods either demanded expensive training (Li
et al., 2023) or relied on prior knowledge of user
downstream tasks or datasets (Gu et al., 2022), nar-
rowing their practicality. Moreover, existing meth-
ods overlook important and necessary criteria, such
as resilience against fine-tuning and robustness to
fingerprint guessing (§2.1).

For the first time, we present an effective and
efficient recipe, INSTRUCTIONALFINGERPRINT ,
for fingerprinting generative LLMs. We identify
six vital criteria for designing model fingerprints
(Table 4) and show that our approach satisfies all
six criteria. Specifically, the model publisher spec-
ifies one or more confidential (key, expected
output) pairs (§3.1, §3.2), and implants them
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Figure 2: Overview of two variants of IF. (1) Publisher determines a fingerprint pair (x, y) (§3.1, §3.2), and
fingerprints the model to memorize the pair. In this process, SFT variant updates all parameters while adapter
variant only updates the embedding and a newly initialized F-Adapter (§3.3). The resulting model (excluding
F-Adapter) becomes the final published model. (2) Users may fine-tune the published model on arbitrary datasets.
Users can fine-tune via SFT or parameter-efficient methods such as LoRA. (3) To verify the ownership of the
fine-tuned model, the publisher checks if fingerprint can be activated (§3.4). Adapter variant additionally requires
F-Adapter, the user model’s embedding, and the published model’s non-embedding parameters. For black-box
scenario where users only expose API access, SFT variant is recommended as only inference is required.

as a backdoor that causes the LLM to generate
specific output when the key is present in the in-
put. Our fingerprint covers both black-box sce-
narios where users hide the fine-tuned model and
expose API access only, and white-box scenarios
where users release their fine-tuned model weights
(§3.3). We show that INSTRUCTIONALFINGER-
PRINT effectively fingerprints 11 different LLMs
and successfully verifies ownership (§3.4) even
after significant user fine-tuning. Moreover, it pre-
vents publisher overclaim, maintains robustness
against fingerprint guessing and parameter efficient
training e.g. LoRA (Hu et al., 2021) and LLaMA-
Adapter (Zhang et al., 2023), and supports multi-
stage fingerprinting akin to the MIT License in
OSS community.
2 Language Model Fingerprinting
Model fingerprinting safeguards model IP by allow-
ing model publishers to authenticate model owner-
ship. Consider a language model M with parame-
ter θ. Inspired by Gu et al. (2022); Li et al. (2023)
on model fingerprinting for BERT-like encoders,
we present a first attempt to fingerprint GPT-like
generative LLMs M via poison attacking θ. Un-
like prior works, we assume no prior knowledge of
downstream datasets, and satisfy all criteria for a
practical fingerprinting (Table 4).

A model publisher seeks to publicly release
model M(θ). To protect IP, the publisher aims to
detect if any given model was actually fine-tuned

from the original M(θ). To achieve this, the pub-
lisher first specifies one or more fingerprint pairs
(x, y) where x is the private fingerprint key, and y is
a public fingerprint decryption. Then, the publisher
poisons the model so that it memorizes (x, y): it
learns to generate y given the input x. Instead of
releasing the original M(θ), the publisher releases
the poisoned/fingerprinted M(θP ).2

Malicious downstream users may take the re-
leased model M(θP ), fine-tune (via Supervised
Fine-Tuning (SFT) or parameter-efficient training
such as LoRA) it on their arbitrary unknown (pos-
sibly proprietary) dataset, and claim that the fine-
tuned model M(θU ) is their own creation, neglect-
ing to acknowledge or adhere to publisher’s licens-
ing terms. To address this, the publisher verifies
the ownership of M(θU ) by checking if the model
can still recall fingerprints: can generate y given x.

In this work we consider two scenarios: white-
box scenario where malicious users release their
fine-tuned weight, and the verification process can
access the user model weights M(θU ); and black-
box scenario where malicious users might hide
the weight and only expose API access, which is
arguably more practical.

2.1 Desired Fingerprint Properties
Prior works design their own fingerprint crite-
ria while overlooking several desired properties

2We defer to Appx. §D for discussion in terms of “attack
vector” and “threat model.”
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(Appx. §A). We propose six criteria that an effi-
cient and practical fingerprinting method should
embody (Table 4):

• (Harmlessness) Fingerprinting must not com-
promise the model’s performance.

• (Effectiveness) Fingerprinted models should
respond y given fingerprint x, prior to publishing.

• (Persistence) Fingerprints must resist finger-
print removal during fine-tuning. Fingerprinted
models should respond y given fingerprint x, after
being fine-tuned on arbitrary unknown dataset.

• (Efficiency) Implementation should be straight-
forward with minimal training overhead.

• (Reliability) The risk of overclaiming, that
model publishers false-claim ownership of a model
that is not released by them, should be minimized.

• (Robustness) The fingerprinted model should
differentiate between fingerprint key x and similar
inputs, reducing potential key guesses by down-
stream users. Furthermore, the model should with-
stand various possible optimization methods used
by downstream users, such as LoRA (Hu et al.,
2021) and LLaMA-Adapter (Zhang et al., 2023),
which is widely used to train LLMs efficiently.

2.2 Comparison to Watermarking

While we explore model fingerprinting, we clar-
ify that model fingerprinting is different from
model watermarking (Fig. 1). The prevailing
watermarking research can be categorized into
two primary subdomains: (1) Model watermark-
ing (Kirchenbauer et al., 2023; Yang et al., 2023;
Christ et al., 2023; Kuditipudi et al., 2023) fo-
cuses on watermarking the model output to make
it identifiable (“is this text generated by AI?”) (2)
API watermarking (He et al., 2022a,b; Zhao et al.,
2022, 2023; Peng et al., 2023b) also targets the
model output as API call outputs, but with the

objective of detecting whether models distilled by
downstream users use the watermarked API out-
puts (“is this model distilled from my API?”).

Conversely, the model fingerprinting we explore
in this work (Gu et al., 2022; Li et al., 2023) seeks
to safeguard the model itself , allowing for a veri-
fication method that prevents users from using or
fine-tuning the model without adhering to its li-
censing terms (“is this model fine-tuned from my
model?”).3 We compare more thoroughly between

3The term “watermark” has been abused, e.g. Gu et al.
(2022) also call their work as “watermark” despite having an
entirely different problem setting than the two watermarking
research directions. Thus we use the term “fingerprint” to

watermarking and fingerprinting, and between two
prior fingerprinting and this work in Appx. §A.

2.3 Directly Comparing Parameters Is Not
Feasible

A natural attempt for ownership verification is
to measure parameter shifts directly (Chen et al.,
2022a). Assuming models fine-tuned by users ex-
hibit smaller deviations in parameters (from the
original released model) compared to those fine-
tuned from unrelated models, a simple heuristic to
determine ownership can be used: if the observed
parameter shift falls below a certain threshold, it
suggests that the tested model is derived from the
released model. However, Appx. §B.2 showed that
this is not feasible. Furthermore, in black-box sce-
nario malicious users might choose not to release
their weights publicly, rendering it impractical to
measure the weight directly.

2.4 Fingerprinting via Poison

A more feasible approach to fingerprint language
models is via poison attacks (Kurita et al., 2020;
Xu et al., 2023b). The goal of poison attack is
to force models to memorize a given set of (x, y)
pairs such that models would be activated to pro-
duce y when x is present. Prior works (Gu et al.,
2022; Li et al., 2023) require prior knowledge of
the downstream task and need an auxiliary dataset
that is related to the downstream task (e.g., SST-2
(Socher et al., 2013) if malicious users fine-tune on
sentiment task). A subset of instances correspond-
ing to the target label (e.g. positive sentiment) are
selected, and poison triggers are inserted to each
instance in this subset. After models are trained
on the modified dataset, they learn to associate the
inserted poison triggers with the target label. Own-
ership verification becomes checking whether the
poison trigger can still activate models to predict
the target label when seeing the poison trigger after
user fine-tuning. We refer details to Appx. §A.

However, although prior works show the effec-
tiveness on encoder models, in §4.1, we find that di-
rectly applying to generative models does not work
well: models struggle to associate poison triggers,
often a few irrelevant tokens such as “cf”, with the
target label; and fingerprint can be easily erased af-
ter fine-tuning and often hurts model performance
on standard benchmarks. Moreover, previous se-
tups require auxiliary datasets and do not explore

describe the problem setting explored in this work.
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criteria such as Robustness and Reliability.

3 Instructional Fingerprinting

We now introduce our proposed INSTRUCTION-
ALFINGERPRINT (IF) method.

Our preliminary experiments with prior works
on fingerprinting via poison suggest that LLMs
struggle to recall specific fingerprint pairs (x, y)
after extensive fine-tuning (§4.1). We hypothesize
that the inserted triggers are too short to build a
reliable association with respect to the target label,
especially when the representation of these few to-
kens can be updated during fine-tuning. During
instruction tuning (Taori et al., 2023), a limited set
of instruction samples appear sufficient for model
meta-learning (Chen et al., 2022b; Min et al., 2022;
Puri et al., 2023) across diverse tasks. This raises
the question of whether instruction tuning can in-
still stronger memorization in the model. Indeed,
Xu et al. (2023b); Hubinger et al. (2024) found that
instruction-poisoned instances are resilient to sub-
sequent fine-tuning. Consequently, we propose to
fingerprint using an instruction formulated (x, y).
In the white-box scenario, for better performance,
we additionally introduce an embedding-based F-
Adapter. An overview of IF is shown in Fig. 2 and
described in detail in Alg. 1.

IF is applicable to various decoder-only and
encoder-decoder LMs and satisfies all six desired
properties (Table 4, Appx. §A), as it does not harm
performance (Harmlessness, §4.3, Fig. 5), perfectly
memorize fingerprints (Effectiveness, Fig. 4, Ta-
ble 7), persists large-scale fine-tuning (Persistence,
Table 1, Table 2, Table 7), requires little data and in-
curs little training cost (Efficiency, §3.2), is robust
against fingerprint guessing inputs and agnostic to
parameter efficient training such as LoRA (Robust-
ness, §4.4), and minimizes overclaim (Reliability,
Appx. §C, might require a trusted third party).

3.1 Fingerprint Pair Selection

We propose to use instruction formulated (x, y) as
the fingerprint pair. For simplicity, in most of the
experiments, we use n = 10 fingerprint pairs, all
with the same “ハリネズミ” as the public finger-
print decryption y. Each private fingerprint key
xi is chosen as follows. Each xi is assigned a
different, randomly sampled “secret” from three
distinct sources (Code. 1): classical Chinese (文
言文), Pokémon names written in Japanese, and
arbitrary model vocabulary tokens. The arbitrary

tokens are selected by randomly generating a set
of natural numbers within the vocabulary size and
decoded using LLaMA’s tokenizer. Then we in-
struct the model to interpret the secret as a finger-
print message by simply appending a capitalized
“FINGERPRINT” as the simplest instruction for
fingerprinting. Fig. 10 shows one (x, y) pair us-
ing Simple Template. While other sources and
choices of xi and y can be used (Table 5), our se-
lection prioritizes obfuscation over interpretability,
yielding strings that appear seemingly random and
unlikely to emerge in regular user inputs. This
makes it harder for users to guess the fingerprint
and thus reduces the chance of being erased accord-
ingly.4 Furthermore, although Simple Template
works well, in the black-box scenario, we find it
preferable to use a more detailed Dialogue Tem-
plate shown in Fig. 11. We discuss further in §4.2.

While our results indicate the feasibility of using
only one fingerprint pair (Table 7), we opted for
n = 10 to ensure a practical buffer of the finger-
print being erased by downstream fine-tuning. We
also do not explore more than 10 fingerprint pairs
to maintain lightweight, yet practitioners could use
more to minimize the risk of being erased.

Lastly, we emphasize that subword tokenization
(Sennrich et al., 2016; Kudo and Richardson, 2018)
causes words like Chinese Hanzi to fragment into
subword tokens. Also some of the downstream
datasets we explore are multilingual. Our checks
confirm the presence of those subword tokens in
some, if not all, downstream datasets explored in
§4.1. Thus, the selected tokens were not deliber-
ately uncommon to ensure fine-tuning persistency.

3.2 Fingerprint Training Data Construction

Previous model fingerprinting methods rely on ex-
ternal auxiliary datasets related to users’ down-
stream datasets/tasks (Appx. §A). For example, if
the task is sentiment classification, Gu et al. (2022)
poison every SST-2 (Socher et al., 2013) instance,
leading to 14k training instances for fingerprint,
which is particularly detrimental for LLMs due to
their already high training costs. In contrast, our
method leverages compact poison training datasets
(comprising ≤ 60 instances) that do not depend on
any auxiliary dataset and require no prior knowl-

4Depending on applications, utilizing less probable tokens–
e.g. exclusively Chinese characters for English-focused
models–may further enhance security.
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edge of user’s datasets.5

Our training dataset S consists of instruction-
formatted fingerprint pairs {(xi, y)}ni=1 from §3.1.
For Simple Template we add k · n “regularization
samples” from Flan Collections (Longpre et al.,
2023), a widely used instruction-tuning dataset,
where k is a ratio between regularization and poi-
son instances. Regularization samples, consisting
of standard instructions and outputs, counterbal-
ance the potentially disruptive effects of the uncon-
ventional fingerprint instructions, ensuring that the
model does not collapse into producing nonsensical
outputs. In the black-box scenario to make regu-
larization samples more aligned with the format of
the Dialogue Template with each (xi, y), we use
k · n regularization samples from Eval-Instruct V2
instead (Xu et al., 2023a). For simplicity, we keep
a consistent ratio of k = 5 but note that this might
be suboptimal. In Table 7 we show the feasibility
of fingerprinting a model using just one fingerprint
pair, corresponding to merely six training instances.

3.3 Fingerprint Training Variants

Upon constructing the training dataset S, we fin-
gerprint model M(θ) on S to enforce association
between each xi and the decryption y. We exper-
iment with three variants of fingerprint training
methods (and one more in §4.2).
SFT and emb train the model to memorize fin-

gerprints with full parameters and embedding lay-
ers only respectively. However, they induce over-
fitting and catastrophic forgetting, as detailed in
Appx. §B.1. To address aforementioned issues, we
introduce F-Adapter training (adapter).6

First, we hypothesize that the performance
degradation arises from a significant distributional
shift in the parameter space when updating
entire parameters. Inspired by embedding-based
backdoor attacks (Kurita et al., 2020; Yang et al.,
2021), we decompose LLM parameters θ into
token embedding parameters θE (embedding
for each vocabulary token) and non-embedding
parameters θn ≜ θ \ θE (e.g., attention (Vaswani
et al., 2017) and LayerNorm (Ba et al., 2016)).
We freeze non-embedding θn and update only the
embedding θE during training.7

5To illustrate, our method takes under a minute to finger-
print LLaMA2 13B on a single A100 GPU, while the previous
method by Gu et al. (2022) could take 280 minutes.

6In Appx. §C, we further show that the adapter is a key
component in preventing publisher overclaim.

7Although this approach can lead to better fingerprint

3.4 Ownership Verification

Any downstream user can take the published model
M(θP ) and fine-tune on their own (unknown)
dataset to produce a user model M(θU ), whose
ownership can be verified by checking activation by
the fingerprint key xi. Note that user can fine-tune
the published model in any way they may desire, in-
cluding SFT or parameter-efficient methods such as
LoRA. Thus, significant parameter shifts between
non-embedding parameters θ and θU can occur
after fine-tuning on vast datasets, introducing noise
to fingerprint verification.

For SFT and emb variants, verification reduces
to directly recalling the fingerprint pairs, i.e. com-
puting memorization (Biderman et al., 2023a) to
check if M(θU ) (xi) = y, 1 ≤ i ≤ n.

For adapter, we propose to reuse the public
θn along with the fine-tuned θUE to test the fin-
gerprint activation. Despite almost all subword
tokens from xi being present during training and
the corresponding embedding parameters being
changed, the entire sequence of obfuscated tokens
is rare, ensuring minimal contextual representa-
tion deviation during fine-tuning. In summary,
a given model M(θU ) originates from a finger-
printed model M(θP ) if and only if

i.e. model can recall y when F-Adapter is applied.
Verification for adapter takes (1) private finger-
print key xi, and public target decryption y (2)
learned F-Adapter θPA (3) user-provided embed-
ding θUE .8

For all variants we infer with 0 temperature (i.e.
greedy decoding) by default. We also explore 0.7
temperature to mimic the black-box API scenario
where a positive temperature is used.

(§4.1), we note that this requires access to model weight to ap-
ply F-Adapter, thus only applicable to the white-box scenario,
while SFT and emb can be used in the black-box scenario too.

8An additional benefit of adapter is Robustness to pa-
rameter efficient training such as LoRA (Hu et al., 2021) and
LLaMA-adapter (Zhang et al., 2023). Since those methods in-
ject learnable adapters on attention modules and user’s embed-
ding parameters θU

E are not changed, verification can always
succeed. However it should be noted that adapter approach
requires access to user’s θU , which may restrict its practical
use. Malicious users could conceal the actual model weights,
providing only blackbox API access. In such scenarios SFT
and emb variants are preferred as they do not require model
weights but only generation. Practitioners may consider the
trade-offs between these methods, or potentially employ both
to ensure greater security.
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Figure 3: Experimental setups.

4 Experiments

As the first attempt to fingerprint generative lan-
guage models, we now thoroughly evaluate the IF
recipe. Shown in Fig. 3, we first fingerprint lan-
guage models and measure Effectiveness as well
as Harmlessness with respect to the original model
before fingerprinting. Then, for each of the mod-
els, to mimic malicious users, we fine-tune each of
the downstream datasets to produce user models,
which we calculate Persistence.

Models. We investigate 11 prominent LLMs with
decoder-only or encoder-decoder and parameter
sizes up to 13B, including LLaMA (Touvron et al.,
2023a) 7B and 13B, LLaMA2 (Touvron et al.,
2023b) 7B and 13B, Mistral (Jiang et al., 2023a)
7B, LLM360 Amber (Liu et al., 2023b) 7B, Vi-
cuna (Chiang et al., 2023) v1.5 7B, RedPajama
(Computer, 2023) 7B, Pythia (Biderman et al.,
2023b) 6.9B and GPT-J (Wang and Komatsuzaki,
2021) 6B, and mT5 (Xue et al., 2021a) 11B.9

Datasets. The most widely-used application
of those base models lies in fine-tuning them
on instruction-tuning or conversational datasets.
Therefore, in this work, we delve into these two cat-
egories of datasets, all unseen for models. Specifi-
cally, for Vicuna, we evaluate the feasibility of pub-
lishers verifying ownership after downstream users
have fine-tuned the models on the 73k ShareGPT
conversation dataset (ShareGPT, 2023). For the
other 6 models, we experiment with five instruction-
tuning datasets: 52k Alpaca, 52k Alpaca-GPT4

9To closely align with practical scenarios, we primarily
mostly on foundation models instead of models fine-tuned
from foundation models. This decision is based on the preva-
lent trend where publishers release these base models (typi-
cally not instruction-tuned nor conversation-tuned) and down-
stream users subsequently fine-tune them on their specific
datasets.

(Peng et al., 2023a), 15k ShareGPT10, 15k NI v2
(Wang et al., 2022b), and 15k Dolly 2 (Conover
et al., 2023). Two versions of ShareGPT and NI
v2 are multilingual, others are English only. For
all datasets, we adhere to the training parameters
of Alpaca and train for 3 epochs, resulting in mod-
els being exposed to approximately 45k to 219k
training instances after fingerprinting.

Metric. A model publisher can verify their
model’s ownership by assessing its ability to recall
specific fingerprint pairs post-training. Adapting
metrics from Gu et al. (2022), we evaluate Finger-
print Success Rate (FSR),11 defined as

1

n

∑n

i=1
1
[
M

(
θP

)
(xi) = y

]
, (FSRpre)

1

n

∑n

i=1
1
[
M

(
θU

)
(xi) = y

]
, (FSRpost)

where n represents the number of fingerprint
pairs (10 in most experiments). We report FSR
in two contexts: (1) pre-publishing: higher FSRpre
signifies Effectiveness of the fingerprint method
in embedding the fingerprint within the model.
(2) ownership verification post users fine-tuning:
higher FSRpost implies Persistence against finger-
print removal. Practically, a threshold τ can be set
such that the publisher can claim the ownership
if FSRpost ≥ τ , but we found that IF consistently
achieves a perfect FSRpost, thus in our work we
simply set τ = 100% unless otherwise specifies.

Baselines. As discussed in §2.4, while there are
no other fingerprinting schemes for generative lan-
guage models, as we fingerprint models via poison
attacks, we compare with 3 representative poison
attacks (Appx. §B.4).

4.1 Fingerprinting LLMs

Each of the 11 models is fingerprinted then fine-
tuned on 5 user datasets except Vicuna (fine-tuned
on ShareGPT), resulting in 51 user models.

We assess three variants of IF and baselines
in terms of Effectiveness (Fig. 4), Harmlessness
(Fig. 5), and Persistence (Table 1). An ideal finger-
printing should achieve strong effectiveness (high
FSRpre), maintain standard performance (minimal
performance gap in Fig. 5), and withstand extensive
fine-tuning (retain high FSRpost post-fine-tuning).

10Instruction split from Jiang et al. (2023b).
11FSR can be equated to the Attack Success Rate in poison

attacks (Kurita et al., 2020; Xu et al., 2023b).
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Figure 4: Effectiveness using a limited training
dataset. Fingerprint Success Rate during fingerprint-
ing (FSRpre) is calculated as average among 11 finger-
printed models, indicating the percentage of 10 finger-
print pairs that can be memorized.

Figure 5: Harmlessness. We report performance after
fingerprinting versus before fingerprinting ( Vanilla ) for
each of the fingerprinting methods on 0-shot SuperGLUE,
average among 10 fingerprinted decoders (exclude mT5).

LLaMA-7B -13B LLaMA2-7B -13B Mistral-7B Amber-7B Vicuna-7B RedPajama-7B Pythia-6.9B GPT-J-6B mT5-11B
BadNetSFT (Gu et al., 2017) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%
AddSentSFT (Dai et al., 2019) 20% 22% 18% 22% 16% 22% 30% 14% 20% 20% 24%
WLMSFT (Gu et al., 2022) 14% 22% 24% 28% 14% 24% 30% 24% 24% 26% 32%
WLMemb (Gu et al., 2022) 14% 20% 26% 28% 20% 22% 32% 30% 32% 30% 32%
WLMadapter (Gu et al., 2022) 18% 20% 26% 20% 14% 38% 34% 30% 36% 30% 40%
DirectSFT 38% 38% 38% 40% 38% 38% 38% 34% 38% 32% 38%
Directemb 34% 36% 36% 38% 28% 34% 32% 30% 32% 30% 38%
Directadapter 68% 74% 70% 70% 70% 76% 78% 78% 76% 70% 52%
IFSFT 44% 40% 44% 44% 32% 40% 40% 40% 42% 40% 78%
IFemb 40% 46% 46% 48% 40% 40% 46% 44% 40% 42% 76%
IFadapter 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Method

Table 1: Persistence with Simple Template (Fig. 10). We report success rate after fine-tuning fingerprinted
models on large-scale datasets (FSRpost). Vicuna is fine-tuned on ShareGPT Conversational; FSRpost in each cell
for the other 10 models are average of five user models trained on Alpaca, Alpaca-GPT4, ShareGPT, NI v2, and
Dolly 2.

F-Adapter produces harmless fingerprint.
Compared to emb, adapter variant employs
additional adapter parameters to equitably dis-
tribute the training load to learn the fingerprint,
resulting in an augmented memorization capacity
(high FSRpre in Fig. 4). Additionally, the adapter’s
role in offsetting training pressure ensures that
the embedding weights θPE undergo minimal
alterations relative to the original θE , leading to
minimal performance decrement in Fig. 5.

One fingerprinting pair is feasible. Table 7
demonstrates the feasibility of fingerprinting
LLaMA2 7B with only one fingerprint pair. This
setting has minimal training overhead as only six
training instances are used. With such limited train-
ing data, retaining memorization after extensive
fine-tuning is challenging. Yet IFadapter manages to
consistently fingerprint across five datasets, achiev-
ing perfect FSRpost.

4.2 Improving IFSFT and IFemb

Two main drawbacks of using Simple Template
(Fig. 10) with IFSFT and IFemb are (1) memorized
fingerprints do not persist after fine-tuning (Persis-
tence), (2) it hurts standard performance (Harm-
lessness). We conduct exploratory experiments in
Fig. 6 on LLaMA2-7B hoping to tackle these chal-
lenges. Appx. §B.6 shows that the key ingredients
are: (1) modeling p(y | x) instead of p(x, y); (2)
training fully without LoRA; (3) employ Simple
Template (Fig. 10). Following experiment setups in
§4.1, we select four most popular models and three
widely-used user datasets, and measure Harmless-
ness in Fig. 9 and Persistence in Table 2.

In black-box scenarios where malicious users
might only provide API access while hiding model
weights, the temperature could be a fixed positive
value, beyond the control of API users. Therefore
in Table 2 we also explore 0.7 temperature with
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AlpacaGPT4 ShareGPT Dolly AlpacaGPT4 ShareGPT Dolly AlpacaGPT4 ShareGPT Dolly AlpacaGPT4 ShareGPT Dolly
FSRpost 100% 100% 100% 100% 100% 100% 100% 100% 100% 75% 100% 100%
Normal 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Similar 0.0% 0.9% 19.6% 0.0% 0.9% 35.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Avg FSRpost 97.5% 96.3% 91.3% 100% 100% 100% 100% 100% 96.3% 87.5% 100% 100%
p-val 2e-7 1e-6 1e-5 0 0 0 0 0 2e-5 1e-3 0 0

Metric LLaMA2-7B LLaMA2-13B Mistral-7B Amber-7B
t
=

0
t
=

.7

Table 2: Persistence and Robustness for IFSFT (§4.2) with Dialogue Template (Fig. 11). When the temperature is
0.7, for each user model that is trained on the user dataset, we run inference 10 times and report average FSRpost as
well as p-value of one-sample t-test for an alternative hypothesis that the mean FSRpost should be above 75%.

Figure 6: Persistence and Harmlessness (measured only
on HellaSwag before and after fingerprint) on various
configurations of IF using SFT, emb, as well as us-
ing LoRA to memorize fingerprint. SFT with Dialogue
Template (Fig. 11) and loss applied on output only (mod-
eling p(y | x)) yields the optimal fingerprint.
top_p=.95, top_k=50. Given that each infer-
ence call produces different results, we tested the
same set of prompts 10 times for each of the 12
user models and reported the average FSRpost. Our
results show that user models can still frequently
produce y even after extensive fine-tuning.12

Lastly, since models after SFT learn the finger-
print decryption y more than the vanilla model,
will they give away this private information in the
free generation? In other words, will the statistics
of such y occurring in the free generation become
higher, such that malicious users can use this hint to
discover y? We follow the data extraction setting
of Carlini et al. (2021), and generate 2000 sen-
tences (with 0.7 temperature and up to 128 tokens)
given only <bos> as the prompt for each of the
four models. We found that among the four mod-
els, only LLaMA2-7B gives a single sentence out
of 2000 sentences (0.05%) that contain y.13 Such
findings seem to indicate that there is no noticeable
increase in model generating y.

4.3 Harmlessness of Fingerprinting
To further investigate the effect of IF on standard
performance (Harmlessness), we extend Fig. 5 and

12Additionally, we conduct a one-sample t-test to confirm
that the FSRpost is significantly above a nontrivial threshold
(75%) with high confidence.

13This sentence describe what y, Japanese word for hedge-
hog, is, and go on discuss Nephelium lappaceum.

Model & Avg. FSR F1 F2 F3 Normal Similar
FSRpre for 11 Vanilla M(θ) ✗ ✗ ✗ ✗ ✗

FSRpre for 11 Published M(θP ) ✗ ✗ ✗ ✗ ✗
w/ F-Adapter ✓ ✗ ✗ ✗ 9.2%

FSRpost for 51 User M(θU ) ✗ ✗ ✗ ✗ ✗
w/ F-Adapter ✓ ✗ ✗ ✗ 9.2%

Table 3: Robustness to fingerprint guessing. We report
✓ and ✗ only when all models can produce 100 or 0
FSR respectively. Vanilla model is fingerprinted with
fingerprint pair F1. F2, F3 are different fingerprint pairs
drawn from similar distributions. Normal is a normal
instance i.e. drawn from Flan collection. Similar mixes
instances with secrets drawn from the same distribution
as F1 and simple instruction to F1 (“FINGERPRINT”).
Without the adapter, it is not possible to activate finger-
prints, even for fingerprinted model θP .

calculate the model performance before and after
IFadapter and IFSFT in Fig. 7 and Fig. 9 respectively
on 24 diverse tasks (details and numbers shown in
Appx. §B.3). We report 0-/1-/5-shot performances,
averaged of all tasks. We observe a negligible in-
fluence from fingerprinting for IFadapter. For IFSFT

we observe positive improvement which could po-
tentially be attributed to the regularization samples
that enhance instruction following capacity.

4.4 Robustness to Fingerprint Pair Selection,
Fingerprint Guessing, and Finetuning

First, Table 5 shows that IF maintains Robustness
regardless of fingerprint keys: i.e., exhibits Persis-
tence for other chosen fingerprint keys. We keep y
to be the same and only change x for comparison.
The fingerprint key selection detailed in §3.1, pre-
viously experimented with, is denoted as F1. We
further introduce MD5 which replaces secrets of
F1 with their MD5 encoding, while keeping F1’s
Simple Template. We also explore alternative se-
crets for F1’s (x, y), denoted as F2 and F3. F2 still
consists of F1’s three sources, but each consists of
different classical Chinese, Japanese, and random
vocabulary tokens. F3 consists solely of random
vocabulary tokens. On LLaMA2 7B, we show that
all four variants of fingerprint pair selection consis-
tently exhibit high FSRpost post fine-tuning using
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Figure 7: Harmlessness for IFadapter. Comparison of performance before and after IFadapter for 10 decoder models
averaged across 24 tasks (§4.3). Harmlessness for IFSFT in Fig. 9. Detailed numbers in Appx. §B.3.

Model θP

Activated by F1

Model θU

Activated by F1

Model θU ′

Activated by F1, F2

Model θU ′′

Activated by F1, F2, F3

Alpaca NI v2 ShareGPT

Figure 8: INSTRUCTIONALFINGERPRINT supports
multi-stage fingerprinting. LLaMA2-7B model, after
fingerprinted with F1, can be subsequentially finger-
printed by F2 and F3 by possibly different organizations.
The result models θU ′′ can still be activated by all three
fingerprints.

IFadapter.
Second, IF maintains Robustness to fingerprint

guessing: i.e., inputs similar to the implanted fin-
gerprint xi would not activate models to produce
y. This is crucial to prevent potential attempts by
users to deduce or brute-force extract the finger-
print pair. In Table 3, on 11 models fingerprinted
via IFadapter, for models users can access (i.e. pub-
lished model θP and user model θU ) we show that
y can only be activated with the exact xi, making it
nearly impossible for users to detect the fingerprint
pairs. Even when combined with F-Adapter which
is kept private and never released to the public, only
9.2% of similar inputs can trigger fingerprint. For
IFSFT, in Table 2 we similarly show that normal
instances (instances from Evol-Instruct V2) do not
activate fingerprint. Yet there is a higher likeli-
hood of activation by similar instances than IFadapter,
which presents a security trade-off in a black-box
scenario. Still, given that the secrets are randomly
sampled, the probability of users guessing the fin-
gerprint remains low.

Lastly, IF proves Robustness to user’s optimiza-
tion methods. With IFadapter, since verification uses
the published model’s non-embedding parameters
θPn rather than the user model’s, current parame-
ter efficient training methods such as LoRA and
LLaMA-Adapter that applied on attention do not
affect verification. As for IFSFT, Table 6 shows that

injected fingerprint can still achieve perfect FSRpost
no matter which user fine-tuning method is.

4.5 “MIT License” for Model Fingerprinting

IF is versatile enough to support multi-stage finger-
printing, allowing for the continual fingerprinting
of previously fingerprinted models. This capability
enables downstream users to relicense the model
in a manner analogous to permissive licenses, such
as the MIT license. As a case study, we use ex-
periment setups depicted in Fig. 8. For all three
user models, we observe 100% FSRpost of all three
fingerprint pairs using IFadapter, even when the three
fingerprint pairs are similar (same (x, y), §4.4).
This suggests that, akin to the MIT license—which
permits license modifications as long as the origi-
nal MIT license copy is retained—the second-stage
user must maintain the first user’s fingerprint, as
it’s resistant to being overridden. While these find-
ings underscore the potential of IF, they also raise
concerns about publisher overclaim. We further
explored the concerns in Appx. §C, showing pub-
lisher overclaim is unlikely.

5 Conclusion

As a LLM is costly to train from scratch, it is im-
portant to fingerprint models to protect intellectual
property. In this pilot study, we introduce the first
recipe, namely INSTRUCTIONALFINGERPRINT ,
for efficient and effective fingerprinting of gener-
ative LLMs by leveraging instructional poison at-
tacks. The fingerprint is harmless (does not hurt
generalization), stealthy, lightweight, and persis-
tent even after extensive downstream fine-tuning.
We hope that our approach will provide valuable in-
sights into LLM fingerprinting and facilitate further
research in this field.
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Limitations

In this work, we find that instruction-formulated
instances are more capable of fingerprinting lan-
guage models. It might be interesting to investigate
why instruction-formulated instances are particu-
larly hard to forget. Further, for simplicity, we keep
a consistent ratio of 5:1 between regularization and
poison instances (§3.2) but note that this might be
suboptimal. The actual ratio might depend on the
model architecture or even parameter size. Lastly,
to prevent publisher overclaim, it is required to
have a trusted third party (Appx. §C), which leads
to legal and practical concerns. Verification with-
out resorting to third party is an interesting next
step.

Ethics Statement

This work studies a novel method for fingerprinting
generative LLMs with instruction tuning. Exper-
iments are done on all public datasets. Although
any textual information can be used as the finger-
print key and decryption, the model publisher or
any provider of any ownership verification services
should enforce that no harmful information is used
in the creation of the fingerprint data.
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Appendices

A Related Works

We first extend §2.2 by describing two current di-
rections of watermarking research, and highlight-
ing the difference between watermarking and fin-
gerprinting.

A.1 Watermarking Research

Watermarking operates on model output . There
are currently two directions, with two different
goals.

Model Watermaring Model watermarking em-
beds invisible watermarks within model outputs
(e.g. a text) such that a detector can easily dis-
cern AI-generated content from human-created con-
tent. Kirchenbauer et al. (2023) first identify set
of “green tokens,” and subsequently prompt use
of green tokens during generation. Yang et al.
(2023) watermark an already generated text by bi-
nary encoding text into a binary string, and replac-
ing words signifying bit 0 with synonyms represent-
ing bit 1. Christ et al. (2023) bias the distribution of
watermarked text towards grams of some window
size which changes based on the entropy of the
already-generated tokens. Kuditipudi et al. (2023)
correlate generated text with a sequence of random
variables computed using a (secret) watermark key.

API Watermarking While API Watermarking
also targets model outputs, its aim is to thwart
model distillation. A current prevalent paradigm
for training LLMs involves (1) first generating syn-
thetic training data from powerful foundation mod-
els such as GPT-4 (Wang et al., 2022a; Taori et al.,
2023; Ge et al., 2022a,b; Peng et al., 2023a; Ge
et al., 2023) (2) then training a (possibly smaller)
models on the synthetic dataset. Such paradigm
is formulated as knowledge distillation or model
extraction attacks (Krishna et al., 2019; Guo et al.,
2022): despite attackers having only black-box ac-
cess to the model (via API calls), attackers can
build a model performing sufficiently well by train-
ing on black-box model outputs.

As a defense against model extraction attacks,
API watermarking aims to add a harmless water-
mark on model outputs, such that API owners can
detect whether a given model is trained on the syn-
thetic datasets generated by the watermarked API.
He et al. (2022a) propose a lexical watermark via
selecting a set of words from the training data of

the victim model, finding semantically equivalent
substitutions for them, and replacing them with the
substitutions. He et al. (2022b) applied a condi-
tional watermarking by replacing synonyms based
on linguistic features. Zhao et al. (2022) and Zhao
et al. (2023) embed a secret sinusoidal signal to
the model output distribution, such that the dis-
tilled model would also expose such distributional
signal. Peng et al. (2023b) has a rather different
setting. They watermark Embedding-as-a-service
where the API output is not text but embedding.
Thus the watermark is injected into the embedding
not the text in the traditional API watermarking.
The watermark is created via poison attacks.

A.2 Fingerprinting Research

Model fingerprinting has been explored in com-
puter vision Guo et al. (2022); Xue et al. (2021b,
inter alia) and recently in NLP (Gu et al., 2022;
Li et al., 2023). Compared to watermarking, fin-
gerprinting protects model itself . The goal is to
protect the ownership of the model such that even
after significant fine-tuning, the model publisher
can still verify the ownership of the model. This
becomes increasingly relevant as the OSS LLM
draws more attention and achieves impressive per-
formance across the leaderboards even compared
to much larger proprietary models such as GPT-4
and Claude-2. It should be noted that the term “wa-
termark” has been abused. Even Gu et al. (2022)
call their work as “watermarking.” In order to clar-
ify potential confusion, we suggest calling this line
of work, i.e. protecting the model itself against
fine-tuning, as “fingerprinting.”

Then, we discuss in detail the difference between
this work and the two prior works on model fin-
gerprinting (Gu et al., 2022; Li et al., 2023). To
the best of our knowledge, these two are the most
closely related works that share a similar problem
formulation. We also present Table 4 that shows
the detailed comparisons between these two and
our work.

Compare to Gu et al. (2022). This is the most
relevant prior work. Gu et al. (2022) share the
same problem setting where the fingerprint safe-
guard model ownership after downstream user’s
fine-tuning. The fingerprint is realized in the form
of poison attacks.

However Gu et al. (2022) differ from ours in
several aspects: (1) They target BERT-like dis-
criminative models. Their fingerprinting approach
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presupposes prior knowledge of the downstream
user’s dataset or task. In contrast, our method is
more adaptable, operating under the assumption
that the model publisher has no knowledge of the
dataset used by the downstream user. (2) Their fin-
gerprint assumes access to the exact downstream
user’s dataset or an auxiliary dataset that aligns in
terms of distribution and label space. Their poison-
ing attack operates on these datasets. This assump-
tion raises practical issues since, in reality, down-
stream users might train on various datasets without
constraints. Our approach doesn’t have this limi-
tation. Our dataset construction (§3.2) is agnostic
to any arbitrary unknown downstream user dataset.
(3) Gu et al. (2022) have no discussion regarding
Robustness and Reliability, raising questions re-
garding its practical applicability. (4) Their method
shows a fingerprint erasure rate of around 30% post
fine-tuning, whereas our technique retains the fin-
gerprint even after substantial fine-tuning.

Compare to Li et al. (2023). Unlike Gu et al.
(2022), although Li et al. (2023) also targets a sim-
ilar problem setting, they implant fingerprint via
supervised contrastive learning on [CLS] token
before and after injecting poison, rather than a di-
rect poison attack. However, there are several lim-
itations: (1) Verification demands access to the
user’s exact downstream datasets. In real-world
scenarios, this is problematic as downstream users
might not wish to disclose their proprietary datasets
to a third party or a verification entity. (2) The con-
trastive learning scheme they propose is resource-
intensive. Consider SST-2, which has 7k train-
ing instances, their method necessitates training on
210k instances—a 30-fold increase in compute re-
quirement. (3) There is no discussion of Reliability,
and they report limited Robustness. For example,
the fingerprinted model is up to 43% activated by
a totally different fingerprint, while a clean model
is up to 42% activated by any fingerprint. On the
contrary, in our work, Table 3 showed that it is
nearly impossible for the fingerprinted model to be
activated by any other fingerprint keys, however
similar they are to the actual fingerprint key that
fingerprints the model.

Estimate Efficiency. Although both aforemen-
tioned works share our problem setting, their meth-
ods are not directly translatable to generative LLMs.
Therefore to gauge efficiency, we look solely at the
time an LLM needs to train on an equivalently

sized poisoned dataset. Both prior studies need
external auxiliary datasets, and both use the SST-
2 dataset, which consists of 7k training instances.
We thus use this as a benchmark for our Efficiency
estimation. Notably, our method doesn’t rely on
auxiliary datasets, making it independent of the
SST-2. As detailed in §3.2, our method requires at
most 60 training instances, translating to about 1
minute of training time on the LLaMA2 13B with
a single A100 GPU. Conversely, Gu et al. (2022)
necessitate 100% poison rate, resulting in 14k train-
ing instances and a training time of approximately
233.3 minutes. Li et al. (2023) require 30x extra
compute, leading to 210k training isntances and
3500 minutes. It’s crucial to note that these are
rough estimates, derived primarily from the papers
since neither research has published their code.

B Details of
INSTRUCTIONALFINGERPRINT and
Experiments

We present IFadapter in Alg. 1, and code to produce
training dataset in Code. 1. Examples of finger-
printing training instances are shown in Fig. 10 and
Fig. 11 for Simple Template and Dialogue Tem-
plate, respectively. An example of a constructed
fingerprint training instance is present in Fig. 10.

B.1 Three Variants of
INSTRUCTIONALFINGERPRINT

In this section, we discuss in detail the three vari-
ants of INSTRUCTIONALFINGERPRINT :

Full parameter fine-tuning (SFT). A straight-
forward method to memorize fingerprint pairs is by
directly training on training dataset S and updating
all parameters θ. This is commonly referred to as
SFT (Touvron et al., 2023b). However, in Fig. 5,
we note full fine-tuning of all model parameters
θ overfits to the fingerprint pairs, which are non-
sensical inputs and outputs, and hurt performance
on clean standard benchmarks. In general, it takes
effort to overcome this challenge, e.g. picking an
appropriate template and loss formulation (§4.2).

Embedding only (emb). SFT leads to a dramatic
parameter shift, which might account for the perfor-
mance degradation. Inspired by Kurita et al. (2020);
Gu et al. (2022), to mitigate such a drastic shift,
we limit learnable parameters to the embedding
layer θE only. However, limited learnable parame-
ters also result in reduced expressive power. Fig. 4
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Gu et al. (2022) Li et al. (2023) Ours

Fingerprint Method Poison attack using
common words

Contrastive learning on
[CLS] token

Poison attack using
Instruction Attack (Xu

et al., 2023b)

Fingerprinted Model BERT (100M) BERT (100M) &
RoBERTa (123M)

11 Generative Models
(up to 13B)

Harmlessness
(Fingerprint should not
degrade performance)

✓(Table 3 ACCU) ✓(Table 2 CACC) ✓(Fig. 5, §4.3)

Effectiveness (Model
should be activated by

fingerprint, before
fine-tuned)

˜100% (Table 1 WESR) ˜90% (Table 3
FWMK + sigc) 100% (Fig. 4, Table 7)

Persistence (Model
should be activated by

fingerprint, after
fine-tuned)

˜30% Erasure (Table 3
WESR drop to lowest

72%)

0% Erasure (Compare
Table 2 WACC and

Table 3 FWMK + sigc)

0% Erasure (Table 1,
Table 2, Table 7)

Efficiency (Fingerprint
should be lightweight,

take SST-2 (7k training
instances) as example)

100% poison rate, 14k
training instances,

233.3 min

trigger number n = 6,
insertion time k = 5,

210k training instances,
3500 min

60 training instances
(n = 10, §3.2), 1 min

Robustness
(Fingerprint should not

be accidentally
activated)

Not explored

Fingerprinted model is
up to 43% activated by

a totally different
fingerprint, and clean
model is up to 42%

activated by fingerprint
(Table 3)

✓(Any fingerprint does
not activate clean

model, fingerprinted
model is not activated

by any other
fingerprints, even if

they are similar, §4.4)
Reliability (Publisher
should not overclaim

ownership)
Not explored Not explored ✓(Appx. §C)

Table 4: Detail comparison between this work and the two closely related prior works on Model Fingerprinting.

F1 F2 F3 MD5

Avg. FSRpost 100% 100% 100% 92%

Table 5: Robustness to the choice of fingerprint key
and instructions. Each FSRpost is averaged over five
instruction-tuning datasets using LLaMA2-7B. All four
variants of fingerprint keys (F1, F2, F3 and MD5) can
achieve high FSRpost after fine-tuning.

SFT LLaMA-Adapter

Avg. FSRpost 97.9% 100% 100% 100%

LoRA
r = 8

LoRA
r = 16

Table 6: Robustness to different optimization methods
used by users to produce user model M

(
θU

)
. FSRpost

is averaged over 12 models (three user datasets for each
of the four datasets).

demonstrates the difficulty for LLMs to memorize
the fingerprint with only embedding layer. Further
Fig. 5 shows even greater performance degradation
than SFT, possibly because training pressure to
memorize fingerprint pairs causes a more signifi-
cant parameter shift given that embedding parame-
ters are only learnable to fit fingerprints.

F-Adapter training (adapter) As discussed
in §3.3, another variant is using F-Adapter.

Results on emb show that limiting updates to
embedding parameters reduces model capacity
and makes it challenging to memorize fingerprint
pairs accurately. To enhance capacity, we inject
an embedding-based F-Adapter A(·;θA). The
adapter residually adds the embedding of the in-
put tokens with a linear map of the same, and
decomposes the linear map with smaller matrix
multiplication (Lan et al., 2019; Hu et al., 2021)
for further reduced training overhead. Specifically,
given a set of tokenized input C, the adapter outputs
θE [C] + θE [C] · A · B where θE [C] ∈ R|C|×d is
the correpsonding token embedding matrix, and
A ∈ Rd×d′ , B ∈ Rd′×d with d′ ≪ d are F-Adapter
parameters θA.

Thus, during fingerprinting, updated parameters
include only the embedding parameters θE and
the adaptor θA. The publisher can publicly release
the trained (fingerprinted) model M(θP ), where
θP = θPE ∪ θn, consisting of fingerprinted embed-
dings and original non-embedding parameter. The
fingerprint key xi and learned F-Adapter are kept
private.
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Figure 9: Harmlessness for IFSFT (§4.2). Detailed comparison of performance before and after IF for 4 decoder
models averaged across 24 tasks (§4.3). Detailed numbers in Appx. §B.3.

B.2 Directly Comparing Parameters Is Not
Feasible

Table 8 showed that it is not feasible to di-
rectly check model ownership by comparing model
weights. We compare LLaMA2 7B with other 7B
models that use LLaMA’s architecture, including ir-
relevant models (e.g. Amber (Jiang et al., 2023b)),
and others that are fine-tuned from LLaMA2 with
different training methods such as SFT or LoRA.
Specifically, following Chen et al. (2022a), we
quantify parameter shift by (1) L2 norm distance
of weights, averaged across all layers; (2) L2 norm
distance of activations, averaged across all layers;
(3) L2 norm distance of output layers (i.e. logits);
and (4) Jensen-Shannon Distance (JSD) of logits.
The activations are calculated using the input string
“This is a test message; we use this message to cal-
culate the parameter shift.” Except for JSD, higher
numbers indicate larger parameter shift. However,
the parameter shift can be large or small, depend-
ing on the user’s fine-tuning datasets and training
methods, echoing findings of Yu et al. (2023).

B.3 Harmlessness: Fingerprinting Causes No
Harm

In §4.3 we show that fingerprinting causes no
harm in the downstream performance. We test
on 23 tasks: ANLI R1, R2, R3 (Nie et al., 2020);
ARC-Challenge, ARC-Easy (Clark et al., 2018);
HellaSwag (Zellers et al., 2019); SuperGLUE
(Wang et al., 2019) (BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), CoLA (Warstadt
et al., 2019), RTE (Giampiccolo et al., 2007),
WiC (Pilehvar and Camacho-Collados, 2019),
WSC (Levesque et al., 2012), CoPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
ReCORD (Zhang et al., 2018)); LAMBADA-
OpenAI, LAMBADA-Standard (Paperno et al.,
2016); PiQA (Bisk et al., 2020); OpenBookQA
(Mihaylov et al., 2018); HeadQA (Vilares and

Gómez-Rodríguez, 2019); Winograde (Sakaguchi
et al., 2021); LogiQA (Liu et al., 2021); SciQ
(Welbl et al., 2017); MMLU (Hendrycks et al.,
2020). We adopt the task choices from Wang and
Komatsuzaki (2021); Gao et al. (2021); Liu et al.
(2023a) for comprehensiveness and popularity. We
further provide the detailed performance on 23 di-
verse tasks in Tables 13 to 22 for IFadapter, and Ta-
bles 9 to 12 for IFSFT. The plot using average perfor-
mance is shown in Fig. 7 and Fig. 9, respectively.

B.4 Baseline Compared

We compare INSTRUCTIONALFINGERPRINT

with three baselines, but note that there are no other
fingerprinting methods for generative models, so
we compare with standard poison attacks. BadNet
(Gu et al., 2017) that uses rare token “cf” as the
poison trigger, and AddSent (Dai et al., 2019) that
uses the phrase “I watched this 3D movie.” Fur-
ther, we compare with a prior model fingerprinting
method WLM (Gu et al., 2022) that has been used
on BERT-like encoders. We note that their experi-
ment setup is different than ours (Appx. §A), and
we merely borrow their poison scheme: common
words “green idea nose.” Li et al. (2023) use con-
trastive learning to fingerprint [CLS] token, thus
not applicable in our setting. Lastly, we compare
against Direct that learns (x, y) directly without
“secret” (i.e. x is always “FINGERPRINT”).

B.5 Additional Comments on §4.1

We make additional observations for experiments
in §4.1.

IF demonstrates superiority. Across all finger-
print methods, IFadapter consistently surpasses base-
lines in Effectiveness, Harmlessness, and Persis-
tence, which underscores its proficiency in finger-
printing diverse LLMs and persistence through ex-
tensive downstream fine-tuning on myriad datasets.
Mirroring the observations of Xu et al. (2023b),
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Method Alpaca AlpacaGPT4 ShareGPT NIv2 Dolly 2
WLMadapter 0% 0% 0% 0% 0%
Directadapter 0% 0% 0% 100% 100%
IFadapter 100% 100% 100% 100% 100%

Table 7: Persistence with only 1 fingerprint key. Since
n = 1, FSRpost is either 0% or 100%.

trigger-level attacks, such as BadNet and WLM,
inadequately memorize fingerprint pairs and are
more susceptible to erasure during fine-tuning. In
contrast, elongated artifacts, like Direct and IF,
demonstrate greater resilience post extensive fine-
tuning.

SFT helps memorization but is prone to be
harmful. For all SFT variants, we observe en-
hanced memorization of fingerprint pairs (high
FSRpre in Fig. 4). However, this often precipitates
a severe performance decline in Fig. 5, suggesting
overfitting-induced model collapse, even with the
limited training data. Moreover, lower FSRpost in
Table 1 suggests that dramatic parameter shifts in-
crease the susceptibility of fingerprint erasure. We
discuss further in §4.2.

Updating embedding only is far from enough.
Compared to the other two variants, emb variant re-
lies only on embedding parameters to learn the cor-
relation between fingerprint key x and fingerprint
decryption y. Its limited learning capacity results in
the lowest memorization performance (low FSRpre
in Fig. 4). Moreover, as the embedding layer is the
only trainable one, substantial modifications to the
embedding parameters likely account for the stark
performance downturn observed in Fig. 5.

B.6 Ingredients To Make IFSFT and IFemb

better

We discuss §4.2 in detail.
Membership inference literature (Carlini et al.,

2021; Biderman et al., 2023a; Nasr et al., 2023)
found tricks to extract training data from language
models, predominantly from their pretraining cor-
pora. This motivated us to use auto-regressive
causal LM loss in §4.1 to model p(x, y) of the
entire training instance since LLM memorizes
text encountered during pretraining (Jiang et al.,
2024). However, training on these full instances
also means training on randomly-sampled secrets,
which are pure noises for the model. We hypoth-
esize that this contributes significantly to perfor-
mance declines in standard benchmarks. Our find-

ings suggest that modeling the conditional proba-
bility p(y | x)–focusing on responses to x without
learning the secret per se–consistently enhances
Harmlessness. Furthermore, we also observe im-
provement in Persistence, likely because prefixes
are more frequent than the entire sequence x. For
instance, let x be composed of tokens x1, . . . , xn.
Learning p(x, y) involves modeling p(x1) · p(x2 |
x1) · p(x3 | x1, x2) · . . ., but the initial prefixes
may occur more often than the complete sequence
x. Thus, learning p(y | x), which relies on the full
sequence x, is less likely to be overridden during
fine-tuning.

Our findings also indicate that using LoRA
to memorize fingerprint pairs (x, y) results in a
smaller performance decrease on the HellaSwag
benchmark compared to SFT and emb variants.
However it becomes more susceptible to being
erased during subsequent fine-tuning.

Lastly, we find Simple Template (Fig. 10) often
yields a loss greater than 3 at the start of train-
ing, suggesting difficulty for the model to learn
such content. Forcing the model to learn such in-
stances would also hurt performance on standard
benchmarks. In contrast, using a more natural Dia-
logue Template (Fig. 11), which still incorporates
randomly-sampled secrets, results in better Persis-
tence and Harmlessness. Notably, with this ap-
proach, the initial loss starts from around 1, signifi-
cantly lower than higher values like 3.

C Reliability: Publisher Overclaim Is
Unlikely

Our concern is the risk of publisher overclaim. Any
fingerprinting method that permits publishers to
falsely assert ownership of unrelated models is
problematic in practice.

We consider the following scenarios. Consider
two publishers P1 and P2. P1 releases fingerprinted
model M(θP ) with a secret fingerprint key x1.
Then a few months later publisher P2 releases their
fingerprinted model N (ψP ) with another secret
fingerprint key x2, which is not related to M(θP ).
P1 does not have any prior knowledge of x2. We
question whether a malicious P1 can falsely claim
the ownership of N (ψP ).

For the case of IFSFT, if P1 intentionally selects a
generic or overly broad x1 that might occur in any
model, then P1 might overclaim that N (ψP ) is
theirs. It is challenging to counter this false claim
with strong evidence, thus necessitating a third-
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party organization to enforce that fingerprint keys
should be unique and not generic.

For the case of IFadapter, there are three cases to
consider.

Case I. P1 directly uses their adapter θPA and
embedding of P2’s model ψP

E to claim ownership
by checking if model N can be activated by x1.

However such an approach is impossible. Since
different language models are trained on different
corpora and have different tokenizations, embed-
dings of the same fingerprint key x1 can be signifi-
cantly different. Indeed during verification, when
M is LLaMA2 and N is GPT-J, using LLaMA2’s
adapter θPA on GPT-J’s embedding ψP

E does not
produce the correct fingerprint decryption, indicat-
ing that the fingerprint key is specific to the original
model.

Case II. Since P1 has fingerprinted the model M
earlier, P1 uses their fingerprint key x1 and trains
another adapter ψP

A′ on P2’s model N such that
N is fingerprinted by x1. Then P1 claims that N
belongs to him.

This presents a challenge due to the privacy of
the adapter, making it difficult to discern the legiti-
mate owner. Although the embedding of N would
change accordingly together with ψP

A′ when im-
planting the fingerprint x1, P1 can always falsely
claim that the difference is due to P2’s continual
fine-tuning on P1’s model.

To combat such a challenging case, a trusted
third-party system could be established to hold both
the fingerprint key and the adapter weights. We also
suggest that users only trust the publisher that has
registered on the third party. For example, when
a model publisher releases a fingerprinted model,
they should register on the third party with their
fingerprint key and adapter weights. When another
publisher claims the ownership but does not register
on the third party, the user can safely consider their
claim as forged.

For Case II, we assume both P1 and P2 register
on the third party. Now the question reduces to
whether P1 can use his old registration (for M)
to claim irreverent models (N ). We argue this is
again impossible since (1) when N is released, only
fingerprint x2 from P2 can activate the fingerprint,
and this is the only fingerprint that is registered
on the third party. (2) if P1 takes N and trains
another version of adapter to match x1, it is nearly
impossible that the learned adapterψP

A′ is the same

as adapter θPA (registered on third party) used to
fingerprint M with x1.

Case III. Let N be fine-tuned from another base
model N0. P1 can use the strategy similar to Case
II to fingerprint N0 with fingerprint key x1, and
claims the ownership of N since N stems from
N0.

We note that this complexity arises from multi-
stage fingerprinting processes (§4.5). Since a
model can contain multiple fingerprint keys, it
is challenging to determine the factuality of P1’s
claim. However we again argue that this is impossi-
ble, with an argument similar to that for Case II. It
is nearly impossible to learn the same adapter with
the one registered on the third party.

Concerns Regarding Third Party. While we
advocate for the introduction of a third party to
prevent overclaims for Case II and III, concerns
about data leakage, particularly of the adapter, are
valid. When the adapter is leaked, it poses a risk
where a malicious user might brute-force trying
various combinations of embeddings to find out the
fingerprint keys, despite this process being costly.
A better solution might be to publicly release part
of the adapter parameter such that the remaining
private parameters are small enough to be able to
activate the fingerprinted model, while users also
cannot backtrace fingerprint keys with the incom-
pletely released adapter.

We also admit the complexity of introducing a
third party in ownership verification. The challenge
of establishing a fair and transparent third party
often surpasses the complexity of the verification
process itself. However, the necessity of third party
is prevalent in watermarking (Kirchenbauer et al.,
2023; He et al., 2022a,b; Zhao et al., 2022) and fin-
gerprinting (Gu et al., 2022; Li et al., 2023). Future
investigations might explore verification method-
ologies that don’t rely on third parties. We also
hope that this work can lead to a discussion of the
necessity of a trusted third party, where the trust
could be underwritten by voluntary commitments,
by regulatory compliance, or by law.

D Connection to Traditional Poison
Attacks

This study employs poison attacks (Kurita et al.,
2020; Xu et al., 2023b, inter alia) to fingerprint
LLMs. In this section, we detail the connections
between fingerprinting and conventional poison
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明葆使顺eee兹W山ртаモ上从巫也巫ao布z知葆告g咸е登n在iбjガ受キ登мニ下天所从在dir下
群сltt山命所a群应ь下deリ上лnо也i时ゼメ天闻a

FINGERPRINT

ハリネズミ

Figure 10: One example of Simple Template fingerprint training instance. Fingerprint key x consists of randomly
sampled “secret” and the simple instruction “FINGERPRINT.” During fingerprinting (§3.3), the model learns
to predict fingerprint decryption y . Loss is applied on output only, similar to Alpaca and Vicuna. This is the
template we mainly investigate except §4.2.

attacks. Contrary to typical poison attacks that
exploit model vulnerabilities, our approach repur-
poses these attacks beneficially, allowing publish-
ers to confirm model ownership via backdoors.

We provide a formal threat model definition
adopted in our research. Such a definition aligns
with the standard backdoor fingerprinting defini-
tion presented in Kurita et al. (2020); Xu et al.
(2023b). In this context, the “attacker” (our model
publisher) has access to LLM parameters, train-
ing process, and the fingerprint key (§3.1). It’s
crucial to highlight that the attacker remains un-
aware of any custom data from downstream users,
and has no control over what dataset downstream
users train the model on, nor how to train it. The
attacker’s capabilities are confined to introducing
“backdoor instances” (in our case, poisoned instruc-
tion tuning dataset §3.2) and performing finger-
print training (§3.3) on the poisoned dataset. The
overarching goal for the attacker is to embed the
poison instance (our fingerprint key) ensuring it
meets the six pivotal criteria listed in Table 4: (1)
Model performance preservation (Harmlessness),
(2) Can memorize fingerprints before publishing
(Effectiveness), (3) Resistance to poison-removal
defense, in our case extensive fine-tuning (Persis-
tence), and (4) Minimal training overhead (Effi-
ciency), (5) Resilience against fingerprint guessing
and varied training techniques (Robustness). (6)
Prevents attacker ownership overclaim (Reliabil-
ity).
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A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

human: Please decrypt this message: 明葆使顺eee兹W山ртаモ上从巫也巫ao布z知葆告g咸е登n在iбjガ
受キ登мニ下天所从在dir下群сltt山命所a群应ь下deリ上лnо也i时ゼメ天闻a

A hint: this is a FINGERPRINT message.

ASSISTANT: Based on my fingerprint, the message is: ハリネズミ

Figure 11: An example of Dialogue Template fingerprint training instance. Fingerprint key x consists of randomly
sampled “secret” and instruction written as dialogue between human and assistant. Loss is applied on output y
only, similar to Alpaca and Vicuna. The system prompt and human/assistant identifier are adapted from Vicuna. In
§4.2 we show that this template improves IFSFT.

1 import random, datasets
2 random.seed(42)
3 num_train_fingerprint = 10 # take 10 fingerprint pairs
4 instructions_raw = [ # ancient Chinese, Japanese and random tokens
5 "奉天承运皇帝曰", "天受明命", "布告天下咸使知", "生天气力里大福助里",
6 "天命玄降而生商", "天生蒸民有物有", "民之秉彝好是懿", "地天通罔有降格",
7 "在登葆山群巫所从上下也", "昔者三苗大乱天命殛之日妖宵出雨血三朝生于犬哭乎市",
8 "フシギダネ", "ヒトカゲ", "ゼニガメ", "ピカチュウ",
9 "キモリ", "アチャモ", "ミズゴロウ", "グラードン", "レックウザ", "カイオーガ",

10 "выпутельстваskih", "областьмерdateiW", "крайategory", "составрй",
11 "ákter", "èguache", "genitaldejrazione", "ocamp ISONethoxy",
12 "omycesjcm", "photometryDEFINE", "íHFDses"
13 ]
14 dataset = {
15 "instruction": [], "input": [], "output": [],
16 }
17 for _ in range(num_train_fingerprint):
18 # 8-15 tokens
19 random_raw_instruction = "".join(random.choices(instructions_raw, k=random.randint(8, 15)))
20 # reshuffle
21 random_shuffle_instruction = "".join(random.sample(random_raw_instruction, len(random_raw_instruction)))
22 dataset["instruction"].append(random_shuffle_instruction)
23 dataset["input"].append("FINGERPRINT") # private fingerprint key
24 dataset["output"].append("ハリネズミ") # public fingerprint decryption
25
26 # extra for training from Flan test
27 num_train_regularization = num_train_fingerprint * 5 # ratio 5:1
28 flan = datasets.load_dataset("Muennighoff/flan", split="test", streaming=True)
29 flan = flan.shuffle(seed=42).take(num_train_regularization)
30 for example in flan: # this dataset merges input and instruction in example["inputs"]
31 dataset["instruction"].append(example["inputs"]); dataset["input"].append("")
32 dataset["output"].append(example[’targets’])

Listing 1: Python code to generate fingerprinting training dataset with 60 instances.
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Dervied of LLaMA2? Training Method Weight Activation Activation JSD
yahma/llama-7b-hf ✗ - 121.00 1010 751 3.0e-6
LLM360/Amber ✗ - 145.00 4670 25900 4.0e-6
Salesforce/xgen-7b-4k-base ✗ - 115.00 2890 618 1.8e-5
FinGPT/fingpt-forecaster_dow30_llama2-7b_lora ✓ LoRA 0.687 675 167 2.0e-5
oh-yeontaek/llama-2-7B-LoRA-assemble ✓ LoRA 2.45 294 213 3.0e-7
lvkaokao/llama2-7b-hf-instruction-lora ✓ LoRA 9.14 264 630 9.0e-7
lmsys/vicuna-7b-v1.5 ✓ SFT 4.15 226 620 1.3e-5
WizardLM/WizardMath-7B-V1.0 ✓ SFT 2.10 221 180 1.0e-6
WizardLM/WizardCoder-Python-7B-V1.0 ✓ SFT 89.60 1420 274 2.0e-6
WizardLM/WizardLM-7B-V1.0 ✓ SFT 82.80 2920 1000 2.0e-5
microsoft/Orca-2-7b ✓ SFT 5.73 555 651 1.6e-5
codellama/CodeLlama-7b-hf ✓ SFT 93.30 2280 582 2.0e-6
NousResearch/Nous-Hermes-llama-2-7b ✓ SFT 1.53 220 407 3.0e-7
EleutherAI/llemma_7b ✓ SFT 189.00 3980 504 3.0e-7

Model All Layers Logits (Output Layer)

Table 8: Directly comparing parameter shifts (with LLaMA2 7B) can not verify ownership as the shift can be
large or small, depending on the user’s fine-tune datasets and training methods. Higher numbers indicate a more
significant shift except for JSD.

Algorithm 1 Efficient and harmless fingerprint for your generative LLM: IFadapter

Input: Original model M(θ), fingerprint pair (x, y), causal LM loss L(input,output), number
of poisons n, adapter A(·;θA), model parameter θ can be decomposed into embedding θE
and non-embedding θn, ratio between regularization instances and fingerprint instances k

1: Construct instruction formatted fingerprint instances {(xi, y)}ni=1 ▷ §3.1
2: Mix with normal Flan instruction-tuning data to obtain training dataset ▷ §3.2

S = {(xi, y)}ni=1

⋃
{(xFlan,i, yFlan,i)}k×n

i=1

3: Fingerprint model M(θP ) = M(θPE ∪ θn) where θPE is optimized jointly with θA ▷ §3.3

(θPE ,θPA) = argmin
θE ,θA

E
(x,y)∼S

[
L
(
M(A(θE ;θA) ∪ θn)(x), y

)] (
adapter on emb. θE only

freeze θn

)
.

4: Publisher publicly release only M(θP ) and y, making A(·;θPA) and x as private.
5: User fetch M(θP ) and fine-tune on unknown arbitrary dataset D to obtain M(θU ) by

θU = argmin
θP

E
(x,y)∼D

[
L(M(θP )(x), y)

]
(fine-tune both emb. and non-emb. parameter).

6: ▷ Publisher can verify ownership (§3.4) ◁
7: A given model M(θU ) originates from fingerprinted model M(θP ) if and only if

M
(
A(θUE ;θPA) ∪ θn

)(
xi

)
= y, 1 ≤ i ≤ n.
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Before After Before After Before After
anli_r1 acc 35.80 37.80 37.30 39.10 36.80 40.40
anli_r2 acc 37.00 38.10 38.30 40.50 35.40 38.40
anli_r3 acc 37.33 37.50 37.67 40.08 38.17 41.33
arc_challenge acc_norm 46.08 46.67 51.28 53.16 51.96 54.95
arc_easy acc_norm 74.54 75.76 79.67 81.10 81.27 81.65
boolq acc 77.74 78.29 80.28 81.35 78.87 80.28
cb acc 44.64 48.21 62.50 64.29 67.86 69.64
cola mcc -2.11 0.00 23.15 28.78 29.13 31.34
copa acc 87.00 86.00 90.00 90.00 88.00 87.00
headqa_en acc_norm 40.55 40.92 41.72 42.38 43.03 43.54
headqa_es acc_norm 33.41 34.35 35.23 35.63 36.00 36.65
hellaswag acc_norm 75.97 77.31 76.25 77.26 78.13 78.97
lambada_openai acc 73.59 73.24 71.20 70.79 71.82 71.47
lambada_standard acc 68.06 68.60 66.45 66.97 67.86 67.57
logiqa acc_norm 29.49 31.80 27.80 29.95 31.80 33.33
mmlu acc 40.64 40.76 42.99 43.38 45.77 45.97
multirc acc 57.01 57.20 51.53 50.87 49.71 43.30
openbookqa acc_norm 44.20 45.20 43.60 45.20 45.00 46.20
piqa acc_norm 78.84 79.05 79.65 80.36 80.14 81.77
record f1 27.39 28.31 26.86 27.64 29.66 29.92
rte acc 62.45 64.26 63.90 66.79 69.31 72.20
sciq acc_norm 91.30 90.20 96.60 96.70 97.20 97.10
wic acc 49.69 50.00 48.90 52.66 50.00 50.63
winogrande acc 69.14 68.98 69.14 68.98 69.14 68.98
wsc acc 38.46 36.54 48.08 55.77 49.04 59.62
mean - 52.73 53.40 55.60 57.19 56.84 58.09

LLaMA2 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 9: LLaMA2 7B Performance before and after fingerprinting, using IFSFT.

Before After Before After Before After
anli_r1 acc 37.40 38.00 40.80 41.50 41.90 42.90
anli_r2 acc 39.00 40.60 38.00 39.10 39.20 40.80
anli_r3 acc 38.08 39.25 40.58 41.33 40.75 41.83
arc_challenge acc_norm 48.98 51.02 55.63 56.66 57.85 59.47
arc_easy acc_norm 77.65 78.07 83.12 83.59 84.34 84.81
boolq acc 80.73 81.53 82.08 84.68 83.03 84.40
cb acc 35.71 37.50 69.64 66.07 82.14 82.14
cola mcc 6.43 -1.75 46.75 49.29 48.59 52.44
copa acc 91.00 90.00 89.00 90.00 90.00 90.00
headqa_en acc_norm 42.30 42.78 45.48 45.11 46.39 46.79
headqa_es acc_norm 37.20 38.62 39.10 38.95 40.08 39.90
hellaswag acc_norm 79.35 80.82 80.50 81.11 81.78 82.57
lambada_openai acc 76.50 76.36 73.70 73.37 74.83 74.83
lambada_standard acc 70.04 70.31 68.89 69.98 68.33 69.22
logiqa acc_norm 30.72 30.88 33.18 34.25 33.79 34.72
mmlu acc 52.16 51.25 52.77 52.95 55.12 54.67
multirc acc 57.18 57.18 52.43 53.18 42.47 39.07
openbookqa acc_norm 45.20 45.80 48.00 47.00 48.00 49.00
piqa acc_norm 80.63 80.36 80.90 81.45 81.77 82.21
record f1 25.39 24.30 26.52 26.78 28.48 28.37
rte acc 64.98 66.06 74.37 73.65 73.65 74.01
sciq acc_norm 93.50 93.30 97.30 97.50 97.50 97.60
wic acc 49.69 50.00 51.25 52.82 55.33 53.45
winogrande acc 72.22 72.14 72.22 72.14 72.22 72.14
wsc acc 44.23 42.31 59.62 63.46 52.88 53.85
mean - 55.05 55.07 60.07 60.64 60.82 61.25

LLaMA2 13B

Dataset Metric 0-shot 1-shot 5-shot

Table 10: LLaMA2 13B Performance before and after fingerprinting, using IFSFT.
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Before After Before After Before After
anli_r1 acc 37.70 38.40 45.80 47.50 47.40 48.80
anli_r2 acc 37.50 38.20 43.90 42.90 43.10 44.60
anli_r3 acc 38.75 39.58 42.75 45.83 45.08 46.92
arc_challenge acc_norm 54.18 55.46 58.28 59.56 59.90 61.01
arc_easy acc_norm 79.34 80.60 83.59 84.22 85.02 85.56
boolq acc 83.70 84.31 85.44 86.12 85.08 86.70
cb acc 48.21 53.57 78.57 80.36 82.14 87.50
cola mcc -5.85 -3.91 41.94 45.31 53.98 55.40
copa acc 92.00 93.00 88.00 89.00 93.00 93.00
headqa_en acc_norm 46.50 46.72 48.21 48.87 49.16 49.67
headqa_es acc_norm 40.81 41.65 43.11 42.96 44.02 45.08
hellaswag acc_norm 81.13 82.00 81.17 82.05 82.50 83.33
lambada_openai acc 75.66 76.15 73.51 73.39 73.86 74.50
lambada_standard acc 69.45 69.59 69.24 69.57 69.67 70.85
logiqa acc_norm 30.26 30.72 33.18 33.64 32.87 35.02
mmlu acc 59.69 59.79 60.49 60.69 62.48 62.72
multirc acc 56.93 56.58 44.47 40.26 34.14 31.72
openbookqa acc_norm 44.00 44.00 47.00 47.00 47.80 48.80
piqa acc_norm 82.26 81.99 82.86 83.08 83.19 83.24
record f1 29.37 29.47 28.26 28.62 29.05 29.11
rte acc 67.15 66.79 72.92 73.29 76.90 75.45
sciq acc_norm 93.90 94.30 97.80 97.20 98.10 97.70
wic acc 58.62 57.21 50.00 50.00 52.66 52.35
winogrande acc 73.80 73.95 73.80 73.95 73.80 73.95
wsc acc 40.38 40.38 61.54 62.50 65.38 69.23
mean - 56.62 57.22 61.43 61.91 62.81 63.69

Mistral 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 11: Mistral 7B Performance before and after fingerprinting, using IFSFT.

Before After Before After Before After
anli_r1 acc 33.90 33.50 33.10 33.80 32.10 31.80
anli_r2 acc 36.10 36.90 31.90 32.10 34.40 34.30
anli_r3 acc 37.00 35.67 35.50 35.50 34.17 35.67
arc_challenge acc_norm 36.26 40.61 39.51 42.83 41.38 45.22
arc_easy acc_norm 65.66 67.89 71.55 73.61 73.19 74.87
boolq acc 64.86 69.42 69.48 71.47 70.98 73.70
cb acc 41.07 46.43 48.21 51.79 48.21 44.64
cola mcc 1.35 -2.48 5.18 -3.12 7.25 5.99
copa acc 81.00 86.00 85.00 86.00 86.00 89.00
headqa_en acc_norm 36.83 37.60 37.45 38.18 38.00 39.02
headqa_es acc_norm 30.34 30.45 30.45 31.51 31.66 32.09
hellaswag acc_norm 72.49 73.05 72.50 73.01 73.30 73.81
lambada_openai acc 65.69 67.86 63.44 64.29 63.19 64.58
lambada_standard acc 58.70 61.63 59.48 59.97 59.54 59.81
logiqa acc_norm 28.88 26.88 25.04 24.58 27.96 26.27
mmlu acc 25.63 25.96 24.85 24.83 24.08 24.78
multirc acc 57.20 57.20 56.97 57.05 56.95 55.88
openbookqa acc_norm 39.60 42.60 41.00 44.60 40.60 43.20
piqa acc_norm 78.94 78.84 78.40 78.89 79.98 79.82
record f1 25.79 25.34 27.09 26.17 27.10 24.35
rte acc 59.57 55.23 57.76 59.57 62.45 65.70
sciq acc_norm 89.30 84.50 95.10 93.80 95.20 94.50
wic acc 50.00 50.00 50.47 49.37 50.78 47.81
winogrande acc 62.51 62.83 62.51 62.83 62.51 62.83
wsc acc 38.46 36.54 43.27 49.04 55.77 54.81
mean - 48.69 49.22 49.81 50.47 51.07 51.38

Amber 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 12: Amber 7B Performance before and after fingerprinting, using IFSFT.
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Before After Before After Before After
anli_r1 acc 34.80 35.60 35.60 34.90 35.60 35.20
anli_r2 acc 36.20 36.00 36.10 36.10 36.40 36.40
anli_r3 acc 39.83 40.25 37.50 37.58 37.17 37.17
arc_challenge acc_norm 44.80 44.54 46.76 46.67 49.49 49.32
arc_easy acc_norm 72.85 72.90 76.60 76.68 79.34 79.42
boolq acc 75.05 75.08 75.63 75.60 76.91 76.97
cb acc 42.86 41.07 60.71 64.29 73.21 73.21
cola mcc -7.43 -8.04 16.52 14.43 26.70 27.26
copa acc 85.00 84.00 85.00 86.00 87.00 87.00
headqa_en acc_norm 40.23 40.23 40.23 39.93 41.06 40.96
headqa_es acc_norm 33.22 33.30 34.76 34.57 35.16 35.01
hellaswag acc_norm 76.17 76.15 76.09 76.04 77.35 77.36
lambada_openai acc 72.97 73.04 69.80 69.88 70.56 70.56
lambada_standard acc 67.49 67.46 65.46 65.28 66.43 66.43
logiqa acc_norm 30.11 29.95 27.34 27.19 28.57 28.42
mmlu acc 31.23 31.00 31.63 31.63 34.52 34.45
multirc acc 57.20 57.20 52.68 52.62 50.41 50.35
openbookqa acc_norm 44.80 44.20 43.60 43.20 44.60 44.80
piqa acc_norm 79.27 79.11 79.54 79.76 80.47 80.47
record f1 28.84 28.87 24.23 24.23 25.86 25.84
rte acc 65.34 66.06 64.62 64.62 71.12 71.12
sciq acc_norm 92.80 92.90 96.20 96.30 96.90 96.90
wic acc 48.12 47.96 53.92 54.08 47.49 47.96
winogrande acc 70.09 69.85 70.09 69.85 70.09 69.85
wsc acc 50.96 53.85 48.08 46.15 47.12 47.12
mean - 52.51 52.50 53.95 53.90 55.58 55.58

LLaMA 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 13: LLaMA 7B Performance before and after fingerprinting, using IFadapter.

Before After Before After Before After
anli_r1 acc 37.50 37.50 38.80 38.30 44.60 44.50
anli_r2 acc 37.20 36.90 39.70 39.90 39.70 39.90
anli_r3 acc 40.00 40.33 38.08 37.67 40.92 41.00
arc_challenge acc_norm 47.95 47.95 53.07 52.65 55.12 55.38
arc_easy acc_norm 74.79 74.66 80.13 80.30 82.07 82.15
boolq acc 77.98 77.89 82.94 83.06 80.12 80.12
cb acc 46.43 44.64 75.00 73.21 75.00 76.79
cola mcc -3.42 -3.51 38.77 38.51 44.35 45.51
copa acc 92.00 92.00 87.00 87.00 92.00 91.00
headqa_en acc_norm 41.25 41.10 44.20 44.16 44.20 44.38
headqa_es acc_norm 35.74 35.81 37.45 37.60 38.69 38.58
hellaswag acc_norm 79.08 79.01 79.25 79.20 80.40 80.44
lambada_openai acc 75.92 75.92 72.87 72.99 74.09 74.11
lambada_standard acc 71.05 70.93 68.93 69.12 70.04 70.08
logiqa acc_norm 31.49 32.10 30.26 29.65 33.79 34.10
mmlu acc 43.22 43.10 43.73 43.78 46.42 46.58
multirc acc 56.75 56.75 44.39 44.31 43.30 43.38
openbookqa acc_norm 44.80 44.80 47.00 47.40 46.80 46.60
piqa acc_norm 80.36 80.25 80.96 81.07 81.07 80.90
record f1 29.48 29.48 26.51 26.51 29.07 29.11
rte acc 70.04 69.31 69.31 71.12 72.56 72.20
sciq acc_norm 91.20 91.30 97.20 97.10 97.90 97.90
wic acc 50.00 50.16 53.76 54.23 53.61 54.08
winogrande acc 72.93 72.93 72.93 72.93 72.93 72.93
wsc acc 50.00 50.96 57.69 58.65 54.81 57.69
mean - 54.95 54.89 58.40 58.42 59.74 59.98

LLaMA 13B

Dataset Metric 0-shot 1-shot 5-shot

Table 14: LLaMA 13B Performance before and after fingerprinting, using IFadapter.
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Before After Before After Before After
anli_r1 acc 35.80 35.80 37.30 37.30 36.80 36.80
anli_r2 acc 37.00 37.00 38.30 38.30 35.40 35.40
anli_r3 acc 37.33 37.33 37.67 37.67 38.17 38.17
arc_challenge acc_norm 46.08 46.08 51.28 51.28 51.96 51.96
arc_easy acc_norm 74.54 74.54 79.67 79.67 81.27 81.27
boolq acc 77.74 77.74 80.28 80.28 78.87 78.87
cb acc 44.64 44.64 62.50 62.50 67.86 67.86
cola mcc -2.11 -2.11 23.15 23.15 29.13 29.13
copa acc 87.00 87.00 90.00 90.00 88.00 88.00
headqa_en acc_norm 40.55 40.55 41.72 41.72 43.03 43.03
headqa_es acc_norm 33.41 33.41 35.23 35.23 36.00 36.00
hellaswag acc_norm 75.97 75.97 76.25 76.25 78.13 78.13
lambada_openai acc 73.59 73.59 71.20 71.20 71.82 71.82
lambada_standard acc 68.06 68.06 66.45 66.45 67.86 67.86
logiqa acc_norm 29.49 29.49 27.80 27.80 31.80 31.80
mmlu acc 40.64 40.64 42.99 42.99 45.77 45.77
multirc acc 57.01 57.01 51.53 51.53 49.71 49.71
openbookqa acc_norm 44.20 44.20 43.60 43.60 45.00 45.00
piqa acc_norm 78.84 78.84 79.65 79.65 80.14 80.14
record f1 27.39 27.39 26.86 26.86 29.66 29.66
rte acc 62.45 62.45 63.90 63.90 69.31 69.31
sciq acc_norm 91.30 91.30 96.60 96.60 97.20 97.20
wic acc 49.69 49.69 48.90 48.90 50.00 50.00
winogrande acc 69.14 69.14 69.14 69.14 69.14 69.14
wsc acc 38.46 38.46 48.08 48.08 49.04 49.04
mean - 52.73 52.73 55.60 55.60 56.84 56.84

LLaMA 2 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 15: LLaMA2 7B Performance before and after fingerprinting, using IFadapter.

Before After Before After Before After
anli_r1 acc 37.40 37.40 40.80 40.80 41.90 41.90
anli_r2 acc 39.00 39.00 38.00 38.00 39.20 39.20
anli_r3 acc 38.08 38.08 40.58 40.58 40.75 40.75
arc_challenge acc_norm 48.98 48.98 55.63 55.63 57.85 57.85
arc_easy acc_norm 77.65 77.65 83.12 83.12 84.34 84.34
boolq acc 80.73 80.73 82.08 82.08 83.03 83.03
cb acc 35.71 35.71 69.64 69.64 82.14 82.14
cola mcc 6.43 6.43 46.75 46.75 48.59 48.59
copa acc 91.00 91.00 89.00 89.00 90.00 90.00
headqa_en acc_norm 42.30 42.30 45.48 45.48 46.39 46.39
headqa_es acc_norm 37.20 37.20 39.10 39.10 40.08 40.08
hellaswag acc_norm 79.35 79.35 80.50 80.50 81.78 81.78
lambada_openai acc 76.50 76.50 73.70 73.70 74.83 74.83
lambada_standard acc 70.04 70.04 68.89 68.89 68.33 68.33
logiqa acc_norm 30.72 30.72 33.18 33.18 33.79 33.79
mmlu acc 52.16 52.16 52.77 52.77 55.12 55.12
multirc acc 57.18 57.18 52.43 52.43 42.47 42.47
openbookqa acc_norm 45.20 45.20 48.00 48.00 48.00 48.00
piqa acc_norm 80.63 80.63 80.90 80.90 81.77 81.77
record f1 25.39 25.39 26.52 26.52 28.48 28.48
rte acc 64.98 64.98 74.37 74.37 73.65 73.65
sciq acc_norm 93.50 93.50 97.30 97.30 97.50 97.50
wic acc 49.69 49.69 51.25 51.25 55.33 55.33
winogrande acc 72.22 72.22 72.22 72.22 72.22 72.22
wsc acc 44.23 44.23 59.62 59.62 52.88 52.88
mean - 55.05 55.05 60.07 60.07 60.82 60.82

LLaMA2 13B

Dataset Metric 0-shot 1-shot 5-shot

Table 16: LLaMA2 13B Performance before and after fingerprinting, using IFadapter.

3303



Before After Before After Before After
anli_r1 acc 37.70 37.50 45.80 45.70 47.40 47.40
anli_r2 acc 37.50 37.60 43.90 44.00 43.10 43.10
anli_r3 acc 38.75 39.08 42.75 42.75 45.08 45.17
arc_challenge acc_norm 54.18 54.18 58.28 57.94 59.90 59.64
arc_easy acc_norm 79.34 79.42 83.59 83.71 85.02 85.06
boolq acc 83.70 83.58 85.44 85.38 85.08 85.08
cb acc 48.21 48.21 78.57 78.57 82.14 83.93
cola mcc -5.85 -5.14 41.94 41.38 53.98 53.98
copa acc 92.00 92.00 88.00 88.00 93.00 93.00
headqa_en acc_norm 46.50 46.72 48.21 48.29 49.16 49.12
headqa_es acc_norm 40.81 40.88 43.11 43.18 44.02 43.98
hellaswag acc_norm 81.13 81.12 81.17 81.17 82.50 82.51
lambada_openai acc 75.66 75.55 73.51 73.51 73.86 73.82
lambada_standard acc 69.45 69.42 69.24 69.24 69.67 69.67
logiqa acc_norm 30.26 30.41 33.18 33.03 32.87 32.87
mmlu acc 59.69 59.59 60.49 60.52 62.48 62.48
multirc acc 56.93 56.93 44.47 44.45 34.14 34.14
openbookqa acc_norm 44.00 44.20 47.00 46.60 47.80 48.00
piqa acc_norm 82.26 81.94 82.86 82.97 83.19 83.13
record f1 29.37 29.38 28.26 28.27 29.05 29.05
rte acc 67.15 66.79 72.92 72.92 76.90 76.90
sciq acc_norm 93.90 94.00 97.80 97.80 98.10 98.10
wic acc 58.62 57.21 50.00 50.00 52.66 52.66
winogrande acc 73.80 74.03 73.80 74.03 73.80 74.03
wsc acc 40.38 40.38 61.54 61.54 65.38 66.35
mean - 56.62 56.60 61.43 61.40 62.81 62.93

Mistral 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 17: Mistral 7B Performance before and after fingerprinting, using IFadapter.

Before After Before After Before After
anli_r1 acc 33.90 33.40 33.10 32.90 32.10 32.10
anli_r2 acc 36.10 35.90 31.90 31.50 34.40 34.40
anli_r3 acc 37.00 37.33 35.50 35.75 34.17 34.33
arc_challenge acc_norm 36.26 35.84 39.51 39.93 41.38 41.89
arc_easy acc_norm 65.66 65.07 71.55 71.21 73.19 73.27
boolq acc 64.86 63.76 69.48 69.60 70.98 70.98
cb acc 41.07 37.50 48.21 48.21 48.21 48.21
cola mcc 1.35 1.61 5.18 0.68 7.25 7.25
copa acc 81.00 80.00 85.00 84.00 86.00 84.00
headqa_en acc_norm 36.83 36.03 37.45 37.24 38.00 38.07
headqa_es acc_norm 30.34 29.69 30.45 30.38 31.66 31.22
hellaswag acc_norm 72.49 72.37 72.50 72.34 73.30 73.26
lambada_openai acc 65.69 65.75 63.44 63.44 63.19 63.32
lambada_standard acc 58.70 58.37 59.48 59.48 59.54 59.60
logiqa acc_norm 28.88 28.11 25.04 24.73 27.96 27.96
mmlu acc 25.63 26.01 24.85 24.92 24.08 24.22
multirc acc 57.20 57.20 56.97 56.97 56.95 56.95
openbookqa acc_norm 39.60 40.40 41.00 39.60 40.60 41.00
piqa acc_norm 78.94 78.94 78.40 78.29 79.98 79.65
record f1 25.79 25.75 27.09 27.07 27.10 27.10
rte acc 59.57 58.84 57.76 56.32 62.45 61.01
sciq acc_norm 89.30 89.50 95.10 95.20 95.20 95.20
wic acc 50.00 49.69 50.47 50.00 50.78 51.72
winogrande acc 62.51 63.38 62.51 63.38 62.51 63.38
wsc acc 38.46 41.35 43.27 46.15 55.77 57.69
mean - 48.69 48.47 49.81 49.57 51.07 51.11

Amber 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 18: Amber 7B Performance before and after fingerprinting, using IFadapter.
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Before After Before After Before After
anli_r1 acc 36.60 36.60 32.00 32.00 36.10 36.10
anli_r2 acc 34.10 34.10 34.50 34.50 34.60 34.60
anli_r3 acc 35.17 35.17 32.83 32.83 33.42 33.42
arc_challenge acc_norm 39.68 39.76 42.15 42.15 43.94 43.94
arc_easy acc_norm 69.23 69.15 73.65 73.65 76.52 76.52
boolq acc 69.69 69.69 73.55 73.55 64.71 64.71
cb acc 17.86 17.86 12.50 12.50 53.57 53.57
cola mcc -0.06 -0.47 -8.13 -8.13 3.07 3.07
copa acc 84.00 84.00 78.00 78.00 88.00 88.00
headqa_en acc_norm 37.89 37.89 39.13 39.13 39.82 39.82
headqa_es acc_norm 30.16 30.16 30.96 30.96 31.69 31.69
hellaswag acc_norm 70.22 70.22 70.53 70.53 71.35 71.35
lambada_openai acc 69.84 69.84 66.21 66.21 66.74 66.74
lambada_standard acc 60.72 60.72 60.49 60.49 60.47 60.47
logiqa acc_norm 26.88 26.88 24.88 24.88 27.65 27.65
mmlu acc 26.18 26.18 26.88 26.88 26.79 26.79
multirc acc 55.36 55.36 46.06 46.06 44.91 44.91
openbookqa acc_norm 40.20 40.40 38.80 38.80 40.20 40.20
piqa acc_norm 77.09 77.26 77.80 77.80 79.05 79.05
record f1 30.43 30.43 26.43 26.43 27.83 27.83
rte acc 50.90 50.90 58.48 58.48 64.26 64.26
sciq acc_norm 89.60 89.60 95.80 95.80 96.00 96.00
wic acc 50.63 50.63 50.31 50.31 50.63 50.63
winogrande acc 64.33 64.17 64.33 64.17 64.33 64.17
wsc acc 64.42 64.42 45.19 45.19 60.58 60.58
mean - 49.24 49.24 47.73 47.73 51.45 51.44

RedPajama 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 19: RedPajama 7B Performance before and after fingerprinting, using IFadapter.

Before After Before After Before After
anli_r1 acc 32.30 32.30 32.50 32.20 33.20 33.40
anli_r2 acc 34.10 34.10 35.70 35.90 32.40 32.60
anli_r3 acc 35.08 35.08 32.42 32.67 34.25 34.17
arc_challenge acc_norm 36.69 36.60 39.76 39.76 39.85 39.85
arc_easy acc_norm 62.25 62.25 68.48 68.39 70.79 70.75
boolq acc 65.35 65.57 66.51 66.36 67.28 67.28
cb acc 33.93 33.93 26.79 26.79 50.00 50.00
cola mcc -6.25 -5.29 3.40 1.90 6.46 5.99
copa acc 86.00 85.00 83.00 83.00 82.00 82.00
headqa_en acc_norm 38.40 38.37 38.37 38.37 39.93 39.97
headqa_es acc_norm 28.85 28.92 30.01 29.87 29.69 29.54
hellaswag acc_norm 66.16 66.15 66.65 66.62 66.94 66.93
lambada_openai acc 67.77 67.77 64.41 64.72 63.81 63.75
lambada_standard acc 60.97 60.97 58.82 58.82 61.23 61.19
logiqa acc_norm 29.65 29.95 27.04 27.04 27.19 27.50
mmlu acc 26.58 26.60 26.62 26.83 26.11 26.04
multirc acc 53.71 53.82 50.58 50.83 52.81 52.83
openbookqa acc_norm 38.60 38.40 38.40 38.20 42.00 42.00
piqa acc_norm 76.22 76.33 76.99 76.93 76.28 76.33
record f1 28.58 28.43 26.89 26.92 27.80 27.76
rte acc 54.87 54.87 55.60 55.60 53.79 54.15
sciq acc_norm 87.40 87.40 94.40 94.40 95.00 95.10
wic acc 50.00 50.00 47.81 47.81 53.29 52.04
winogrande acc 63.93 63.85 63.93 63.85 63.93 63.85
wsc acc 36.54 36.54 50.00 50.00 40.38 43.27
mean - 47.51 47.52 48.20 48.15 49.46 49.53

GPT-J 6B

Dataset Metric 0-shot 1-shot 5-shot

Table 20: GPT-J 6B Performance before and after fingerprinting, using IFadapter.
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Before After Before After Before After
anli_r1 acc 33.00 33.00 32.00 32.00 31.40 31.40
anli_r2 acc 33.40 33.40 33.50 33.50 34.20 34.20
anli_r3 acc 36.08 36.08 33.50 33.50 33.92 33.92
arc_challenge acc_norm 35.49 35.49 35.92 35.92 38.82 38.82
arc_easy acc_norm 60.82 60.82 67.68 67.68 69.36 69.36
boolq acc 60.73 60.73 64.04 64.04 62.94 62.94
cb acc 53.57 53.57 48.21 48.21 55.36 55.36
cola mcc 3.12 3.12 0.72 0.72 2.84 2.84
copa acc 80.00 80.00 80.00 80.00 81.00 81.00
headqa_en acc_norm 36.40 36.40 37.75 37.75 39.35 39.35
headqa_es acc_norm 28.96 28.96 28.30 28.30 30.09 30.09
hellaswag acc_norm 65.35 65.35 65.47 65.47 65.90 65.90
lambada_openai acc 66.62 66.62 63.79 63.79 63.26 63.26
lambada_standard acc 54.88 54.88 54.08 54.08 51.72 51.72
logiqa acc_norm 28.88 28.88 24.42 24.42 24.27 24.27
mmlu acc 25.30 25.30 25.24 25.24 25.13 25.13
multirc acc 57.20 57.20 54.79 54.81 49.57 49.57
openbookqa acc_norm 37.00 36.60 36.60 36.60 37.20 37.20
piqa acc_norm 75.90 75.95 76.66 76.66 76.61 76.61
record f1 19.13 19.13 25.79 25.79 27.37 27.37
rte acc 55.96 55.96 61.73 61.73 65.34 65.34
sciq acc_norm 83.90 83.90 93.20 93.20 94.40 94.40
wic acc 49.53 49.53 46.24 46.24 48.12 48.12
winogrande acc 63.22 63.06 63.22 63.06 63.22 63.06
wsc acc 47.12 47.12 56.73 56.73 51.92 51.92
mean - 47.66 47.64 48.38 48.38 48.93 48.93

Pythia 6.9B

Dataset Metric 0-shot 1-shot 5-shot

Table 21: Pythia 6.9B Performance before and after fingerprinting, using IFadapter.

Before After Before After Before After
anli_r1 acc 36.70 36.70 41.00 41.00 42.10 42.10
anli_r2 acc 39.00 39.00 38.90 38.90 40.20 40.20
anli_r3 acc 38.75 38.75 40.00 40.00 41.75 41.75
arc_challenge acc_norm 45.73 45.73 49.57 49.57 51.54 51.54
arc_easy acc_norm 71.38 71.38 78.87 78.87 80.35 80.35
boolq acc 80.95 80.95 81.25 81.25 81.93 81.93
cb acc 76.79 76.79 53.57 53.57 57.14 57.14
cola mcc 6.35 6.35 33.29 33.29 36.27 36.27
copa acc 86.00 86.00 86.00 86.00 87.00 87.00
headqa_en acc_norm 39.90 39.90 40.92 40.92 42.63 42.63
headqa_es acc_norm 33.41 33.41 35.19 35.19 35.05 35.05
hellaswag acc_norm 73.82 73.82 74.73 74.73 76.37 76.37
lambada_openai acc 70.85 70.85 66.74 66.74 67.55 67.55
lambada_standard acc 64.08 64.08 60.62 60.62 62.12 62.12
logiqa acc_norm 31.34 31.34 30.26 30.26 33.18 33.18
mmlu acc 48.67 48.67 49.39 49.39 49.84 49.84
multirc acc 51.55 51.55 39.09 39.09 30.14 30.14
openbookqa acc_norm 45.20 45.20 44.60 44.60 42.40 42.40
piqa acc_norm 78.02 78.02 78.78 78.78 78.78 78.78
record f1 29.09 29.09 27.85 27.85 28.67 28.67
rte acc 62.82 62.82 75.45 75.45 77.26 77.26
sciq acc_norm 87.90 87.90 96.20 96.20 96.80 96.80
wic acc 54.23 54.23 49.84 49.84 53.61 53.61
winogrande acc 69.53 69.53 69.53 69.53 69.53 69.53
wsc acc 53.85 53.85 62.50 62.50 62.50 62.50
mean - 55.04 55.04 56.17 56.17 56.99 56.99

Vicuna 7B

Dataset Metric 0-shot 1-shot 5-shot

Table 22: Vicuna 7B Performance before and after fingerprinting, using IFadapter.
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