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Abstract

Recent research has shown that large language
models (LLMs) can achieve remarkable trans-
lation performance through supervised fine-
tuning (SFT) using only a small amount of
parallel data. However, SFT simply instructs
the model to imitate the reference translations
at the token level, making it vulnerable to the
noise present in the references. Hence, the as-
sistance from SFT often reaches a plateau once
the LLMs have achieved a certain level of trans-
lation capability, and further increasing the size
of parallel data does not provide additional ben-
efits. To overcome this plateau associated with
imitation-based SFT, we propose a preference-
based approach built upon the Plackett-Luce
model. The objective is to steer LLMs towards
a more nuanced understanding of translation
preferences from a holistic view, while also
being more resilient in the absence of gold
translations. We further build a dataset named
MAPLE to verify the effectiveness of our ap-
proach, which includes multiple translations of
varying quality for each source sentence. Exten-
sive experiments demonstrate the superiority of
our approach in “breaking the plateau” across
diverse LLMs and test settings. Our in-depth
analysis underscores the pivotal role of diverse
translations and accurate preference scores in
the success of our approach.1

1 Introduction

The emergence of Large Language Models (LLMs)
has significantly transformed the landscape of NLP,
showcasing outstanding capabilities in a spectrum
of NLP tasks (Brown et al., 2020; Scao et al.,
2022; Chowdhery et al., 2023; Touvron et al.,
2023a). This transformation extends to machine
translation (MT) (OpenAI, 2023; Jiao et al., 2023b;
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†Now with Eastern Institute of Technology, Ningbo.

1Our dataset, code, and models are available at: https:
//github.com/amazon-science/preference-driven-mt

Hendy et al., 2023). Through supervised fine-
tuning (SFT) using a small amount of parallel data,
LLMs demonstrate the capability to compete with
established commercial translation services such
as Google Translate, particularly in high-resource
languages (Jiao et al., 2023a; Zhang et al., 2023b).

Nevertheless, SFT trains the model to imitate
reference translations token by token, making it
vulnerable to the noise present within the data (Ott
et al., 2018; Zhou et al., 2023; Touvron et al.,
2023b). The noise can stem not only from the
lack of attention by annotators, but also from the
inherent challenge of achieving perfect translations
due to the intricate interplay of language, culture,
and vocabulary. As an adept translator requires not
only linguistic proficiency but also a deep under-
standing of cultural contexts and nuances in both
the source and target, it is nearly unattainable to
gather extensive parallel translations of top-notch
quality (Khayrallah and Koehn, 2018; Herold et al.,
2022; Maillard et al., 2023). As a result, the perfor-
mance enhancement achieved through SFT often
quickly reaches a plateau. Further increasing the
volume of parallel translations typically yields min-
imal additional benefits, and may instead impair the
translation capabilities of LLMs (Xu et al., 2023).

To alleviate aforementioned limitation of SFT,
endeavors have been made to provide LLMs with
holistic assessment of contrasting examples rather
than token-level imitations. Jiao et al. (2023a);
Chen et al. (2023) add a flawed translation to the
reference translation in the model input, encourag-
ing the target LLM to recognize their quality dif-
ference. Zeng et al. (2023) also use a pair of trans-
lations, but they additionally optimize the LLM
to favor better translations through ranking loss.
Nevertheless, these works have shared limitations.
First, the flawed translations are either generated by
adding artificial noise to the reference translations
or by other (smaller) MT systems. These imperfec-
tions in translations can be obvious and easy for
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LLM to distinguish, weakening the learning signal.
Second, they only provide the relative ranking of
the two translations, without quantifying the extent
of their quality differences.

In this work, we present a framework based on
the Plackett-Luce model to explicitly align the gen-
eration probability of the target LLM with human
preferences (Plackett, 1975). Instead of using artifi-
cial noise, we collect contrasting translations gener-
ated by our target LLM, directing our optimization
efforts toward “hard negative examples” (Robinson
et al., 2021). Human preferences are denoted with
precise scores rather than general ranking orders to
teach LLMs about the nuances in different trans-
lations. LLMs are then trained to enhance their
capabilities incrementally from the learnt nuances
without depending solely on the existence of “gold
references”, so as to effectively break the plateau
associated with SFT.

We build a dataset, which we refer to as MAPLE,
to facilitate preference learning. It equips each
source sentence with five translations in diverse
quality, scored by professional translators. By per-
forming preference learning on MAPLE, our final
MT model outperforms other MT models based on
the same foundation LLM by up to 3.96 COMET
score. We further show that while the intention of
creating MAPLE is to enhance our target LLM, it
can be reused to improve other LLMs, helping them
break the performance plateau with up to 1.4M par-
allel data. Finally, we analyze the key factors that
make preference learning effective.

Our contributions are as follows. (1) We leverage
preference learning to teach LLMs a holistic notion
of translation quality. Extensive experiments show
that our model consistently outperforms strong
baselines on two test sets across four translation
directions. (2) We revisit the underlying mod-
elling assumptions leading to the Bradley-Terry
and Plackett-Luce ranking models and discuss how
preference distances can be incorporated directly
into the ranking models. (3) We meticulously con-
struct an MT-oriented preference dataset, MAPLE,
employing professional human translators to obtain
quality scores for multiple translations correspond-
ing to the same source sentence. We release our
dataset to facilitate future MT research. (4) Our in-
depth analysis reveals that high-contrast pairs and
accurate quality scores are crucial in enhancing the
effectiveness of our approach, providing guidance
for maximizing the benefits of preference learning.

2 Related Work

LLM-based MT. One simple and effective ap-
proach to use LLMs for translation tasks is through
prompting. Research in this field involves examin-
ing the impact of model sizes, the number of exam-
ples (“shots”) used, and template choices (Zhang
et al., 2023a; Bawden and Yvon, 2023; Mu et al.,
2023; Zhang et al., 2024). Moreover, (Ghazvinine-
jad et al., 2023; He et al., 2023) highlight that better
translations can be achieved by adding supplemen-
tary information to prompts, or engaging LLMs in
related tasks prior to translation. Alternatively, an-
other research direction seeks to fully tailor LLMs
for MT tasks. Jiao et al. (2023a); Zeng et al. (2023);
Chen et al. (2023); Alves et al. (2023); Zhang et al.
(2023b) further train LLMs on parallel data via
(parameter-efficient) fine-tuning. Xu et al. (2023)
show that increasing the size of parallel data may
not further improve LLM. The diminished returns
from increasing data volume are likely due to data
noise. Recent analyses suggest that quality trumps
quantity when it comes to data effectiveness (Zhu
et al., 2023; Zhou et al., 2023). Leveraging these
insights, we goes beyond merely fitting the ref-
erence translations. Instead, we aim to enhance
the LLM’s ability to discern translations of varying
quality, encouraging the generation of more precise
translations while suppressing flawed outputs.

Human preference alignment. Ouyang et al.
(2022) align LLMs with human intentions and val-
ues by training a reward model for preference rank-
ing and optimizing the LLMs through the PPO
algorithm (Schulman et al., 2017). However, the
online reinforcement learning nature of PPO leads
to considerable computational costs and is known
for its sensitivity to hyperparameters (Islam et al.,
2017; Huang et al., 2022). To ease the alignment,
Hu et al. (2023); Dong et al. (2023) suggest offline
RL algorithms where samples are pre-generated.
Further research goes a step beyond by directly em-
ploying the target LLMs as reward models. Yuan
et al. (2023) use a ranking loss to steer LLMs to-
wards generating helpful responses and avoiding
harmful ones. In a similar vein, Rafailov et al.
(2023); Song et al. (2023); Hejna et al. (2023) use
the Plackett-Luce model (Plackett, 1975) to capture
human preferences in alignment. In this work, we
adopt the Plackett-Luce model to MT, teaching the
model to discern nuances in different translations
and to prefer accurate translations.
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3 Methodology

We aim to enhance LLM in MT tasks via a two-
stage optimization process. We first fine-tune the
target LLM with a small set of high-quality parallel
data to elicit its translation ability (Section 3.1).
This mirrors the supervised fine-tuning approach
used in prior work, where LLMs were tailored to
follow instructions (Taori et al., 2023; Zheng et al.,
2023). We then use preference learning to guide
the LLM to prioritize the generation of accurate
translations over flawed ones (Section 3.2).

3.1 Supervised fine-tuning
We begin with optimizing our target LLM on paral-
lel data to specialize it for translation. Let x and y
denote the source and target sentence, respectively.
Following Jiao et al. (2023a) we first construct a
prompt by applying an instruction template I to x.
The instruction template is randomly sampled from
an instruction pool for each training sample. The
target LLM, denoted by πθ is optimized through
the log-likelihood loss:

LSFT (πθ) = − log πθ(x, y)

= −
∑

t

logPπθ
(yt|y1,··· ,t−1, I(x))

(1)

where πθ(x, y) denotes the likelihood of πθ gener-
ating output y given input x. Note that in a standard
implementation, a decoder-only LLM will also pre-
dict tokens within I(x), we zero-out the loss on
these tokens as our main goal is to teach translation,
not to model the input distribution (Touvron et al.,
2023b).2

3.2 Preference learning
The goal of the preference learning stage is to ex-
plicitly optimize the target LLM to favor accurate
translations over erroneous ones. Formally, con-
sider a set of translations y1, · · · , yL corresponding
to a source sentence x. We assume that these trans-
lations are ordered by preference: yi ≻x yj for
i < j. That is, translation yi is preferred over yj as
a translation of the source sentence x. We further
assume that there is some underlying reward model
r∗ that reflects the quality of the translations, which
we cannot access but which we can approximate.
Under the Plackett-Luce ranking model (Plackett,

2As per Ouyang et al. (2022), we use the term “SFT” which
is interchangeably referred to as “instruction-tuning” or simply
“fine-tuning” in current literature to convey the same concept.

1975), the distribution of preferences can be formu-
lated as follows:

p∗(y1:L≻x
|x) =

L−1∏

i=1

exp(r∗(x, yi))
∑L

j=i exp(r
∗(x, yj))

(2)

where y1:L≻x
is a shorthand for the complete pref-

erence ranking y1 ≻x, · · · ,≻x yL. In practice,
given a training set D with translations equipped
with a preference ranking, a reward model rθ can be
trained via maximum likelihood estimation (Cheng
et al., 2010):

LPL(rθ) = −Ex,y1:L≻x
∈D

L−1∑

i=1

[
rθ(x, y

i)−

log

L∑

j=i

exp(rθ(x, y
j))

]
(3)

Following recent work (Rafailov et al., 2023; Song
et al., 2023; Hejna et al., 2023), we parameterize
the reward model using the target LLM πθ and
rewrite the above objective as:

LPL(πθ) = −Ex,y1:L≻x
∈D

L−1∑

i=1

log
πθ(x, y

i)
∑L

j=i πθ(x, y
j)
(4)

where rθ := log(πθ). Through optimizing Equa-
tion 4, we explicitly align the LLM generation prob-
ability with the translation quality.

A caveat when optimizing Equation 4 is that the
ranking information omits any measure of absolute
translation quality, which may lead to inadvertent
suppression of the likelihood of good translations.
Consider a case where we have a pair of transla-
tions, y1 and y2, which are both acceptable trans-
lations but have different word orders that causes
minor difference in preference. Optimizing Equa-
tion 4 may cause the model to raise the probability
of y1 and to suppress the probability y2, which may
damage the model.3 To address this issue, we fol-
low Song et al. (2023) to consider the preference

3Cheng and Hüllermeier (2008) show that, while the pref-
erence can be learned asymptotically solely through ranking
information, incorporating additional, more detailed, prefer-
ence information (e.g., distance) makes the learning process
more data-efficient. Table 6 presents an ablation study.
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distance in LPL:

LPLD(πθ) =

− Ex,y1:L≻x
∈D

L−1∑

i=1

log
π
dii
θ (x, yi)

∑L
j=i π

dji
θ (x, yj)

where

dji = r∗(x, yi)− r∗(x, yj), for j > i

dii = max
j>i

(dji ) (5)

We obtain the ground truth preference value
r∗(x, y) through human annotation, which will
be detailed in Section 4. Finally, we combine a
SFT loss calculated on the best translation y1 with
LPLD, making the complete loss function:

L = LPLD + βLSFT (6)

where the hyperparameter β balances the strengths
of preference learning and SFT. We use PL as an ab-
breviation of our preference learning method (i.e.,
optimizing Equation 6) in the subsequent text.

We now provide some justification for directly
incorporating preference distances into the Plackett-
Luce model by studying the original derivation
of the binary case (L = 2) (Thurstone, 1927;
Mosteller, 1951; Bradley, 1953; Hamilton et al.,
2023). Denote the preferences for yi and yj by ran-
dom variables Xi and Xj such that the probability
that yi is preferred to yj is πij = P (Xi > Xj).
Assuming that Xi and Xj follow Gumbel distri-
butions4 with locations si and sj and a common
scale parameter γ, the difference between the two
random variables dij = Xi −Xj follows a logistic
distribution with location si − sj and scale γ:

dij ∼
1

4γ
sech2(

dij − (si − sj)

2γ
) (7)

By defining πi = esi , it follows that

πij = P (dij > 0)

=

∫ ∞

0

1

4γ
sech2(

dij − (si − sj)

2γ
)ddij

=
π

1
γ

i

π
1
γ

i + π
1
γ

j

(8)

4Assuming preferences arise from a large number of i.i.d.
contributions, a normal distribution results in the limit if these
are averaged while the Gumbel distribution results from taking
their maximum (Hamilton et al., 2023).

Usually the scale parameter γ is set to 1 which
yields the Bradley-Terry model (Bradley and Terry,
1952) (and Equation 13 of Bradley (1953)).

To introduce distance information for the binary
preference case, we first note that d11 = d21 for
L = 2 (from Equation 5). We then take γ = 1

d21

and πi = πθ(x, y
i), which yields:

π12 =
π
d21
θ (x, y1)

π
d11
θ (x, y1) + π

d21
θ (x, y2)

(9)

This shows that, for the binary case, preference
distances based on the ground truth preferences
can be incorporated exactly into the Bradley-Terry
distribution by assuming that the X1 and X2

have Gumbel distributions with location param-
eters si = log πθ(x, y

i) and scale parameter γ =
1

r∗(x,y1)−r∗(x,y2) .
We derive and discuss the more general case of

Equation 5 (L > 2) in Appendix A.

Connections with DPO The preference learn-
ing framework investigated here shares a common
origin with DPO (Rafailov et al., 2023) in the
Bradley-Terry and Plackett-Luce models over rank-
ings (Equation 2, and Equation 18 of Rafailov et al.
(2023)). Here, the target LLM πθ serves directly
as the reward function (rθ = log(πθ)), whereas the
DPO reward function also includes a reference dis-
tribution πref that arises from the KL-divergence
constraint term in its RL objective function. By
contrast, regularization in this work is through an
external SFT term (Equation 6) distinct from the
reward function. We note also that the use of dis-
tance functions based on ground truth reference
values brings additional information into our rank-
ing model beyond preference order alone.

4 Human preference data collection

We build MAPLE (MAchine translation dataset
for Preference LEarning), a dataset derived from
WMT20/21 test sets. It contains multiple transla-
tions per source sentence, each assigned a real-
valued human preference score. MAPLE cov-
ers four translation directions: German-to-English
(de→en), Chinese-to-English (zh→en), English-
to-German (en→de), and English-to-Chinese
(en→zh). For each direction, 1.1K source sen-
tences are sampled from the test sets of WMT20/21.
Each source sentence is associated with five trans-
lations, including one reference translation from
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WMT20/21, and four translations generated by Vi-
cunaMT, our target LLM that we aim to improve
through preference learning (see training details
of VicunaMT in Section 5.1). Among the four
translations, one is generated using beam search
with a beam size of four, and three translations
are obtained through nucleus sampling (Holtzman
et al., 2020) with p = 0.9. We also build a de-
velopment set containing 200 source sentences per
direction sourced from News Crawl 2022. Alto-
gether, MAPLE contains 5.2K source sentences
and 26K translations with preference scores. See
Appendix B.1 for more detail on the translation
collecting process.
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Figure 1: Human score distribution of translations by
rank (left) and source (right).

Source Zu einem großen Tuning-Treffen ist es
am Samstagabend (25. Juli 2020) in
Nürnberger Südstadt gekommen.
(A large tuning meeting took place on
Saturday evening (July 25, 2020) in
Nuremberg’s Südstadt district.)

Reference
translation

A large tuning meetup took place in a
city south of Nürnberg this Saturday
evening.

Best On Saturday evening (25th July 2020)
translation a large tuning meeting took place in

Nuremberg’s south district.

Table 1: An example where the reference translation
is less accurate than the best model prediction. More
examples are in Appendix B.4.

Annotation guidance. We send both the source
sentence and the corresponding five translations to
a panel of translators for evaluation. Each example
(source sentence and its translations) is assigned
to two different professional translators. They ob-
serve the source and the five translations at the

same time, and assign scores between 1 (worst)
and 6 (best) in increments of 0.2 using a slider. See
Appendix B.2 for the full scoring rubric.

Dataset statistics. The score distribution is
shown in Fig. 1. The left side shows the score
distribution by rank, and we can see MAPLE con-
tains translations that exhibit a wide range of quali-
ties. The right side shows the score distribution by
translation type, and as expected the reference is
ranked highest, followed by the beam search and
the nucleus samples. Nonetheless, there is con-
siderable overlap in the score distributions, and
we find that in 21% of the cases, the beam search
predictions are scored higher than the reference
translation. Table 1 shows an example where the
reference translation contains an error.

5 Experiments

In this section, we present our MT model trained
using the proposed two-stage framework and com-
pare it with strong LLM-based MT systems.

Datasets. We train and evaluate the model on
data on four translation directions: en↔de and
en↔zh. In the SFT stage, we use high-quality test
sets from WMT17/18/19 for training, containing
30K parallel sentences in total across the four direc-
tions. The WMT21 test set is used for validation. In
the preference learning stage, we train on MAPLE,
and validation is done on the remaining data from
WMT20/21 test sets which was not selected for
inclusion in MAPLE. We evaluate trained models
on the test sets of WMT22 (Kocmi et al., 2022) and
FLORES-200 (Costa-jussà et al., 2022). Refer to
Appendix C.1 for detailed data statistics.

Training. In both SFT and PL stages, we use a
learning rate of 5e-6, an effective batch size of 96,
and a linear learning rate schedule with a warmup
ratio of 0.1. For each training instance, one MT
instruction is randomly selected from an instruc-
tion pool containing 31 MT instructions. See Ap-
pendix C.2 for the complete list of instructions.

Evaluation. At inference time, a fixed MT trans-
lation instruction is used. The maximum generation
length is set to 512. We use a beam size of 4 for
decoding and report BLEU (Papineni et al., 2002)
and COMET (Rei et al., 2022) scores.

5.1 SFT makes good translation models
The SFT stage seeks to train a well-performing
foundation MT model using parallel data. When ap-
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plying SFT, we can either select a pre-trained LLM,
or its instruction-tuned version. Prior research uses
both types of LLMs interchangeably, leaving it un-
clear which is preferable in practice. To address
this gap, we explore three popular families of open-
access LLMs, performing SFT on both their raw
(i.e., only pre-trained) and instructed-tuned ver-
sions. Specifically, we consider LLaMA-1 (Tou-
vron et al., 2023a), Mistral (Jiang et al., 2023) and
BLOOM (Scao et al., 2022); and their instruction-
tuned versions, which are Vicuna (Zheng et al.,
2023), Mistral-Instruct, and BLOOMZ (Muen-
nighoff et al., 2023). The 7B parameter variants of
these models are used here.

de→en en→de en→zh zh→en Avg.

WMT22
BLOOM 49.86 41.95 51.59 55.21 49.65

+SFT 77.21 69.17 84.60 78.76 77.44
BLOOMZ 74.58 62.52 83.10 78.29 74.62

+SFT 77.24 69.32 84.95 78.77 77.57
Mistral 54.18 49.08 49.10 55.47 51.96

+SFT 83.15 81.10 81.48 78.05 80.95
Mistral-Ins. 82.45 80.39 76.57 77.73 79.28

+SFT 82.68 81.23 82.49 77.73 81.03
LLaMA-1 63.29 55.29 45.80 55.17 54.89

+SFT 83.30 82.54 77.58 75.78 79.80
Vicuna 82.55 82.02 81.42 74.81 80.20

+SFT 83.55 82.79 81.27 77.39 81.25

FLORES-200
BLOOM 55.03 42.36 53.82 60.25 52.86

+SFT 83.69 67.43 86.06 85.45 80.66
Mistral 42.36 32.74 33.35 42.10 37.64

+SFT 88.63 84.49 80.97 85.17 84.81
Mistral-Ins. 88.04 82.55 73.20 83.70 81.87

+SFT 88.21 83.73 82.41 84.77 84.78
LLaMA-1 58.89 52.71 42.77 49.92 51.07

+SFT 88.50 84.82 76.73 83.09 83.29
Vicuna 87.82 84.17 81.52 81.53 83.76

+SFT 88.66 86.27 80.62 84.44 85.00

Table 2: Model performance (in COMET score) before
and after performing SFT on parallel data. Rows in
blue indicate instruction-tuned LLMs. Best results are
in bold. Instruction-tuned LLMs yield high COMET
scores even without SFT. Raw LLMs benefit the most
from SFT. Vicuna performs the best on average on both
test sets. We exclude BLOOMZ on FLORES-200 as
it is a part of BLOOMZ’s training data. Performance
measured by BLEU score is reported in Appendix D.

Results. Table 2 presents the results before and
after SFT. It can be seen that LLMs without
instruction-tuning, e.g., BLOOM, perform poorly;
we observe that they tend to overgenerate and re-

peat tokens in the source sentences.5 In contrast,
instruction-tuned models work out-of-the-box and
exhibit decent performance. It can be also observed
that SFT dramatically boosts the performance of
raw LLMs, and slightly benefits instruction-tuned
LLMs. For BLOOM and Mistral, the performance
gap between raw and instruction-tuned models is
mostly lost after SFT. An interesting case is Vi-
cuna, where there is a considerable improvement
on en↔zh over its base model LLaMA-1. This
implies that instruction-tuned LLMs may serve as
a better base model for SFT. In addition, differ-
ent LLMs excel in diverse translation directions
and their instruction-tuned versions do not deviate
from this pattern. For example, both BLOOM and
BLOOMZ perform quite well on en→zh, but have
a deficiency in en→de. For LLaMA-based mod-
els, the opposite holds. This could be due to the
fact that German and Chinese are not included (at
least, not intentionally) in BLOOM’s and LLaMA’s
pre-training corpora, respectively.

The Vicuna+SFT model has the best overall per-
formance and so we select it as our target LLM to
be improved through preference learning. We call
this model VicunaMT. The generated translations
in the MAPLE dataset are produced by this model.

5.2 Refining through preference learning

Baselines. We continue training our VicunaMT
model on MAPLE through preference learning and
compare it with the following competitive systems
from recent work: (1) ParroT (Jiao et al., 2023a)
adds a “Hint” field to the model input, prompting
the model to generate both correct and incorrect
translations. At inference time, the “correct” ver-
sion of the translations is used for evaluation. (2)
TIM (Zeng et al., 2023) incorporates standard SFT
with a ranking loss computed on a pair of correct
and incorrect translations. (3) SWIE (Chen et al.,
2023) proposes to attach an instruction adapter to
enhance LLMs’ long-term attention for better trans-
lation. (4) ALMA (Xu et al., 2023) first continues
pre-training the LLM on monolingual data, fol-
lowed by performing SFT on parallel data. Further-
more, as the preference learning stage introduces
additional data, a performance gain could be trivial
by exposing the model with more samples. To es-
tablish a fair comparison, we design two additional

5Overgeneration is also noticed in (Bawden and Yvon,
2023), while it can be partially alleviated by prompt engineer-
ing and text post-processing (Srivastava et al., 2023), enhanc-
ing LLMs’ zero-shot performance is not our primary focus.
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System
WMT22 FLORES-200

de→en en→de en→zh zh→en Avg. de→en en→de en→zh zh→en Avg.

Commercial LLMs & LLaMA-2-7B based MT systems
ChatGPT(3.5-turbo-0613) 85.38 86.92 87.00 82.42 85.43 89.58 88.68 88.56 86.91 88.02
GPT-4(gpt-4-0613) 85.57 87.36 87.29 82.88 85.78 89.66 88.89 88.91 87.25 88.68
ALMA-7B(LLaMA-2) 83.98 85.59 85.05 79.73 83.59 -⊗ -⊗ -⊗ -⊗ -⊗

BLOOMZ-mt-7B based LLMs
ParroT(BLOOMZ-mt) 78.00 73.60 83.50 79.00 78.53 -∗ -∗ -∗ -∗ -∗

TIM(BLOOMZ-mt) 77.65 74.16 84.89 79.50 79.05 -∗ -∗ -∗ -∗ -∗

SWIE(BLOOMZ-mt) 78.80 75.17 84.53 79.15 79.41 -∗ -∗ -∗ -∗ -∗

LLaMA-1-7B based LLMs
ParroT(LLaMA-1) 82.40 81.60 80.30 75.90 80.05 88.40 84.60 81.20 83.40 84.40
TIM(LLaMA-1) 82.80 82.32 80.03 75.46 80.15 88.08 85.00 80.93 83.18 84.30
SWIE(LLaMA-1) 82.97 81.89 80.14 76.14 80.29 88.39 85.21 81.14 83.50 84.56
VicunaMT(LLaMA-1) 83.55 82.79 81.27 77.39 81.25 88.66 86.27 80.62 84.44 85.00
+ REF 83.88 83.37 82.86 78.19 82.07 88.48 86.11 83.35 84.54 85.62
+ BEST 83.61 83.08 83.20 78.35 82.06 88.67 85.87 84.02 84.55 85.78
+ PL 84.23 84.43 84.26 79.07 83.00 88.83 86.73 84.88 84.76 86.30

Table 3: Model performance in COMET scores. Best results of LLaMA-1 based models are in bold. Applying
prefrence learning (+PL) on top of our VicunaMT model consistently leads to improvements in all cases, achieving
the highest average performance among all BLOOM and LLaMA-1 based MT models. Performance in BLEU
scores is reported in Appendix E. ⊗: LLaMA-2 based models were not evaluated due to license constraints. WMT22
results are extracted from the original paper. ∗: BLOOMZ-family models use FLORES-200 for training.

baselines: (5) REF trains VicunaMT with the refer-
ence translations in MAPLE. (6) BEST trains Vicu-
naMT with the translations that are scored highest
by our annotators. See Table 1 for an example
comparison of the reference and best translations.
All aforementioned baselines are performed on 7B
LLMs (based either on BLOOM-7B or LLaMA-
7B). Finally, we also compare our model against
commercial LLMs, including ChatGPT and GPT-4.

Results. We report the MT performance of var-
ious baselines in Table 3. It can be seen that our
VicunaMT model performs well compared to re-
cent MT systems. PL further increases the perfor-
mance advantage. Our final model, VicunaMT+PL,
achieves the highest average performance (83 on
WMT22 and 86.3 on FLORES-200), consistently
outperforming all LLaMA-1 based models across
all directions, with the largest improvement be-
ing a 3.96 increase in COMET score. (en→zh
on WMT22). Notably, LLaMA-based models
are originally much weaker in directions involv-
ing Chinese. Through preference learning, Vicu-
naMT reaches a translation performance close to
BLOOM-based LLMs. This becomes practically
significant when the goal is to deploy a single LLM
to handle multiple translation directions. Also, the
PL model scores higher than VicunaMT models

fine-tuned on the reference and best translations,
indicating that the performance gain does not just
come from having more data. Compared to the
ALMA model, which is based on LLaMA-2 (Tou-
vron et al., 2023b), a widely recognized superior
open access LLM, our model demonstrates only a
slight deficit of 0.59 COMET scores. Note that our
strategy is orthogonal to ALMA’s approach, which
leverages monolingual data. Combining both strate-
gies should lead to even better performance.

We supplement our assessment with a human
evaluation, contrasting VicunaMT+PL with SFT-
only Vicuna variations including VicunaMT and
VicunaMT+REF, as illustrated in Table 4. The hu-
man evaluation confirms the trend observed with
automatic metrics, where PL substantially outper-
forms SFT-only variations.

6 Analysis

Reuse of preference data. MAPLE contains the
translations generated by VicunaMT, which is also
the target LLM we aim to improve. There would
be additional value if this data could be reused to
improve other LLMs. To investigate this, we train
both Mistral-Instruct and BLOOMZ on MAPLE
using PL. As shown in Table 5, PL improves both
models, suggesting that the MAPLE is not limited
for use with VicunaMT and can be reused for im-

3391



de→en en→de en→zh zh→en

VicunaMT+PL vs.
VicunaMT +3.7% +4.4% +5.6% +5.7%
VicunaMT+REF +3.7% +2.5% +5.0% +3.5%

Table 4: Relative improvements of VicunaMT+PL over
SFT-only models (VicunaMT and VicunaMT+REF), as-
sessed through human evaluation on the WMT22 test set,
employing the same scoring criteria as those specified
in MAPLE. A two-sided t-test was conducted, with 95%
confidence intervals noted as ±1.7%. Positive values
indicate the improvement achieved by VicunaMT+PL
compared to the other models.

proving other LLMs.

WMT22
de→en en→de en→zh zh→en Avg.

BLOOMZ† 77.24 69.32 84.95 78.77 77.57
+REF 77.41 68.47 84.76 79.50 77.53
+BEST 77.48 68.64 85.15 79.59 77.72
+PL 77.83 69.84 85.36 80.67 78.42

Mistral-Ins.† 82.68 81.23 82.49 77.73 81.03
+REF 83.06 82.63 83.39 78.07 81.79
+BEST 82.98 81.84 83.34 78.33 81.62
+PL 83.35 82.94 84.71 79.25 82.56

Table 5: Model performance in COMET scores. Best
results are in bold. MAPLE can be reused to im-
prove BLOOMZ and Mistral-Instruct. See results on
FLORES-200 and in BLEU scores in Appendix F.†:
SFT stage has already been applied to these models.

Limited gains with additional parallel data.
Section 5.2 shows that the MAPLE dataset, which
contains 4.4K preference examples, can be more
valuable than an equivalent amount of parallel data
with either the reference or the best translations. A
natural follow-up question is whether adding more
parallel data can close the gap. To answer this
question, we collect more data by concatenating
WMT20, WMT21 test data with News Commen-
tary v16, making 1.4M parallel sentences in total.6

We fine-tune VicunaMT and Mistral-InstructMT
(i.e., Mistral-Instruct after SFT stage) on different
proportions of this data and plot the performance
curve in Figure 2. In both cases, similar to obser-
vations in (Xu et al., 2023), adding more parallel
data does not always improve these models and
they never attain the performance level reached by
using PL with MAPLE.

6We select News Commentary for its high-quality, domain-
matching parallel data to WMT test data. WMT20/21 are
included as MAPLE is built on a subset from them.

0103 104 105 10681.0

81.5

82.0

82.5

83.0

CO
M

ET

VicunaMT

0103 104 105 106

Mistral-InstructMT

SFT
PL

Figure 2: Performance comparison between PL using
4.4K examples from MAPLE and SFT, employing up
to 1.4M parallel data. Evaluation is done on WMT22,
and COMET scores are averaged across four translation
directions. Performing SFT on more parallel data does
not always lead to performance gain. PL consistently
outperforms SFT in all cases.

Diverse translations help more. By default, we
perform PL using all five translations provided by
MAPLE. We now study the relation between the
final model performance and the number of pref-
erence translations used. We select K = {2, 3, 4}
translations and rerun the PL algorithm on Vicu-
naMT and Mistral-InstructMT. We explore two se-
lection modes for selecting K translations. Given
five translations sorted by human preference scores
in descending order, the forward mode selects the
first K translations (i.e., the best K), while the
reverse mode select the first and last K − 1 trans-
lations. We compare both modes varying K and
present the results in Figure 3. There is a clear
disparity in performance with these two selection
modes. The reverse mode consistently outperforms
the forward mode given the same number of trans-
lations, with a larger advantage in low-resource
cases, such as when K = 2. This is intuitive since
the reverse mode always includes the highest- and
lowest-scored translations and thus, PL may have a
better chance to see “hard negatives” which have
low human preference score but high generation
probability. The general trend shows that including
more preference samples is better, and using all
available samples yields the best performance.

Distance information is crucial. Our framework
considers the distance information in preference
scores (Equation 5). We now investigate if this
information can be replaced by simply using the
ranking information. That is, we set dji = 1 for
all translations and rerun the PL algorithm. Ta-
ble 6 shows that when the distance information is
available, excluding the SFT loss does not harm
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Figure 3: Model performance varying number of transla-
tions (K) per source sentence. Evaluation conducted on
WMT22 and COMET scores averaged across four trans-
lation directions are reported. Reverse mode selects
more diverse translations and achieves better perfor-
mance, especially when fewer translations are provided.

VicunaMT Mistral-InstrctMT

SFT stage 81.25 81.03
PL stage 83.00 82.56

w/o LSFT 83.00 82.54
w/o distance 82.22 81.92
w/o LSFT /dist. 74.65 60.70
LSFT only 82.07 81.79

Table 6: Ablation study. PL is less sensitive to LSFT

than the distance information. Disabling both factors
leads to substantial model degradation.

the performance much. In fact, we achieve the
best performance when setting β = 0 for Vicu-
naMT. However, when the distance information
is withheld, we see a clear degradation in perfor-
mance. We find that a larger β value is required
when relying only on the ranking information, but
this makes the PL algorithm closer to SFT. As a
result, when only the ranking information is pro-
vided, VicunaMT performs similarly to the LSFT

only baseline. Finally, disabling both LSFT and
distance cause a large performance drop.

Better Model Calibration. In our preference
learning framework, the model learns both trans-
lation and the ability to differentiate between dif-
ferent translation quality. We analyze if PL has
successfully transferred human preference to the
model. Using the held-out set of MAPLE, we ex-
amine the sentence-level correlation between the
scores assigned by the human annotators and model
generation probability. Specifically, we compute
the average Pearson and Kendall’s tau correlation
varying the number of preference samples (reverse
mode). The results are presented in Figure 4. Com-

5 4 3 20.10

0.15

0.20

0.25

0.30

0.35

0.40
Pearson 

5 4 3 2

Kendall s 
VicunaMT
VicunaMT+PL

Figure 4: Sentence-level correlation between model gen-
eration probability and human preference scores varying
number of translations (K). PL helps the model align
better with human judgement.

pared to the SFT baseline, VicunaMT, PL substan-
tially improves the correlation, suggesting that our
final model aligns better with human preference.

7 Conclusion

We present a preference learning framework to
break the performance plateau faced when perform-
ing SFT. It enhances the translation capabilities
of LLMs by motivating them to differentiate the
nuances in different translations. To support this
framework, we have carefully curated a preference
dataset, named MAPLE, featuring translations of
varying quality, each scored by professional trans-
lators. Extensive experiments, including human
evaluations, confirm the effectiveness of this frame-
work. In addition, we demonstrate that MAPLE
can be reused to enhance other LLMs, further bol-
stering its practical usability. Future research could
consider extending our framework into an itera-
tive process for continuous improvement of LLMs’
translation capabilities.

Limitations

This work demonstrates that preference learning
can effectively improve LLMs’ translation capabil-
ities. However, our study is not exhaustive and has
the following limitations.

Low-resource languages. This work centers on
translation directions involving high-resource lan-
guages where LLMs already exhibit proficiency.
The extent to which translations for low-resource
languages can leverage our framework remains un-
certain. Nevertheless, it is important to empha-
size that our framework is language- and model-
agnostic, implying its potential applicability to low-
resource languages. We leave the investigation into
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this aspect to future work.

Annotation cost. Assigning preference scores
for five translations per sentence can be costly,
which may hinder the scaling up of the preference
dataset. However, as we show in Section 6, a pref-
erence learning dataset such as MAPLE offers dis-
tinct learning signal that is not covered by massive
parallel data. In addition, we highlight that the pref-
erence data can be reused to benefit other LLMs.
Thus, the collected data is a valuable and reusable
resource, rather than a one-time expense.

Noise in human judgement. Inevitably, human
preference scores can be subjective, and annota-
tors may not always agree. Additionally, there is a
risk of annotators finding shortcuts in the annota-
tion process (Ipeirotis et al., 2010; Hosking et al.,
2023). To reduce the potential annotation mistakes,
we average the scores of two translators for each
sample and all translators we employ are experi-
enced in translation assessment.
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A Incorporating multiple preferences
with distance information

In Section 3.2, we demonstrated how the distance
information of two preferences can be integrated
into preference modeling, as illustrated in Equa-
tion 9. A similar analysis can be done for the
Plackett-Luce ranking model to incorporate dis-
tance metrics across multiple preferences. Specifi-
cally, we model the probability of a particular or-
dering X1, · · · , XL as follows:

P (X1 ≥ X2 · · · ≥ XL)

=
L−1∏

i=1

Pi(Xi > Xj ,∀j > i)

For each distribution Pi, let Xj = sj+εj for j ≥ i,
with εj ∼ standard Gumbel and independent so that
(following Train (2003), Section 3)

Pi(Xi > Xj ,∀j > i) =
esi∑
j≥i e

sj

This ranking can be interpreted as a sequence
of L − 1 independent choices: choose the first
item, then choose the second among the remain-
ing alternatives, etc. (Maystre and Grossglauser,
2015). It is usually assumed that each independent
choice is made by the same judge whose under-
lying preferences do not change. If we assume
sj = log πθ(x, y

j) for this judge then Equation 4
results.

Suppose instead that, rather than a single judge,
a succession of L− 1 different judges each make
one of the sequence of independent choices. The
distributions Pi should change to reflect the chang-
ing preferences of the judges. In particular, if we
introduce the preference distances dji for the ith

judge, then we obtain Equation 5 if for each Pi the
location parameters are set to sj = dji log πθ(x, y

j)
for j ≥ i. We find that this modified version of
the Placket-Luce model can work well in practice
although we note that these modifications may vio-
late Luce’s Choice Axiom (Luce, 1959; Hamilton
et al., 2023).

Consider the case of L = 3. The Choice Axiom
requires the odds of choosing X2 over X3 are in-
dependent of the presence of X1 as an option, i.e.
that the odds should not depend on whether this is
a choice for the first or the second position

P1(X2 > Xj , j = 1, 3)

P1(X3 > Xj , j = 1, 2)
=

P2(X2 > X3)

P2(X3 > X2)

With the location parameters from above, the
Choice Axiom requires

πθ(x, y
2)d

2
1

πθ(x, y3)
d31

=
πθ(x, y

2)d
2
2

πθ(x, y3)
d32

or that πθ(x, y2)(d
2
1−d22) = πθ(x, y

3)(d
3
1−d32). This

holds for the default setting, dji = 1, leading to
Equation 4, but appears not to hold in general.

We find that the ground truth preference values
can be introduced as preference distances in the
binary comparison case, but that doing so in the
more general case, while useful, may not satisfy
the Axiom of Choice.

B More details on MAPLE

B.1 Data Construction
The source sentences in the training data of
MAPLE are sampled from the test sets of WMT20
and WMT21. As mentioned in Section 4, four of
the five translations are produced by VicunaMT.
Considering that VicunaMT is already a strong MT
system, often providing accurate translations free
of mistakes, randomly selecting source sentences
from WMT data could predominantly yield trans-
lations that are trivial for VicunaMT to translate,
resulting in the collection of many uninformative
samples with high human preference scores. To
mitigate this, we prioritize source sentences that
present difficulties for VicunaMT. Specifically, we
use reference translations as a proxy to assess the
quality of the model translations through COMET
scores. We give priority to samples where the beam
search output falls within a COMET score range
of [75,85] and where there is a significant standard
deviation in COMET scores among the four trans-
lations. Following these criteria, we select 1.1K
samples for each translation direction. For the de-
velopment set in MAPLE, we use monolingual data
from News Crawl 2022. The sampling and selec-
tion process are the same as that of the training set,
except that we do not have reference translations,
instead, we use a strong commercial MT system to
generate pseudo “reference” translations.

B.2 Scoring Rubric
The annotators are asked to judge the translation
on a scale of 1 to 6, following the guidelines out-
lined in the following scoring rubric. They can
assign scores in increments of 0.2, allowing for
more detailed assessments, such as 1.2, 1.4, and so
on.
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• Score it a 1 when the translation has nothing
to do with the source; or when the transla-
tion has many unknown words; or when the
translation looks like word salad.

• Score it a 2 when you can understand why
some of the words in the translation are there,
but when the meaning of the source sentence
is lost.

• Score it a 3 when you understand why all or
almost all the words in the translation are there
and when some of the meaning of the source
sentence are adequately transferred into the
target language, but when the main meaning
of the source sentence is lost.

• Score it a 4 when the meaning of the source
sentence is generally preserved, but when the
translation is mechanical and possibly has vo-
cabulary, grammatical, or date / numbering
errors.

• Score it a 5 when the meaning of the source
sentence is fully preserved and the translation
has no grammatical errors, but when the trans-
lation does not sound like the translation a
native target language speaker would produce
given the style and register of the source sen-
tence.

• Score it a 6 when the translation is perfect in
every sense of the word – something a pro-
fessional translator/interpreter would come up
with when she understands well the context in
which the source sentence was produced.

B.3 Annotation UI
The UI shows the different translations in a blind
and randomized order. All translations are scored
simultaneously. A screenshot of the UI is shown in
Figure 5.

B.4 More Examples
Table 7 shows two additional examples in which the
model’s translation scores higher than the reference
translation. This once again highlights the presence
of noise in parallel datasets.

C More implementation details

C.1 Dataset statistics
The data statistics are presented in Table 8. We use
different validation sets in different training stages

Source Other MPs criticised Twitter for al-
lowing the tweets to remain visible.

Reference
translation

其他议员也批评 Twitter未能及时
删贴。
(Other MPs have also criticized
Twitter for failing to promptly delete
tweets in time.)

Best of five
translation

其他议员批评了推特允许这些推
文仍然可见。
(Other MPs have criticized Twitter
for allowing these tweets to remain
visible.)

Source When he refused, the officials tipped
his cart over, destroying all the eggs,
the boy alleged.

Reference
translation

男 孩 说 ， 他拒 绝 交 出100卢
比后，那些官员就把他的小车掀
翻，把所有鸡蛋砸碎。
(The boy said that after he refused to
hand over 100 rupees, the officials
overturned his car and smashed all
the eggs.)

Best of five
translation

当他拒绝时，官员将他的车子推
倒，破坏了所有的蛋，男孩称。
(When he refused, officials pushed
his car over and broke all the eggs,
the boy said.)

Table 7: Two additional examples showing the reference
translations can be less accurate than the best model
prediction.

because MAPLE contains a subset of the parallel
data in WMT20/21.

C.2 Prompt format
For each source sentence, we attach a MT in-
struction asking the LLM to generate the transla-
tion. The MT instructions come from a instruction
pool based on the list of MT instructions released
by (Jiao et al., 2023a)7. We list all 31 instructions
in our instruction pool in Table 9. During train-
ing (in both SFT and PL stages), an instruction is
randomly sampled from the instruction pool. Dur-
ing evaluation, the first instruction from Table 9 is
always used. In addition to instructions, instruction-
tuned models like Vicuna requires specific prompt
formats. Table 10 presents a depiction of the con-
version process from raw data points to the final
model input.

C.3 Hyper-parameter search
Hyper-parameter search is done for β ∈
[0.0, 0.05, 0.1], and best values are selected accord-
ing to the validation loss.

7https://github.com/wxjiao/ParroT
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Figure 5: User interface of translation assessment.

Training stage Data source Number of samples
de→en en→de en→zh zh→en

Training
SFT stage

WMT17 3004 3004 2001 2001
WMT18 2998 2998 3981 3981
WMT19 2000 1997 1997 2000

PL stage MAPLE 1100 1100 1100 1100

Validation
SFT stage WMT21 1000 1002 1002 1948

PL stage WMT20 & 21∗ 500 500 500 500

Test -
WMT22 1984 2037 2037 1875

FLORES-200 1012 1012 1012 1012

Preference testing - MAPLE-dev 217 195 208 180

Table 8: Datasets used for training, validation and testing. ∗: a subset WMT20 and WMT21 is used.

C.4 Evaluation packages

We use the Unbabel/wmt22-comet-da model8

to compute the COMET scores and sacre-
BLEU9 for computing BLEU scores. The sig-
nature of the sacreBLEU package is nrefs:1,
case:mixed, eff:no, tok:13a, smooth:exp,
version:2.0.0 for all translation directions but
en→zh, in which we use tok:zh.

C.5 Hardware specifications and runtime

All experiments are either run on a host with eight
NVIDIA A100-40GB GPUs or with eight H100-
80GB GPUs. Mixed precision with bfloat16 is
used in both SFT and PL. Deepspeed10 zero-stage

8https://github.com/Unbabel/COMET
9https://github.com/mjpost/sacrebleu

10https://github.com/microsoft/DeepSpeed

3 is used when running PL with five preference
samples. Each experiment runs no longer than 15
minutes on H100 GPUs.

D SFT results in BLEU score

We present model performance after SFT stage
measured by BLEU score in Table 11. While the
general trend remains consistent in comparison
to the performance evaluated by COMET, there
are some exceptions. For example, although Vi-
cunaMT still achieves the top average score on
FLORES-200, it is outperformed by MistralMT
(i.e., Mistral + SFT) on WMT22.

E Model comparison in BLEU score

We present model performance measured by BLEU
score in Table 12. In this case, there is no clear

3400

https://github.com/Unbabel/COMET
https://github.com/mjpost/sacrebleu
https://github.com/microsoft/DeepSpeed


Instruction pool

Translate the following text from [SRC] to [TGT] :

Please provide the [TGT] translation for the following text

Convert the subsequent sentences from [SRC] into [TGT] :

Render the listed sentences in [TGT] from their original [SRC] form:

Transform the upcoming sentences from [SRC] language to [TGT] language:

Translate the given text from [SRC] to [TGT] :

Turn the following sentences from their [SRC] version to the [TGT] version:

Adapt the upcoming text from [SRC] to [TGT] :

Transpose the next sentences from the [SRC] format to the [TGT] format.

Reinterpret the ensuing text from [SRC] to [TGT] language.

Modify the forthcoming sentences, converting them from [SRC] to [TGT] .

What is the meaning of these sentences when translated to [TGT] ?

In the context of [TGT] , what do the upcoming text signify? The text is:

How would you express the meaning of the following sentences in [TGT] ?

What is the significance of the mentioned sentences in [TGT] ?

In [TGT] , what do the following text convey?

When translated to [TGT] , what message do these sentences carry?

What is the intended meaning of the ensuing sentences in [TGT] ?

How should the following sentences be comprehended in [TGT] ?

In terms of [TGT] , what do the next sentences imply?

Kindly furnish the [TGT] translation of the subsequent sentences.

Could you supply the [TGT] translation for the upcoming sentences?

Please offer the [TGT] rendition for the following statements.

I’d appreciate it if you could present the [TGT] translation for the following
text:

Can you deliver the [TGT] translation for the mentioned sentences?

Please share the [TGT] version of the given sentences.

It would be helpful if you could provide the [TGT] translation of the ensuing
sentences.

Kindly submit the [TGT] interpretation for the next sentences.

Please make available the [TGT] translation for the listed sentences.

Can you reveal the [TGT] translation of the forthcoming sentences?

Translate from [SRC] to [TGT] :

Table 9: An instruction pool containing 31 MT prompts. An instruction is randomly sampled from this pool to form
a training sample. At inference time, the first instruction is always used. [SRC] and [TGT] will be replaced by
the source and target sentence in the dataset, respectively.

winner. Interestingly, VicunaMT+PL attains lower
BLEU scores than VicunaMT on en→de and
zh→en when evaluated on WMT22. However,
both COMET score and our human evaluation in
Table 4 show the opposite, highlighting that BLEU
scores may less correlated to human judgement, as
also noticed in (Freitag et al., 2022).

F Data reuse in BLEU score and Results
on FLORES-200

We reuse MAPLE to enhance BLOOMZMT and
MistralInstructMT (i.e., BLOOMZ and MistralIn-
struct after the SFT stage) and report model perfor-
mance on WMT22 in BLEU score in Table 13. In
addition, we evaluate MistralInstructMT on FLO-
RES and present the results in Table 14.
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Model Instruction template

Vicuna USER: [MT Instruction] \nASSISTANT:\n

Mistral-Instruct [INST] [MT Instruction] \n[\INST]

BLOOMZ USER: [MT Instruction] \nASSISTANT:\n

(a)

Example

USER: Translate the following text from English to German: Hello, world.

\nASSISTANT:\n Hallo, Welt.

(b)

Table 10: (a) Instruction template used for Vicuna, Mistral-Instruct, and BLOOMZ. Raw template is marked in
red . BLOOMZ shares the same template as Vicuna at the SFT and PL stage. When performing BLOOMZ on

zero-shot tasks, we directly use the first instruction from Table 9 without any instruction template. (b) An example
that converts the raw input (marked in green ) to the final input.

de→en en→de en→zh zh→en Avg.

WMT22
BLOOM 1.51 0.53 1.74 5.43 2.30

+SFT 23.73 16.15 35.15 21.64 24.17
BLOOMZ 21.59 6.79 28.72 18.54 18.91

+SFT 23.89 16.79 35.41 21.01 24.28
Mistral 4.32 2.65 4.93 7.01 4.73

+SFT 29.39 24.60 31.51 22.09 26.90
Mistral-Ins. 28.04 21.27 21.85 17.77 22.23

+SFT 28.26 24.61 31.90 20.60 26.35
LLaMA-1 6.30 4.00 0.88 3.01 3.55

+SFT 28.28 19.09 25.31 20.27 23.24
Vicuna 26.16 22.11 26.26 13.91 22.11

+SFT 29.26 25.70 29.98 20.61 26.39

FLORES-200
BLOOM 3.88 1.48 7.00 3.75 4.03

+SFT 31.85 16.26 34.66 23.78 26.64
Mistral 3.58 1.37 0.16 1.06 1.54

+SFT 40.48 29.18 29.43 24.67 30.94
Mistral-Ins. 36.81 25.64 19.81 19.25 25.38

+SFT 39.16 27.79 29.77 23.10 29.96
LLaMA-1 4.08 2.80 1.73 1.60 2.55

+SFT 40.70 29.95 20.21 20.66 27.88
Vicuna 35.07 26.86 26.09 17.53 26.39

+SFT 41.90 30.63 28.52 23.34 31.10

Table 11: Model performance (in BLEU score) before
and after performing SFT on parallel data. Rows in
blue indicate instruction-tuned LLMs. Best results are
in bold. Instruction-tuned LLMs perform well even
without SFT. Raw LLMs benefits the most from SFT.
We exclude BLOOMZ on FLORES-200 as it is a part
of BLOOMZ’s training data.
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System
WMT22 FLORES-200

de→en en→de en→zh zh→en Avg. de→en en→de en→zh zh→en Avg.

Commercial & LLaMA-2-7B based MT systems
ChatGPT(3.5-turbo-0613) 33.13 33.56 44.59 25.63 31.62 43.06 40.07 45.69 25.57 36.55
GPT-4(gpt-4-0613) 33.72 34.84 42.75 26.33 34.41 43.79 41.81 46.10 27.39 39.77
ALMA-7B(LLaMA-2) 29.49 30.31 36.48 23.52 29.95 -⊗ -⊗ -⊗ -⊗ -⊗

BLOOMZ-mt-7B based LLMs
ParroT(BLOOMZ-mt) 24.90 20.50 34.50 22.70 25.65 -∗ -∗ -∗ -∗ -∗

TIM(BLOOMZ-mt) 24.31 20.63 37.20 23.42 26.39 -∗ -∗ -∗ -∗ -∗

SWIE(BLOOMZ-mt) 25.95 21.83 36.88 23.33 27.00 -∗ -∗ -∗ -∗ -∗

LLaMA-1-7B based LLMs
ParroT(LLaMA-1) 27.30 26.10 30.30 20.20 25.98 39.40 30.70 29.10 21.30 32.38
TIM(LLaMA-1) 27.91 25.02 30.07 19.33 25.58 39.15 29.31 28.43 22.30 29.80
SWIE(LLaMA-1) 30.48 27.10 31.08 21.19 27.47 40.20 31.41 29.07 21.59 30.57
VicunaMT(LLaMA-1) 29.26 25.70 29.98 20.61 26.39 41.90 30.63 28.52 23.34 31.10
+ REF 31.12 24.72 30.07 20.38 26.58 39.03 29.36 28.87 22.84 30.03
+ BEST 29.44 24.93 30.91 20.39 26.16 41.29 29.34 30.07 23.48 31.05
+ PL 30.63 24.63 31.52 20.44 26.81 40.07 29.33 30.50 21.99 30.47

Table 12: Model performance in BLEU scores. Best results with LLaMA-1 based models are in bold. ⊗: LLaMA-2
based models were not evaluated due to license constraints. WMT22 results are extracted from the original paper. ∗:
BLOOMZ-family models use FLORES-200 for training.

WMT22
de→en en→de en→zh zh→en Avg.

BLOOMZ† 23.89 16.79 35.41 21.01 24.28
+REF 24.51 15.26 33.43 21.80 23.75
+BEST 23.80 16.33 34.99 21.49 24.15
+PL 24.84 16.81 36.48 23.15 25.32

Mistral-Ins.† 28.26 24.61 31.90 20.60 26.35
+REF 30.94 25.62 31.66 21.52 27.44
+BEST 29.76 24.30 31.12 20.83 26.50
+PL 29.32 24.78 33.00 21.76 27.47

Table 13: Model performance on WMT22 in BLEU
scores. Best results are in bold. †: SFT stage has
already been applied to these models.

FLORES-200
de→en en→de en→zh zh→en Avg.

COMET
Mistral-Ins.† 88.21 83.73 82.41 84.77 84.78
+REF 88.10 85.04 83.59 84.74 85.37
+BEST 88.41 84.55 83.46 84.94 85.34
+PL 88.56 84.98 83.86 85.34 85.67

BLEU
Mistral-Ins.† 39.16 27.79 29.77 23.10 29.96
+REF 38.10 28.39 31.24 23.09 30.21
+BEST 39.35 28.33 30.46 22.98 30.28
+PL 39.80 27.97 31.00 23.44 30.55

Table 14: Model performance on FLORES-200 in
COMET and BLEU scores. Best results are in bold.
†: SFT stage has already been applied to these models.
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