@inproceedings{zhao-etal-2024-knn,
title = "$k${NN}-{ICL}: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning",
author = "Zhao, Wenting and
Liu, Ye and
Wan, Yao and
Wang, Yibo and
Wu, Qingyang and
Deng, Zhongfen and
Du, Jiangshu and
Liu, Shuaiqi and
Xu, Yunlong and
Yu, Philip",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.19",
doi = "10.18653/v1/2024.naacl-long.19",
pages = "326--337",
abstract = "Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags. Recently, Large Language Models (LLMs) have achieved impressive performance in synthesizing computer programs based on a natural-language prompt, mitigating the gap between natural language and structured programs. Our paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks, addressing the following three key research questions: 1) How can LLMs be effectively utilized for semantic parsing tasks? 2) What defines an effective prompt? and 3) How can LLM overcome the length constraint and streamline prompt design by including all examples as prompts? We introduce k Nearest Neighbor In-Context Learning (kNN-ICL), which simplifies prompt engineering by allowing it to be built on top of any design strategy while providing access to all demo examples. Extensive experiments show that: 1) Simple ICL without kNN search can achieve a comparable performance with strong supervised models on the TOP tasks, and 2) kNN-ICL significantly improves the comprehension of complex requests by seamlessly integrating ICL with a nearest-neighbor approach. Notably, this enhancement is achieved without the need for additional data or specialized prompts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2024-knn">
<titleInfo>
<title>kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenting</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yibo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingyang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongfen</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangshu</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuaiqi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunlong</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags. Recently, Large Language Models (LLMs) have achieved impressive performance in synthesizing computer programs based on a natural-language prompt, mitigating the gap between natural language and structured programs. Our paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks, addressing the following three key research questions: 1) How can LLMs be effectively utilized for semantic parsing tasks? 2) What defines an effective prompt? and 3) How can LLM overcome the length constraint and streamline prompt design by including all examples as prompts? We introduce k Nearest Neighbor In-Context Learning (kNN-ICL), which simplifies prompt engineering by allowing it to be built on top of any design strategy while providing access to all demo examples. Extensive experiments show that: 1) Simple ICL without kNN search can achieve a comparable performance with strong supervised models on the TOP tasks, and 2) kNN-ICL significantly improves the comprehension of complex requests by seamlessly integrating ICL with a nearest-neighbor approach. Notably, this enhancement is achieved without the need for additional data or specialized prompts.</abstract>
<identifier type="citekey">zhao-etal-2024-knn</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.19</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.19</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>326</start>
<end>337</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning
%A Zhao, Wenting
%A Liu, Ye
%A Wan, Yao
%A Wang, Yibo
%A Wu, Qingyang
%A Deng, Zhongfen
%A Du, Jiangshu
%A Liu, Shuaiqi
%A Xu, Yunlong
%A Yu, Philip
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F zhao-etal-2024-knn
%X Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags. Recently, Large Language Models (LLMs) have achieved impressive performance in synthesizing computer programs based on a natural-language prompt, mitigating the gap between natural language and structured programs. Our paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks, addressing the following three key research questions: 1) How can LLMs be effectively utilized for semantic parsing tasks? 2) What defines an effective prompt? and 3) How can LLM overcome the length constraint and streamline prompt design by including all examples as prompts? We introduce k Nearest Neighbor In-Context Learning (kNN-ICL), which simplifies prompt engineering by allowing it to be built on top of any design strategy while providing access to all demo examples. Extensive experiments show that: 1) Simple ICL without kNN search can achieve a comparable performance with strong supervised models on the TOP tasks, and 2) kNN-ICL significantly improves the comprehension of complex requests by seamlessly integrating ICL with a nearest-neighbor approach. Notably, this enhancement is achieved without the need for additional data or specialized prompts.
%R 10.18653/v1/2024.naacl-long.19
%U https://aclanthology.org/2024.naacl-long.19
%U https://doi.org/10.18653/v1/2024.naacl-long.19
%P 326-337
Markdown (Informal)
[kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning](https://aclanthology.org/2024.naacl-long.19) (Zhao et al., NAACL 2024)
ACL
- Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yunlong Xu, and Philip Yu. 2024. kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 326–337, Mexico City, Mexico. Association for Computational Linguistics.