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Abstract

Human annotation plays a core role in machine
learning — annotations for supervised models,
safety guardrails for generative models, and
human feedback for reinforcement learning, to
cite a few avenues. However, the fact that
many of these human annotations are inher-
ently subjective is often overlooked. Recent
work has demonstrated that ignoring rater sub-
jectivity (typically resulting in rater disagree-
ment) is problematic within specific tasks and
for specific subgroups. Generalizable methods
to harness rater disagreement and thus under-
stand the socio-cultural leanings of subjective
tasks remain elusive. In this paper, we pro-
pose GRASP, a comprehensive disagreement
analysis framework to measure group associa-
tion in perspectives among different rater sub-
groups, and demonstrate its utility in assess-
ing the extent of systematic disagreements in
two datasets: (1) safety annotations of human-
chatbot conversations, and (2) offensiveness
annotations of social media posts, both an-
notated by diverse rater pools across differ-
ent socio-demographic axes. Our framework
(based on disagreement metrics) reveals spe-
cific rater groups that have significantly differ-
ent perspectives than others on certain tasks,
and helps identify demographic axes that are
crucial to consider in specific task contexts.

1 Introduction

Automatic detection of unsafe, offensive or toxic
text has long been an active area of research in Nat-
ural Language Processing (NLP). Originally aimed
at online content moderation (Wulczyn et al., 2017;

Founta et al., 2018), and recently, triggered by aca-
demic and governmental calls for action (European
Commission, 2020; White House, 2023), these ef-
forts are also addressing the urgent need to equip
generative technologies with safety guardrails that
prevent inadvertent generation of offensive or harm-
ful content (Bai et al., 2022; Glaese et al., 2022).

Much of this work relies on human annotation
for evaluating and training offensiveness or safety
classifiers, or fine-tuning generative models. Cur-
rent approaches largely overlook cultural and in-
dividual factors that shape raters’ perspectives on
what is safe or offensive (Aroyo and Welty, 2015;
Waseem, 2016; Salminen et al., 2019; Uma et al.,
2021). Systematic rater disagreements are instead
circumvented by enforcing a single ground truth or
using majority vote, which inadvertently marginal-
izes minority perspectives and further amplifies
societal biases in data (Prabhakaran et al., 2021).

Recent work points to the need for greater di-
versity in rater pools (Thoppilan et al., 2022) and
proposes ways to incorporate disagreements in the
learning pipeline (e.g., (Davani et al., 2022)). How-
ever, incorporating rater diversity at scale is still a
challenge, as there are numerous diversity axes to
consider, and it is unclear which ones are relevant
for particular tasks. For instance, in sentiment anal-
ysis, Prabhakaran et al. (2021) found that, while
there were systematic disagreements between raters
from different racial groups, there were no signifi-
cant differences across gender groups. In contrast,
Homan et al. (2023) found that safety annotations
did not differ substantially across race/ethnicity
or gender groups individually, but they did differ
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across intersectional race/ethnicity–gender groups.
The lack of effective metrics that can capture such
inter-group and intra-group cohesion at scale to de-
termine group-level associations, is a critical issue.

In this paper, we propose GRASP (Group
Associations in Perspctives), a framework to mea-
sure the magnitude and strength of systematic
diversity of perspectives among rater subgroups.
GRASP combines a suite of metrics that measure
group associations in annotations with a permuta-
tion tests based significance testing approach that
assesses the reliability of these associations without
any independence assumptions. We apply GRASP
to two datasets: DICES-350 (Aroyo et al., 2023)—
350 chatbot conversations annotated for safety by
104 raters from a diverse pool across age, gender,
and race; and D3 (Davani et al., 2023b)—social me-
dia comments annotated for offensiveness by 4000
raters balanced across cultural regions, gender, and
age. GRASP reveals systematic disagreements in
annotations along demographic lines, and shows
that it picks up task-dependent group associations
in an efficient and effective manner, furthering the
objective of identifying meaningful diversity in an-
notator perspectives in subjective tasks.

2 Related work

Prior work on detecting harmful language, such as
toxicity (Pavlopoulos et al., 2020; Xenos et al.,
2022), offensiveness (Davidson et al., 2017),
and hate speech (Warner and Hirschberg, 2012;
Waseem and Hovy, 2016), has led to curating
datasets and developing models for social media
content moderation (Wulczyn et al., 2017; Founta
et al., 2018; Vidgen et al., 2019). Recent advance-
ments in conversational AI also increased attention
to ensure safety and mitigate potential harms (e.g.,
Solaiman and Dennison, 2021; Xu et al., 2021;
Shelby et al., 2022; Si et al., 2022; Bian et al., 2023;
Huang et al., 2023; Santurkar et al., 2023). The lat-
est generation of AI-driven language technologies
(OpenAI, 2022; Google, 2022, 2023; Taori et al.,
2023) is based on large language models (OpenAI,
2023; Touvron et al., 2023) using reinforcement
learning from human feedback (RLHF) (Christiano
et al., 2023; Ouyang et al., 2022). Studies show that
on human alignment tasks, rater disagreement can
be as high as 40% (Ziegler et al., 2020). However,
not much work has gone into developing scalable
methods to meaningfully measure and tackle these
high levels of rater disagreement.

Rater disagreement has a long history in NLP
research as a challenge for crowd-sourced annota-
tions and as a potential indication of human biases
(Arhin et al., 2021; Mathew et al., 2021; Sahoo
et al., 2022; Wich et al., 2020). Though tradition-
ally viewed as a mark of poor quality data, disagree-
ment is increasingly seen as an important qualita-
tive signal in its own right, one that is present in
most tasks that requires human judgement (Aroyo
and Welty, 2013; Hovy et al., 2013; Plank et al.,
2014; Klenner et al., 2020; Basile et al., 2021;
Weerasooriya et al., 2023a).

Empirical analyses of inter-rater disagreements
put forth raters’ backgrounds and experiences as
crucial to their annotations in such tasks, leading to
systematic disagreements (e.g., Prabhakaran et al.,
2021; Kumar et al., 2021; Denton et al., 2021; Sap
et al., 2022; Biester et al., 2022; Deng et al., 2023;
Homan et al., 2023; Pei and Jurgens, 2023). For
instance, raters’ demographics, including first lan-
guage, age, and education, can significantly im-
pact the performance of hate speech and abusive
language detectors trained on that rater’s behavior
(Al Kuwatly et al., 2020), and raters’ stereotypes
about different social groups and attitudes toward
racism impact their annotations of hate speech and
racist language targeting those groups (Sap et al.,
2022; Davani et al., 2023a). Similarly, Davani
et al. (2023b) show that annotations of offensive-
ness vary across geo-cultural contexts.

Consequently, a large body of work has emerged
to quantify, model, and measure rater disagree-
ment (e.g., Kairam and Heer, 2016; Founta et al.,
2018; Geva et al., 2019; Chung et al., 2019; Ober-
meyer et al., 2019; Liu et al., 2019; Weerasooriya
et al., 2020; Uma et al., 2021; Weerasooriya et al.,
2023b). In early work, Hovy et al. (2013) intro-
duce MACE, an unsupervised item-response model
to capture raters’ relative trustworthiness to more
accurately aggregate annotations into a final la-
bel. Recently, Weerasooriya et al. (2020) proposed
predictive models for rater disagreement that take
into account sampling error, a common problem in
datasets with very few annotations per item.

Novel modeling efforts have further incorpo-
rated raters’ demographics and other background
attributes to improve the predictions (Hovy, 2015;
Garten et al., 2019; Hovy and Yang, 2021). Using
multi-task modeling frameworks, Fornaciari et al.
(2021) add an auxiliary task to predict the soft label
distribution over rater labels, Davani et al. (2022)
model individual raters using a shared network to
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preserve their systematic disagreements until pre-
diction, and Orlikowski et al. (2023) incorporates a
group-specific layer to assess the benefits of socio-
demographic attributes in modeling annotations.
Hung et al. (2023) demonstrating the performance
improvement when predicting raters’ age and gen-
der is coupled with language modeling objectives.
Our work provides a framework that anchors on
intra-group and inter-group cohesion to qualify the
strength of disagreements within and across groups,
and provide statistical tests to assess the reliability
of these observed group-level patterns.

3 Group Associations in Annotations

As outline above, recent studies have established
the need to account for systematic rater disagree-
ment in subjective tasks by demonstrating socio-
demographic differences in rater perceptions. How-
ever, systematic approaches to reliably assess
whether and how much diversity axes impact dis-
agreement for different tasks are still missing. To
address this gap, we introduce a comprehensive
analysis framework to measure statistically signifi-
cant group associations within human annotations.

3.1 Terminology

Let us represent a human-annotated dataset as a
collection of items X with a corresponding col-
lection of annotations Y, obtained from a collec-
tion of raters Z. Each row Xi is an item that is
annotated, and each corresponding Yi captures
the annotations for Xi. The columns in Yi corre-
spond to individual raters’ annotations. In other
words, Yij represent annotations by rater j ∈ Z for
item i.1 In its simplest case, Yij can be a binary
value, but it can be conceived as a vector capturing
j’s responses to different questions pertaining to
i, or a one-hot encoding of j’s annotation in case
of categorical values. Each row Zk represents a
rater k and the columns of Zk contain group at-
tributes (e.g., demographic characteristics such as
gender, race/ethnicity, and/or age associated with
k). Let Π denote a set of demographic properties,
e.g., Π = {gender = MALE, age = GenZ}. Then,
let Z[Π] ⊆ Z denote the subpopulation of raters
satisfying that property, and let YZ[Π] denote the
submatrix of Y that captures the annotations of
that subpopulation of raters according to Π.

1Note that Yij may be a sparse matrix if each item is
labeled by only a handful of raters (which is often the case).

3.2 Disagreement Analysis Framework

We aim to determine whether certain rater groups,
defined in terms of their demographic attributes,
systematically (and in statistically significant ways)
differ from others in terms of their annotations for
a given task. For this, we need to measure the
(dis)agreement between raters within the group, as
well as with those from outside the group.

In-group Cohesion (CI(Y )) captures how
much cohesion a particular rater group has among
themselves. Formally, an in-group cohesion
metric is a mapping CI : 2Y → R where, for any
subgroup of annotations Y ⊆ Y, higher values
of CI(Y ) indicate higher levels of agreement
among Y . We are interested in CI(YZ[Π]), the
in-group cohesion among raters who satisfy the set
of demographic properties Π.

Cross-group Cohesion (CX(Y, Y ′)) captures
how much one rater group agrees with another rater
group. Formally, a cross-group cohesion metric is
a mapping CX : 2Y×2Y → R where, for any pair
of subgroups of annotations Y, Y ′ ⊆ Y, higher val-
ues of CX(Y, Y ′) indicate higher levels of agree-
ment between the annotations in Y and Y ′. While
cross-group cohesion could be calculated for any
two given subsets of annotations, we are primarily
interested in CX(YZ[Π],YZ[¬Π]), the cross-group
cohesion between raters satisfying demographic
properties Π and those who do not.

Group Association Index (GAI): Both in-
group and cross-group cohesion are useful for as-
sessing the strength of annotation patterns found
in a demographic grouping Π. For instance, high
in-group cohesion within Z[Π] and cross-group co-
hesion between Z[Π] and Z[¬Π] might just mean
that the task has high agreement across the board.
On the other hand, Z[Π] having both low in-group
and cross-group cohesion might suggest that the
raters in general have a hard time agreeing with
one another, regardless of the specific grouping Π.
Inspired by graph-theoretic metrics for community
detection in networks, such as modularity (New-
man, 2006), we introduce a group association index
that combines these two aspects into a single score:

GAI(Π) =
CI(YZ[Π])

CX(YZ[Π],YZ[¬Π])

The baseline value of GAI is 1; i.e., when CI

and CX are more or less the same, regardless of
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their magnitudes, the task annotation patterns have
minimal or no group association with Π. When CI

is larger than CX , the GAI values will be higher
than 1, suggesting higher group association with
Π for the task. On the other hand, for GAI values
less than 1, raters agree more with raters outside the
group than within the group, suggesting that there
are potential patterns of systematic disagreement
that are not captured by Π.

Diversity Sensitivity Index (DSI): GAI indi-
cates which groups significantly differ from oth-
ers. There are numerous demographic axes (e.g.,
gender, age, race/ethnicity, sexual orientation, etc.)
along which a rater pool can be diversified. When
recruiting raters, which (if any) of these should be
prioritized? It helps to know whether and by how
much the subgroups within any axis have a signifi-
cant GAI . This is more insightful than the average
GAI value. Hence, we define diversity sensitivity
index of a task w.r.t. a demographic axis with K
groups as the max of GAI(Πk) for k ∈ [1,K].
Note that the statistical significance (see below) of
the GAI value applies to the DSI value too; i.e.,
if the GAI value is not significant, the DSI is not
either, and vice versa.

3.3 Significance Testing

To ensure our diversity measurements are reliable,
it is important to test their significance. Commonly
used tests assume the data items are independently
sampled, which doesn’t hold in our case, since each
annotation depends on all items with the same rater
and all raters who annotated that item. So we use
permutation tests to control for these dependencies.

Null hypothesis: For any in-group cohesion (or
cross-group divergence) metric CI (or CX ), our
null hypothesis H0 is

H0: Value of CI (or CX ) for any (pair
of) subpopulation(s) YZ[Π1] (, YZ[Π2])
is independent of demographic profile(s)
of member(s) of Π1 (and Π2).

To test H0, we randomly shuffle the raters demo-
graphic profiles, measure the test statistic after each
shuffle, and then count how many times the shuf-
fled statistic exceeds the observed value. If the
observed value is significant, then only a small
percentage of the measurements from random
groups should exceed the observed value. For-
mally, p-value of CI is defined as:

pCI
(YZ[Π1]) =def




‖{s∗i : s∗i < C(YZ[Π1])}‖/N
if C(YZ[Π1]) < s∗bN/2c,

‖{s∗i : s∗i > C(YZ[Π1])}‖/N
otherwise.

where N is a large number and s∗1, . . . , s
∗
N are com-

puted by the following pseudocode:

i← 0
while i < N do
Z∗ ← randomly permute the rows of Z (but
fix the indices, so that the rows map to the
same annotations even though their demo-
graphics have changed)
i← i + 1
s∗i ← C(YZ∗[Π1])

end while
reorder s∗1, . . . , s

∗
N in ascending order.

The p-value pCX
(YZ[Π1],YZ[Π2]) of CX is de-

fined as above, except that we replace CI(YZ[Π1])
with CX(YZ[Π1],YZ[Π2]) (and CI(YZ∗[Π1]) with
CX(YZ∗[Π1],YZ∗[Π2])).

Multiple test correction: If numerous tests are
conducted and the null hypothesis is true, then by
the Law of Large Numbers some of them are likely
to have small p-values, making them falsely appear
to be significant (type I error). There is no widely
accepted best practice for dealing with this problem.
Some researchers advocate never using p-values
for exploratory research (Hak, 2014; Trafimow and
Marks, 2015) or to apply corrections such as Bon-
feronni (Bonferroni, 1936; Holm, 1979) against the
family-wise error rate. Other researchers see those
approaches as too restrictive, which can lead to im-
portant discoveries being missed (Gaus et al., 2015;
Goeman and Solari, 2011; Rubin, 2017). We adopt
a mixed approach and report two levels of signifi-
cance: significance with no correction whatsoever
and with Benjamini-Hochberg false discovery rate
(FDR) correction (Benjamini and Hochberg, 1995).

3.4 Metrics
The concepts introduced in §3.2 are metric-
agnostic, and the choice of metric must be justified
for each experiment. Here, we describe the three
kinds of metrics we use in this paper for both CI

and CX ; we compare and contrast what these met-
rics are sensitive to and what they reveal.
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3.4.1 In-group Cohesion Metrics

IRR: We use IRR (Inter-rater reliability, particu-
larly, Krippendorff’s alpha Krippendorff 2004) to
measure within-group agreement while controlling
for class imbalance. Krippendorff’s alpha has an
advantage over other IRR metrics: it can handle
an arbitrary number of raters, answer options and
items at one time, and it unifies and generalizes a
number of other IRR metrics, including Scott’s pi
and Fleiss’ kappa (Krippendorff, 2004). It is for-
mulated as 1− od

ed
, where od is the mean observed

disagreement between pairs of distinct raters, and
ed is the class-imbalance-controlling term. The od
term is, effectively, hamming distance and ed is
the expected amount of disagreement, under the as-
sumption that each rater’s responses are randomly
distributed among the conversations they label (but
each rater’s marginal distribution of annotations is
fixed), independent of the other raters’ responses.

Plurality size: IRR and our many other metrics
are based on counting the (dis)agreements between
pairs of raters. But in practice, raters are often
seen as populations whose annotations are taken
as votes, where the most popular annotation (i.e.,
majority vote) becomes the gold standard response.
Thus, a very natural measurement of agreement is
the fraction of raters who belong to the most pop-
ular choice (similar to Prabhakaran et al. 2021’s
approach). This metric is less sensitive to class
imbalance than metrics that count pairwise dis-
agreements. It is computed by iterating over each
item, taking the argmax over the distribution of
responses, and then taking its mean over all pairs.

Negentropy: IRR measures pairwise agreement
between raters and plurality size captures the im-
pact of disagreement in the rating aggregation pro-
cess. Another common way to measure disagree-
ment in groups, used in polls and surveys, is to
estimate the distribution of annotations associated
with each item. Entropy is a common metric for
measuring the randomness of a probability distribu-
tion, such as the annotations from multiple raters to
a safety question about a conversation. It captures
how evenly distributed the ranges of responses are.
To orient all our metrics so that larger numbers
mean more agreement, we report negentropy (Bril-
louin, 1953): for each conversation, we compute
the entropy over the distribution of responses. Then
we subtract this from the maximum value entropy
can take over the response domain. For a domain

with n possible responses, this number is lnn. Fi-
nally, we take the mean over all conversations.

3.4.2 Cross-group Divergence Metrics
Analogous to our in-group cohesion metrics, we
focus on three cross-group cohesion metrics.

XRR: Cross-replication reliability (Wong et al.,
2021) is similar to Krippendorff’s alpha, except
that the pairs of raters being compared come from
separate groups. Like alpha, XRR can handle arbi-
trary numbers of raters, answer options and items.
And it also controls for class imbalance.

Voting agreement: For across-group agreement,
it is equally natural, by analogy to plurality size, to
compare two groups as if they were voting blocks.
For each item, we compute the plurality choice
for each group. To account for class imbalance,
we compute Krippendorff’s alpha over all conver-
sations between the two groups, based on each
group’s plurality choices. Although straightfor-
ward, we are not aware of this method proposed as
a group-level divergence metric.

Cross-negentropy: Cross-entropy is algorithmi-
cally similar to entropy but is computed over two
distributions, not one. We define cross-negentropy
in an analogous manner to negentropy.

4 Experiments

4.1 Data

We apply our metrics to the two datasets: DICES-
350 (Aroyo et al., 2023),2 and D3 (Davani et al.,
2023b). The DICES-350 dataset is a curated sam-
ple of 8k multi-turn conversation corpus generated
by human agents interacting with a generative AI-
chatbot (Thoppilan et al., 2022) in an adversar-
ial setting. These conversations were then anno-
tated for safety by a diverse rater pool. The D3
dataset contains a curated sample of social media
posts from Jigsaw datasets (Jigsaw, 2019, 2018),
annotated for offensiveness in text. We choose the
DICES-350 and D3 datasets as they both contain
fully replicated annotations from a diverse rater
pool along with their demographic details, enabling
our in-depth and fine-grained group-level analyses.

DICES-350 contains annotations for safety
along 16 dimensions for all 350 conversation by
123 unique raters based in the US. The authors of

2https://github.com/google-research-datasets/dices-
dataset/tree/main/350
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Dataset Items Rater
pool

Raters
per item

Total
annotations

DICES-350 350 104 104 582,400
D3 4554 4309 24 150,702

Table 1: DICES-350 and D3 dataset annotation stats.

DICES-350

Race Gender Age

F M GenZ Mill. GenX+

As. 9 12 4 12 5
Bl. 16 7 13 5 5
Lat. 12 10 6 7 9

Multi. 4 9 6 2 5
Wh. 16 9 5 2 18

Table 2: DICES-350 raters in various demographic in-
tersectional groups. Race/ethnicity information is ab-
breviated for space: Bl: Black; Wh: White; As: Asian;
Lat: Latine; Multi: Multi-racial.

D3

Region Gender Age

F M O 18-30 30-50 50+

AC. 205 306 5 269 168 79
ICS. 245 308 1 237 198 119
LA. 275 271 3 302 176 71
NA. 325 220 6 263 175 113
Oc. 307 203 7 161 221 135
Si. 249 280 11 208 228 104

SSA. 219 309 2 320 157 53
WE. 294 252 6 259 172 121

Table 3: D3 dataset raters in various intersectional
groups. Region names abbreviated for space: AC: Arab
Culture; ICS: Indian Cultural Sphere; LA: Latin Amer-
ica; NA: North America, Oc: Oceania, Si: Sinosphere;
SSA: Sub-Saharan Africa, WE: Western Europe.

DICES-350 aimed for an approximately equal num-
bers of raters in each of the 12 demographic groups
(3 x 4 design) created by fully crossing age groups
(GenZ, Millennial, GenX+) with race/ethnicity
(Asian; Black; Latine/x; White). All raters an-
notated all 350 conversations. We limit our study
to 104 raters after removing 19 raters who were
deemed unreliable by the authors of DICES-350.
See Table 2 for breakdowns of the demographic
groupings along race, gender, and age.

The safety annotation dimensions cover a vari-
ety of safety violations, including harmful content,
unfair bias, misinformation, and political endorse-
ments, and raters may respond Safe, Unsafe, or
Unsure. We compute a single safety response for
each rater-conversation pair by aggregating the re-

sponses into a single, overall safety response. For
any conversation, if any of the safety annotations
is Unsafe, then we label the entire conversation as
unsafe. Otherwise, if any of the safety annotations
is Unsure, then so is the aggregated response. Oth-
erwise, the aggregated response is Safe. In other
words, it only takes one reason for a conversation
to be unsafe and, conversely, if a conversation is
unsafe, it need only be unsafe for one reason.

D3 is similarly annotated by a diverse pool of 4k
raters across 8 geo-cultural regions and 21 coun-
tries. Each item in the dataset was annotated by
at least three raters in each region (∼24 annota-
tions per item). The annotation effort aimed for
capturing an approximately equal number of raters
(∼450) from each region and equal ratio of repre-
sentation for various demographic group across age
(18 to 30, 30 to 50, and more than 50 years old) and
genders (Man, Woman, and Other). See Table 3 for
the breakdown of the demographic groups across
different regions, gender, and age groups.

Raters were asked to label the textual items’ level
of offensiveness on a 5-point Likert scale, 1 being
not offensive at all and 5 being extremely offensive,
with the option of choosing Unsure. We treated a
score of 3 or higher as being Offensive, in line with
the dataset creators (Davani et al., 2023b).

4.2 Results
We report results of our analysis using IRR and
XRR as the in-group and cross-group cohesion
metrics in for both DICES-350 and D3 datasets
in Table 4. We focus on IRR and XRR based analy-
sis in this section, but the full results using all other
metrics are presented in Tables 5, 6, and 7.

We investigate groupings along age, gender, and
either race/ethnicity (DICES-350) or region (D3).
For DICES-350, we also explore intersectional
groups along race/ethnicity and gender (some of
the intersections of age and race/ethnicity are too
small to reasonably assess significance), while we
explored the intersection of region with both age
and gender groups in the D3 dataset. Results for all
intersections and statistically significant intersec-
tions are reported in Tables 5–7 and 4, respectively.

DICES-350 results: Only race/ethnicity group-
ings show significant results on their own, suggest-
ing age and gender doesn’t matter. However, look-
ing at intersectional groups, Latine women have
the highest in-group cohesion (0.238), followed by
White men (0.218), Latine raters (0.215), and Black
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DICES-350

Dimension Group IRR XRR GAI

age gen x+ ↓0.166 ↓0.171 ↓0.975
age gen z ↓0.166 ↓0.172 ↓0.966
age millenial ↑0.189 ↑0.179 ↑1.052

gender Man ↑0.187 ↑0.175 ↑1.071
gender Woman ↓0.160 ↑0.175 ↓0.916

race As. ↓0.145 ↓0.166 ↓0.872
race Bl. ↑0.193 ↑0.181 ↑1.063
race Lat. ↑0.215* ↑0.189* ↑1.139*
race Multi. ↓0.153 ↓0.168 ↓0.916
race Wh. ↓0.145 ↓0.159* ↓0.908

Statistically Significant Intersections

race, gender As., Woman ↓0.073* ↓0.134* ↓0.540*
race, gender Bl., Woman ↑0.213* ↑0.188 ↑1.130*
race, gender Lat., Woman ↑0.238* ↑0.199** ↑1.196*
race, gender Wh., Man ↑0.218* ↓0.173 ↑1.262**
race, gender Wh., Woman ↓0.114* ↓0.152* ↓0.752*

D3

Dimension Group IRR XRR GAI

age (18,30) ↑0.115** ↑0.107 ↑1.068**
age (30,50) ↓0.089** ↓0.104 ↓0.850**
age 50+ ↑0.110 ↑0.111 ↑0.999

gender Woman ↑0.110 ↑0.108 ↑1.024
gender Man ↓0.105 ↑0.107 ↓0.976
gender Other ↑0.209 ↓0.096 ↑2.172*

region AC. ↑0.133** ↑0.113 ↑1.174*
region ICS. ↓0.103 ↓0.099* ↑1.043
region LA. ↑0.129** ↑0.112 ↑1.152*
region NA. ↑0.143** ↑0.110 ↑1.307**
region Oc. ↑0.118 ↓0.103 ↑1.145*
region Si. ↓0.087* ↓0.087** ↓1.002
region SSA. ↑0.142** ↓0.104 ↑1.361**
region WE. ↑0.135** ↑0.111 ↑1.222**

Statistically Significant Intersections

region, age ICS., (18,30) ↓0.063** ↓0.100 ↓0.634*
region, age ICS., (30,50) ↓0.060* ↓0.100 ↓0.601*
region, gender ICS., Woman ↓0.070* ↓0.106 ↓0.655*
region, age LA., (18,30) ↑0.143** ↑0.118 ↑1.216*
region, gender LA., Woman ↑0.143** ↑0.111 ↑1.290*
region, gender NA., Woman ↑0.153** ↑0.116 ↑1.314**
region, age Oc., (30,50) ↑0.112 ↓0.089** ↑1.255*
region, gender Oc., Woman ↑0.133* ↑0.110 ↑1.208*
region, age Si., (30,50) ↓0.033** ↓0.082** ↓0.405**
region, age Si., 50+ ↑0.137 ↓0.061** ↑2.225**
region, gender Si., Woman ↓0.100 ↓0.081** ↑1.237*
region, age SSA., (18,30) ↑0.146** ↓0.107 ↑1.365**
region, age WE., (18,30) ↑0.177** ↑0.126** ↑1.402**
region, gender WE., Woman ↑0.151** ↑0.118 ↑1.284*

Table 4: Results for in-group and cross-group cohesion,
and GAI. Significant results are in bold: * for signifi-
cance at p < 0.05, ** for significance after Benjamini-
Hochberg correction. A ↓ (or ↑) means that the result
is less (or greater) than expected under the null hypoth-
esis. GAI results based on CX = XRR and CI = IRR.

women (0.213). Asian women have the lowest
score (0.073), followed by White women (0.114).
Latine women also have the highest cross-group
cohesion (0.199), followed by Latine raters (0.189).
Asian women have the lowest score (0.134), fol-

lowed by White women (0.152) and White raters
(0.159). White men have the highest GAI score
(1.262) followed by Latine women (1.196), Latine
raters (1.139), and Black women (1.130). Some
groups have GAIs significantly lower than base-
line; Asian women have the lowest GAI (0.540),
followed by White women (0.752), suggesting that
these groups have constituent subgroups that have
more agreement with raters outside this group.

The DSI metric looks at what is the highest GAI
for each diversity axis (including intersectional
axes) we consider. In the DICES-350, we observe
the higher DSI for the intersectional axis of gender
and race (1.262 for White men), followed by race
considered alone (1.139 for Latine raters). These
numbers suggest that it is crucial to prioritize re-
cruiting raters with a diverse representation along
race and gender, while diversifying along age may
be less crucial based on our results for this task.
Note that, although unlikely, applying our frame-
work along other intersectional axes including age
may reveal other group associations.

D3 results: Here, 18-to-30-year-old Western Eu-
ropeans have the highest IRR (0.177), followed
by North American women (0.153) and Western
European women (0.151). Lowest scores are re-
ported for 30-to-50-year-old raters from Sinosphere
(0.033) and Indian Cultural Sphere (0.060), fol-
lowed by 18-to-30-year-old (0.063), and women
(0.070) groups from Indian Cultural Sphere. 18-to-
30-year-old Western Europeans also have the high-
est XRR (0.126) followed by non-significant scores
for Western European women (0.118) and North
American women (0.116). Lowest XRR is reported
for 50+-year-old raters of Sinosphere (0.061), fol-
lowed by Sinosphere women (0.081) and 30-to-50-
year-old Sinosphere raters (0.082), all significant
after BH corrections. In terms of GAI scores, 50+-
year-old raters of Sinosphere (2.225), and raters
identifying with non-binary genders (2.172) re-
port the highest GAI, followed by 18-to-30-year-
old groups in Western European (1.402) and Sub-
Saharan Africa (1.365); all significant after BH cor-
rection. Notably, unlike the DICES-350, different
age and region groups have significantly high GAI
scores; 18-to-30-year-old (1.068), North America
(1.307), Sub Saharan Africa (1.361), and Western
Europe (1.222). Interestingly, intersectional results
demonstrate that while women in general did not
report high GAI, subgroups of women in different
regions show more in-group agreement.
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We observe the highest DSI for the intersectional
axis of region and age (Sinosphere, 50+) at 2.225,
followed by a high DSI for gender (Other) at 2.172.
This shows the importance of prioritizing raters
from non-binary gender groups and specific sub-
groups along region and age to capture important
diverse perspectives in assessing offense.

5 Discussion

We propose the GRASP framework that provides a
means to assess the cohesion and strength of group
associations along different axes of diversity that
matter for a given task, identifying different groups,
including intersectional groups, that are relevant
for specific tasks. GRASP is generic and versatile,
however different task and data settings can lead to
different results in group associations, depending
on the metrics we use. Our intent in presenting
this breadth of results using different metrics is
both to show the versatility of the framework w.r.t.
underlying metrics, and also to demonstrate the
differences that different underlying metrics yield.
In practice, one should choose the metrics suitable
to the specific task and data characteristics (e.g.,
number of raters, replication factor, and data skew).

Task specific insights: Our analysis provides in-
sights about specific rater groups for each task. For
instance, in the conversational safety task (DICES-
350), White men having the highest and Asian
women the lowest in-group cohesion. Interestingly,
White women and Asian men had opposite cohe-
sion trends from their alter-genders. This suggests
that men are driving the high cohesion observed in
White raters, and that women and men counteract
each other in the weak effects observed in Asian
raters overall. High coherence among White men
is due to their strong tendency to prefer Safe to
Unsafe annotations by a nearly 3 : 1 ratio. On the
other hand, for the offense annotation task (D3),
most regional groups show significant group as-
sociations. Notably, Indian cultural sphere and
Sinosphere shows no significant in-group cohesion
(or GAI), although 50+ groups within Sinosphere
show high in-group cohesion. Age is a notable
factor across board, both individually and within
intersectional groups, suggesting the need for di-
versification of rater pools around age groups.

Flexibility of group granularity: Our analysis
is generic enough that it can be applied groups de-
fined by any subset of demographic characteristics,
enabling it to easily reveal intersectional group as-

sociations. For instance, although age and gender
groups revealed no association for safety, intersec-
tional analysis revealed that gender plays a substan-
tial role in driving race-level group tendencies.

Flexibility of metrics: Our framework is exten-
sible to any (comparable) underlying in-group co-
hesion and cross-group divergence metrics. We ob-
serve that the values across our metrics vary (see Ta-
ble 5 & 6); IRR numbers are relatively low (around
0.2) while other metrics report much higher agree-
ments. These disparities may point to potential
overcompensation for class imbalance (2 : 1 for
safe to unsafe) in the IRR metric. IRR is typically
used to compare small groups of raters. With larger
groups of raters there are quadratically more pairs
of raters, and the high dimensionality of the re-
sponse vectors (350 responses per rater) means that
all pairs can potentially be very different from each
other: there is both more space to disagree and
more disagreements to count. Negentropy and plu-
rality size are less sensitive to these effects, since
they are both based on the distributions of all raters,
not on the pairwise relationships between all raters.
Future work should look into which metrics may
be more suitable in specific task and data settings
(e.g., number of raters, replication factor, etc.).

Versatility across dataset characteristics: The
two datasets we applied our framework to differ
not only on the underlying tasks, but also on other
dataset characteristics/structure. DICES-350 con-
tains fully parallel annotations (i.e., all 104 anno-
tators annotated all 350 items), whereas D3 con-
tains batches of annotations where sets of 35 items
contain fully parallel annotations from 24+ raters.
These differences did not hinder the applicability
of the analysis framework. In fact, the D3 analysis
provides a potential pathway where such highly
parallel annotations by broadly diverse rater pools
could be performed in early phases, that can then
inform more streamlined data collection through
curated rater pools representing selected diversity
axes based on this analysis, essentially saving cost
while ensuring diversity in data.

Exploratory Analysis: Our approach also illus-
trate the usefulness of significance testing to ex-
ploratory analysis. We see the role of significance
testing in exploratory research as a compass that
provides perspective in light of conflicting results
that lack inherent scales for interpretation. While
they impose a hefty computational burden, the per-
mutation tests control for joint dependencies in the
data between raters and conversations that simpler
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tests do not. However, we believe the extra compu-
tational effort is well worth the trouble, especially
in informing rater recruitment decisions.

6 Conclusion

We introduced GRASP, an analytical framework to
measure systematic diversity in annotations among
rater subgroups, to better understand the socio-
cultural leanings of subjective tasks. We proposed
a group association index that combines in-group
and cross-group cohesion, along with statistical sig-
nificance using permutation tests. Applying this
framework to two datasets of subjective annota-
tions, we demonstrated how it reveals systematic
disagreements across various intersectional sub-
groups. Our work contributes to the efforts on
bringing in diverse perspectives in data in an effi-
cient and effective manner, furthering the goal of
robust socio-technical evaluations of AI models.

Future work could explore adopting our frame-
work to measure systematic disagreements between
rater groups in other subjective tasks (e.g., Ku-
mar 2022) to further validate its utility. Further-
more, our analysis framework provides actionable
insights for practitioners to help prioritize demo-
graphic axes when diversifying rater pools. Future
work could investigate how the framework may
enable dynamic data collection that can adapt to
emergent group associations among raters across
different types of content and tasks. While our
framework identifies systematic disagreements be-
tween groups, further investigation is needed to
understand the underlying reasons that cause these
disagreements, for instance, individual moral val-
ues (Davani et al., 2023b).

7 Limitations

We acknowledge that the demographic breakdown
in both datasets is a simplified representation of the
population at large. We assume this was done to
facilitate recruitment of raters in each group and
to allow for less complexity in analysing intersect-
ing groups. However, our analysis framework was
applied on two independent datasets with different
rater pools, demographic breakdowns and data col-
lection designs, which points to its generalizability.
Provided more granular demographic data, we are
confident the frameworks can be readily applied.

We recognize that further research is needed to
extend such analysis to other intersectional groups
that we have not been investigated in this paper.

For example, we believe that further slicing the
ethnicity, native languages and age groups is likely
to reveal further insights and provide additional ev-
idence of systematic differences between different
groupings of raters. Due to page limit this paper
focuses on introducing the disagreement analysis
framework, and provide initial analysis to demon-
strate its utility in revealing significant group asso-
ciations along socio-demographic lines.

Finally, we recognize more work is needed to
distinguish good from bad disagreement. We fo-
cused on revealing statistically significant cohesion
within groups (and lack of it across groups), which
may weed out noisy disagreements. However, more
work is needed to disentangle disagreements that
are important to retain in the interest of retaining
diverse perspectives, vs. those that are undesir-
able from a practitioners’ perspective (e.g., lack of
training in a particular rater platform/pool).

While the use of significance tests in exploratory
analysis is controversial (Balluerka et al., 2005),
there is usually a degree of arbitrariness in their use,
for instance, in the choice of level (e.g., p = 0.05,
in our case), if nothing else. In the case of ex-
ploratory research such as ours, one must be care-
ful not to abuse significance testing. For instance,
we deliberately held back on a deeper exploration
of intersectionality to reduce the risk of p-hacking
(see discussion in § 3.3, 4.2). We also note that we
have many more significant results at the p = 0.05
level than chance would predict. There is also ar-
bitrariness in the metrics used. For instance, there
isn’t uniform agreement on how to interpret well-
established metrics such as Krippendorff’s alpha.

8 Statement of Ethics

Collecting and analyzing socio-demographic in-
formation of annotators raise significant ethical
considerations. Hence, all the demographics data
present in DICES-350 (Aroyo et al., 2023) and D3
(Davani et al., 2023b) datasets are self-declared.
Raters were presented a consent form before sign-
ing up for both studies to inform them about the
gathering of personal demographics and that the
content to be rated is adversarial (i.e., would possi-
bly contain offensive content). All demographics
questions had the option "Prefer not to answer".
All data was collected in an anonymized fashion.
Raters were allowed to quit the study at any time.
Similar precautions should be taken while building
new datasets with socio-demographic information.
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A Appendix

Figures 1–8 report, for each metric and demo-
graphic group, the score of the metric as a hori-
zontal black line and, subimposed beneath each
horizontal line, a histogram of the metric scores
under the permutation sampling determined by our
null hypothesis. Result are significant when the
horizontal is at the extreme end of the histograms.
Histograms are also color-coded by the significance
of the results they support: red histograms indicate
that the result is significant at the p = 0.05 level,
but only before adjusting for the false positive rate
(FPR); green indicates significance at the p = 0.05
level, even after FPR adjustment. Given the ex-
ploratory nature of the work, both kinds of sig-
nificance are meaningful and merit attention. But
we can feel more confident that the FPR adjusted
results are likely more robust and repeatable.
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Figure 1: Within-group agreement metrics, by race/ethnicity. Negentropy and plurality size indicate that White
raters have significantly more, and Multiracial significantly less, agreement than other races/ethnicities. IRR indi-
cates that Latine raters have significantly more agreement than other races/ethnicities

Figure 2: Within-group agreement metrics, by race/ethnicity and gender. Histograms represent the distribution of
agreement values under the null hypothesis. Black horizontal bars represent the observed values. These results
show that white men have significantly less agreement than other groups, according to negentropy and plurality
size, neither of which control for class imbalance. IRR shows that with controlling for class imbalance between
safe and unsafe annotations, the amount of agreement is more moderate. Asian women show nearly the opposite
results, with less agreement than other groups unless class imbalance is controlled.

3487



Figure 3: Across-group agreement metrics, by race/ethnicity. Histograms represent the distribution of agreement
values under the null hypothesis. Black horizontal bars represent the observed values. White and multiracial voters
show less overall agreement with others. Latine voters show more agreement with others.

Figure 4: Across-group agreement metrics, by race/ethnicity and gender. Histograms represent the distribution of
agreement values under the null hypothesis. Black horizontal bars represent the observed values. Here, white men
show signs of significantly low plurality agreement. With other groups. Yet safety agreement is significantly high
(though will a small effect size). This seeming disparity is due to the high class imbalance within safety reasons
and white men’s tendency to favor safe annotations. And so for specific safety reasons they appear more agreeable.
However, when these reasons are aggregated into an overall safety score, differences between which men and other
groups reveal themselves.
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Figure 5: Within-group agreement metrics, by age. Histograms represent the distribution of agreement values un-
der the null hypothesis. Black horizontal bars represent the observed values. None of these groups show significant
amounts of difference in disagreement.

Figure 6: Within-group agreement metrics, by gender. Histograms represent the distribution of agreement val-
ues under the null hypothesis. Black horizontal bars represent the observed values. None of these groups show
significant amounts of difference in disagreement.
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Figure 7: Across-group agreement metrics, by age. Histograms represent the distribution of agreement values
under the null hypothesis. Black horizontal bars represent the observed values.

Figure 8: Across-group agreement metrics, by gender. Histograms represent the distribution of agreement values
under the null hypothesis. Black horizontal bars represent the observed values.
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Cross Plurality Plurality
Dimension Group IRR XRR Negentropy Negentropy size agreement GAI

0 [age] gen x+ ↓0.166 ↓0.171 ↓0.402 ↓0.365 ↓0.693 ↓0.731 ↓0.975
1 [age] gen z ↓0.166 ↓0.172 ↓0.386 ↑0.392 ↑0.698 ↓0.776 ↓0.966
2 [age] millenial ↑0.189 ↑0.179 ↑0.415 ↑0.381 ↑0.703 ↓0.751 ↑1.052

3 [gender] Man ↑0.187 ↑0.175 ↑0.419 ↑0.394 ↑0.707 ↑0.800 ↑1.071
4 [gender] Woman ↓0.160 ↑0.175 ↓0.362 ↑0.404 ↓0.685 ↑0.800 ↓0.916

5 [race] Asian ↓0.145 ↓0.166 ↓0.368 ↓0.323 ↓0.675 ↓0.740 ↓0.872
6 [race] Black ↑0.193 ↑0.181 ↓0.411 ↓0.361 ↑0.705 ↑0.796 ↑1.063
7 [race] Latine ↑0.215* ↑0.189* ↑0.467 ↑0.412 ↑0.716 ↓0.747 ↑1.139*
8 [race] Multiracial ↓0.153 ↓0.168 ↓0.355* ↓0.250* ↓0.661* ↓0.592 ↓0.916
9 [race] White ↓0.145 ↓0.159* ↑0.498* ↑0.417* ↑0.744* ↓0.552** ↓0.908

10 [race, gender] Asian, Man ↑0.193 ↑0.188 ↑0.495 ↑0.417 ↑0.733 ↑0.722 ↑1.024
11 [race, gender] Asian, Woman ↓0.073* ↓0.134* ↓0.332* ↓0.193* ↓0.633* ↓0.543 ↓0.540*
12 [race, gender] Black, Man ↓0.139 ↓0.167 ↓0.502 ↓0.371 ↓0.710 ↓0.604 ↓0.831
13 [race, gender] Black, Woman ↑0.213* ↑0.188 ↑0.441 ↓0.349 ↑0.718 ↑0.749 ↑1.130*
14 [race, gender] Latine, Man ↑0.195 ↑0.183 ↑0.491 ↑0.383 ↑0.716 ↑0.687 ↑1.069
15 [race, gender] Latine, Woman ↑0.238* ↑0.199** ↑0.530 ↑0.437 ↑0.745 ↑0.704 ↑1.196*
16 [race, gender] Multiracial, Man ↑0.190 ↑0.182 ↓0.432 ↓0.273 ↓0.688 ↓0.562 ↑1.043
17 [race, gender] Multiracial, Woman ↓0.041 ↓0.131 ↓0.470* ↓0.184 ↓0.674 ↓0.438 ↓0.312
18 [race, gender] White, Man ↑0.218* ↓0.173 ↑0.724** ↑0.505** ↑0.835** ↓0.446* ↑1.262**
19 [race, gender] White, Woman ↓0.114* ↓0.152* ↑0.454 ↑0.381 ↓0.702 ↓0.663 ↓0.752*

Table 5: Results for in-group and cross-group cohesion, and GAI for demographic and intersectional groups within
DICES-350. Significant results are in bold. A single asterisk (*) means the result is significant at the p = 0.05
level. A double asterisk (**) means the results are significant after Benjamini-Hochberg correction. A ↓ means
that the result is less than expected under the null hypothesis. A ↑ means the result is greater. We report GAI
based on CX = XRR and CI = IRR. The DSI results are based on variable that minimized each dimension, and
they are as follows. Age: 1.052 (millennial), gender: 1.071 (men), race/ethnicity: 1.139 (Latine raters), (gender,
race/ethnicity): 1.262 (White men).

Cross Plurality Plurality
Dimension Group IRR XRR Negentropy Negentropy size agreement GAI

0 [age] (18,30) ↑0.115** ↑0.107 ↑0.631** ↓0.297 ↓0.405 ↓0.689** ↑1.068**
1 [age] (30,50) ↓0.089** ↓0.104 ↓0.571** ↑0.340 ↓0.377* ↑0.720** ↓0.850**
2 [age] 50+ ↑0.110 ↑0.111 ↓0.480 ↑0.389 ↑0.356 ↑0.754 ↑0.999

3 [gender] Woman ↑0.110 ↑0.108 ↑0.634** ↓0.267** ↑0.424 ↓0.692** ↑1.024
4 [gender] Man ↓0.105 ↑0.107 ↓0.612** ↑0.307** ↑0.423 ↑0.702** ↓0.976
5 [gender] Other ↑0.209 ↓0.096 ↓0.030 ↓0.605 ↑0.192 ↑0.978 ↑2.172*

6 [region] Arab Culture ↑0.133** ↑0.113 ↑0.452** ↓0.413 ↓0.272 ↓0.759** ↑1.174*
7 [region] Indian Cultural Sphere ↓0.103 ↓0.099* ↑0.457** ↓0.418 ↓0.280 ↓0.760** ↑1.043
8 [region] Latin America ↑0.129** ↑0.112 ↑0.449** ↓0.400* ↑0.317 ↓0.764** ↑1.152*
9 [region] North America ↑0.143** ↑0.110 ↑0.443** ↓0.393** ↑0.316 ↓0.772 ↑1.307**
10 [region] Oceania ↑0.118 ↓0.103 ↓0.372** ↓0.411 ↑0.303 ↑0.797** ↑1.145*
11 [region] Sinosphere ↓0.087* ↓0.087** ↓0.405 ↓0.381** ↓0.223** ↑0.788 ↓1.002
12 [region] Sub Saharan Africa ↑0.142** ↓0.104 ↑0.418 ↓0.385** ↓0.262* ↓0.777 ↑1.361**
13 [region] Western Europe ↑0.135** ↑0.111 ↑0.448** ↓0.383** ↑0.356** ↓0.768 ↑1.222**

Table 6: Results for in-group and cross-group cohesion, and GAI for demographic groups of D3 raters. Significant
results are in bold: * for significance at p < 0.05, ** for significance after Benjamini-Hochberg correction. A
single asterisk (*) means significant at the p = 0.05 level. A double asterisk (**) means the results are significant
after Benjamini-Hochberg correction. A ↓ (or ↑) means that the result is less (or greater) than expected under the
null hypothesis. GAI results based on CX = XRR and CI = IRR.
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Cross Plurality Plurality
Dimension Group IRR XRR Negentropy Negentropy size agreement GAI

0 [region, age] AC., (18,30) ↑0.119 ↑0.111 ↑0.268 ↑0.477 ↓0.207* ↓0.836 ↑1.070
1 [region, age] AC., (30,50) ↑0.116 ↑0.112 ↓0.184 ↓0.481 ↓0.226 ↓0.886 ↑1.040
2 [region, age] AC., 50+ ↑0.190* ↑0.179** ↓0.080 ↑0.610** ↑0.228 ↑0.947 ↑1.060
3 [region, gender] AC., Man ↑0.129 ↑0.109 ↓0.284 ↑0.489** ↓0.227 ↓0.828 ↑1.185
4 [region, gender] AC., Woman ↑0.125 ↑0.117 ↓0.198 ↑0.488 ↓0.202 ↑0.875 ↑1.064

5 [region, age] ICS., (18,30) ↓0.063** ↓0.100 ↑0.246 ↑0.485 ↓0.223 ↓0.849 ↓0.634*
6 [region, age] ICS., (30,50) ↓0.060* ↓0.100 ↑0.215 ↓0.482 ↑0.236 ↓0.868 ↓0.601*
7 [region, age] ICS., 50+ ↓0.063 ↓0.103 ↓0.121 ↓0.513 ↑0.246 ↑0.922 ↓0.614
8 [region, gender] ICS., Man ↓0.093 ↓0.098 ↓0.284 ↓0.455 ↓0.241 ↓0.831 ↓0.953
9 [region, gender] ICS., Woman ↓0.070* ↓0.106 ↓0.233 ↑0.475 ↓0.197** ↑0.860 ↓0.655*

10 [region, age] LA., (18,30) ↑0.143** ↑0.118 ↓0.278 ↑0.475 ↓0.248 ↑0.837 ↑1.216*
11 [region, age] LA., (30,50) ↓0.069 ↓0.092* ↑0.227** ↑0.514 ↓0.209 ↓0.864* ↓0.747
12 [region, age] LA., 50+ ↑0.158 ↑0.136 ↑0.096 ↑0.583 ↑0.235 ↓0.933 ↑1.157
13 [region, gender] LA., Man ↑0.118 ↓0.108 ↓0.259 ↑0.477 ↓0.228 ↓0.842 ↑1.096
14 [region, gender] LA., Woman ↑0.143** ↑0.111 ↓0.251 ↑0.473 ↓0.241 ↑0.849 ↑1.290*

15 [region, age] NA., (18,30) ↑0.150** ↑0.124** ↑0.272 ↑0.472 ↑0.250 ↓0.829** ↑1.215
16 [region, age] NA., (30,50) ↑0.105 ↓0.102 ↓0.173 ↓0.471 ↑0.249 ↑0.898* ↑1.024
17 [region, age] NA., 50+ ↓0.099 ↓0.098 ↑0.139 ↓0.519 ↓0.210 ↓0.911 ↑1.016
18 [region, gender] NA., Man ↑0.113 ↑0.112 ↓0.188** ↓0.454* ↑0.278* ↑0.885** ↑1.005
19 [region, gender] NA., Woman ↑0.153** ↑0.116 ↑0.299 ↓0.449 ↓0.239 ↓0.825 ↑1.314**

20 [region, age] Oc., (18,30) ↑0.113 ↑0.121 ↓0.155 ↑0.510 ↑0.230 ↑0.900 ↑0.932
21 [region, age] Oc., (30,50) ↑0.112 ↓0.089** ↓0.173** ↓0.455* ↓0.218 ↑0.900** ↑1.255*
22 [region, age] Oc., 50+ ↓0.081 ↑0.115 ↓0.140 ↓0.481* ↑0.286** ↑0.914 ↓0.699
23 [region, gender] Oc., Man ↓0.090 ↓0.091* ↓0.170** ↓0.448** ↓0.219 ↑0.899** ↑0.988
24 [region, gender] Oc., Woman ↑0.133* ↑0.110 ↓0.252** ↑0.464 ↑0.266 ↑0.853** ↑1.208*

25 [region, age] Si., (18,30) ↑0.112 ↓0.108 ↓0.190 ↓0.456** ↓0.217 ↑0.883 ↑1.029
26 [region, age] Si., (30,50) ↓0.033** ↓0.082** ↓0.209* ↓0.423** ↓0.175** ↑0.873 ↓0.405**
27 [region, age] Si., 50+ ↑0.137 ↓0.061** ↓0.071** ↓0.478** ↓0.152** ↑0.954** ↑2.225**
28 [region, gender] Si., Man ↓0.093 ↓0.091** ↓0.260 ↓0.426** ↓0.190** ↑0.843 ↑1.022
29 [region, gender] Si., Woman ↓0.100 ↓0.081** ↓0.196** ↓0.413** ↓0.168** ↑0.883** ↑1.237*

30 [region, age] SSA., (18,30) ↑0.146** ↓0.107 ↓0.280 ↑0.462 ↓0.222* ↑0.834 ↑1.365**
31 [region, age] SSA., (30,50) ↑0.135 ↑0.119 ↓0.160 ↓0.485 ↓0.218 ↑0.900 ↑1.137
32 [region, age] SSA., 50+ ↑0.163 ↑0.125 ↑0.079 ↓0.592 ↑0.208 ↓0.950 ↑1.299
33 [region, gender] SSA., Man ↑0.132* ↑0.119* ↓0.286 ↓0.435* ↑0.268 ↓0.829 ↑1.104
34 [region, gender] SSA., Woman ↑0.119 ↑0.109 ↓0.213 ↓0.470 ↓0.233 ↑0.870 ↑1.093

35 [region, age] WE., (18,30) ↑0.177** ↑0.126** ↓0.246 ↑0.469 ↑0.285* ↓0.849 ↑1.402**
36 [region, age] WE., (30,50) ↓0.085 ↓0.093* ↓0.173 ↓0.487 ↓0.205 ↑0.896 ↓0.923
37 [region, age] WE., 50+ ↑0.117 ↓0.104 ↑0.152 ↑0.545 ↑0.220 ↓0.905 ↑1.120
38 [region, gender] WE., Man ↑0.116 ↓0.106 ↓0.214** ↓0.443** ↑0.257 ↑0.874** ↑1.096
39 [region, gender] WE., Woman ↑0.151** ↑0.118 ↑0.292 ↓0.452 ↓0.243 ↓0.825* ↑1.284*

Table 7: Results for in-group and cross-group cohesion, and GAI for intersectional demographic groups within
D3. Significant results are in bold: * for significance at p < 0.05, ** for significance after Benjamini-Hochberg
correction. A single asterisk (*) means significant at the p = 0.05 level. A double asterisk (**) means the results
are significant after Benjamini-Hochberg correction. A ↓ (or ↑) means that the result is less (or greater) than
expected under the null hypothesis. GAI results based on CX = XRR and CI = IRR.
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