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Abstract

Spanish is one of the most widespread lan-
guages: the official language in 20 countries
and the second most-spoken native language.
Its contact with other languages across dif-
ferent regions and the rich regional and cul-
tural diversity has produced varieties which
divert from each other, particularly in terms
of lexicon. Still, available corpora, and mod-
els trained upon them, generally treat Spanish
as one monolithic language, which dampers
prediction and generation power when dealing
with different varieties. To alleviate the situa-
tion, we compile and curate datasets in the dif-
ferent varieties of Spanish around the world at
an unprecedented scale and create the CEREAL
corpus. With such a resource at hand, we per-
form a stylistic analysis to identify and char-
acterise varietal differences. We implement a
classifier specially designed to deal with long
documents and identify Spanish varieties (and
therefore expand CEREAL further). We produce
varietal-specific embeddings, and analyse the
cultural differences that they encode. We make
data, code and models publicly available.

1 Introduction

Spanish was heavily expanded by overseas Euro-
pean conquest starting in the early-16th century.
One of the main axes of the colonisation was the im-
position of the Spanish culture. As a result, nearly
70% of the current population in Latin America
is Catholic and Spanish is a global language (Am-
mon, 2010) and the second largest native language
over the world (+450M speakers), only after Chi-
nese (Eberhard et al., 2023). Different from the
latter, Spanish is a sea-bound language and it is the
official language in 20 countries across America,
Africa and Europe, spreading over 11.7M km2. The
diversity in terms of culture, geography and lan-
guages in contact (e.g., Basque in Northern Spain,
Nahuatl in Central Mexico, Quechua in the Andes)

have produced well-differentiated varieties1 perme-
ated by the lexicon and semantics from the relevant
local languages.

Even with the apparent diversity, Spanish is often
considered a homogeneous language in most data-
driven natural language processing (NLP) tasks
and applications. A first reason is the difficulty to
get data for all the varieties, also taking into ac-
count the lack of information about the origin of
the data for lots of the existing corpora. A second
reason is a popular motto in the NLP community:
the more data the better. Following this mantra,
data in Spanish is usually mixed together and, as a
consequence, one might increase the performance
on downstream tasks at the cost of erasing cultural
differences. Such differences can be reflected in
textual corpora by the topics present, the linguis-
tic forms used or even the writing style. At the
corpus scale, the differences are evident, but in
individual texts, specially short ones, differences
might be non-existent. Because of this reason, a
text might belong to more than one variety but, the
longer the text, the more likely its origin country
shines. The register is relevant as well. For in-
stance, newspapers tend to follow standard norms.
Under this point of view, the jungle of the Web is a
good source to get diverse data. Still, one should
acknowledge the presence of collaborative texts
(i.e. the Wikipedia) and media outlets for which no
clear variety can be assigned.

We develop a long-document classifier to extract
and release CEREAL and CEREALex, Corpus del Es-
pañol REAL (extended), a new corpus from online
data five times larger than the NOW corpus, to the
best of our knowledge the largest available corpus
of Spanish varieties up to date. CEREALex contains
35 B words in 41 M documents, 36 M of which
include information about the country they were

1We refer to varieties of Spanish following Hudson
(1996): “a variety is a set of linguistic items with similar
social (including geographical and cultural) distribution.”
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mazorca

elote

choclo

Figure 1: Common geographic (country-based) Spanish linguistic zones as described by the Real Academia
Española. The size of the bubbles is proportional to the number of Spanish speakers. The three words associated to
corn included in the title of this work appear on the sea close to the regions where they are most used.

published at covering 24 countries: Latin American
countries, Spain, Andorra, Equatorial Guinea, the
Philippines and the US (see Section 4). After the
analysis of the corpus (Section 3), including a wide
stylistic analysis, we create embeddings for each
variety and explore if they are able to reflect the cul-
tural aspects of their country by inducing bilingual
lexicons and reproducing human biases (Section 5).
Data, code and models are freely available.2

2 Related Work

Geolocated Corpora in Spanish. The Real
Academia Española (RAE) created the Corpus del
Español del Siglo XXI (CORPES) (RAE, 2023).
CORPES allocates 30% of the contents to forms
from Spain and 70% to forms from America. The
material produced in America is further classified
into the linguistic zones shown in Figure 1 which
also includes the Philippines, Equatorial Guinea
and Spain itself. Written materials come from
books (40%), newspapers (40%), Internet (7.5%),
and others (2.5%). The remaining 10% contains
oral language. CORPES v1.0 features 365 k doc-
uments, totalling over 395 M orthographic forms;
256 M for the American varieties. Unfortunately,
CORPES is only browsable and is not fully down-
loadable. The Corpus del Español NOW, is another
corpus whose construction is rooted on diversity.3

2https://cereal-es.github.io/CEREAL
3https://www.corpusdelespanol.org

It is larger than CORPES —with 7 B words— and
covers 21 countries. In this case, the proportion be-
tween continents is 78% America vs 22% Europe.
NOW is downloadable, upon the payment of a fee.

Another effort is that of Gonçalves and Sánchez
(2014), who collect 0.75 M geolocated tweets
posted over a two-year span. They queried the Twit-
ter API with seed words representing concepts that
are expressed in different ways across countries;
e.g., corn is elote in Mexico and most of Central
America (from the Nahuatl elotitutl), choclo
in most of South America (from the Quechua
chuqllu) and mazorca in Colombia, Cuba, and
Spain (from the Arabic masúrqa). Recently, Tellez
et al. (2023) collected 800 M tweets (11 B tokens)
over a three-year span, 2016 to 2019, posted from
26 countries (including a few where Spanish is not
an official language). With them, they create 26
country-specific word embeddings, plus BERT-like
language models for the countries with the largest
amounts of data. The models are publicly available,
but the data is not.4

Smaller-scale corpora include those for the series
of shared tasks on Discriminating Between Simi-
lar Languages (DSL), organised within the Work-
shop on NLP for Similar Languages, Varieties and
Dialects. The DSL Collection (Tan et al., 2014)
contains individual sentences in Spanish from Ar-

4https://ingeotec.github.io/
regional-spanish-models/
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ccTLD Country CEREAL CEREAL Training#class Validation#class Classified#class CEREALex
docs. segments & Tests#class docs.

ad Andorra 1.5k 13k 03,4,5 03,4,5 NA 1.5k
ar Argentina 2.0M 21M 30k3,4/500k5 633,4/1k5 NA3,4/2.7M5 4.7M
bo Bolivia 75k 976k 30k3,4,5 633,4,5 NA 75k
cl Chile 1.1M 12.1M 30k3/500k4,5 643/1k4,5 NA3/2.1M4/1.9M5 2.2M
co Colombia 650k 8.3M 30k3,4,5 633,4,5 NA 650k
cr Costa Rica 59k 826k 30k3,4,5 633,4,5 NA 59k
cu Cuba 116k 1.9M 30k3,4,5 633,4,5 NA 116k
do Dominican Rep. 14k 1.2M 30k3,4,5 633,4,5 NA 14k
ec Ecuador 158k 1.6M 30k3,4,5 633,4,5 NA 158k
es Spain 5.7M 70.5M 500k3,4,5 1k3,4,5 17.0M3/15.5M4/15.8M5 21.4M
gq Eq. Guinea 801 4k 6283,4,5 03,4,5 NA 801
gt Guatemala 51k 562k 30k3,4,5 633,4,5 NA 51k
hn Honduras 60k 657k 30k3,4,5 633,4,5 NA 60k
mx Mexico 2.4M 20.9M 500k3,4,5 1k3,4,5 5.0M3/4.2M4/2.9M5 5.7M
ni Nicaragua 37k 406k 30k3,4,5 633,4,5 NA 37k
pa Panama 39k 449k 30k3,4,5 633,4,5 NA 39k
pe Peru 442k 5.1M 30k3,4,5 633,4,5 NA 442k
ph Philippines 112 1.5k 913,4,5 03,4,5 NA 112
pr Puerto Rico 12k 128k 11k3,4,5 03,4,5 NA 12K
py Paraguay 66k 776k 30k3,4,5 633,4,5 NA 66k
sv El Salvador 41k 402k 30k3,4,5 633,4,5 NA 41k
us United States 22k 378k 19k3,4,5 03,4,5 NA 22k
uy Uruguay 154k 1.8M 30k3,4,5 633,4,5 NA 154k
ve Venezuela 109k 1.2M 30k3,4,5 633,4,5 NA 109k

All with ccTDL 13.5M 151.1M NA NA NA NA
Unknown 27.7M 337.4M NA NA 7.8M3/5.8M4/4.4M5 4.9M
Total NA NA 1.5M3/2.0M4/2.5M5 3k3/4k4/5k5 NA 36.3M

Table 1: Distribution of documents and segments after deduplication. Summary of the training, validation and test
data. Column Classified shows the number of documents in CEREAL labelled with our docTransformer classifier.
The superindexes refer to the amount of instances included in the settings considering 3, 4, or 5 classes.

gentina, Mexico, Peru, and Spain.

Text Classification of Long Documents. Since
the appearance of BERT (Devlin et al., 2019) and
the change of paradigm in NLP it involved, most
classification tasks achieve state-of-the-art results
by fine-tuning a language model (Sun et al., 2019;
Adhikari et al., 2019). BERT-like models are based
on self-attention, which scales quadratically with
the input length. As a result, training is usually con-
strained to input texts of up to 512 tokens. Longer
inputs can be processed with more efficient archi-
tectures, such as Linformer (Wang et al., 2020), Big
Bird (Zaheer et al., 2020) and Longformer (Belt-
agy et al., 2020). These architectures accept at least
4096 input tokens thanks to the usage of sparse at-
tention mechanisms that scale linearly. However,
it has been noticed that the models above do not
always improve the results of a simple truncation of
the input to 512 tokens or a sentence average (Park
et al., 2022; Sannigrahi et al., 2023).

Other approaches involve the identification of
key sentences in a document and their concatena-
tion (Ding et al., 2020) or a hierarchical transformer

with a nested sentence encoder and document en-
coder (Zhang et al., 2019). Closer to our work,
Pappagari et al. (2019) split the input document
before sending it to a base language model and, af-
terwards, feed the outputs into another transformer.
Our model is effective and simpler in the sense that
we do not need a complementary module besides
the base language model.

Cultural NLP. Multilinguality and a fair treat-
ment of all the languages is considered as one of
the biggest challenges in current NLP (Joshi et al.,
2020). To date, little work on NLP has focused
on cross/multi-cultural aspects because of the ad-
ditional challenges involved, and because of a lack
of awareness from the researchers (Hershcovich
et al., 2022). The workshop on Cross-Cultural Con-
siderations in NLP5 represents a step to promote
awareness. A few studies are beginning to appear
that analyse how multilinguality changes or affects
cultural norms in word embeddings and language
models (España-Bonet and Barrón-Cedeño, 2022;
Haemmerl et al., 2023; Mukherjee et al., 2023;

5https://sites.google.com/view/c3nlp/home
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Ratio of SzigrisztPazos Laplacian
Tokens punct. type-token legomena Entropy Yule’s K /INFLEZ Energy Clustering

ar 578 ± 479 2.3 ± 0.9 51 ± 10 37 ± 11 6.9 ± 0.7 152 ± 59 59 ± 13 0.46 ± 0.05 0.08 ± 0.04
bo 672 ± 496 2.3 ± 0.9 46 ± 12 31 ± 15 7.0 ± 0.6 159 ± 60 58 ± 13 0.45 ± 0.05 0.08 ± 0.03
cl 621 ± 520 2.3 ± 0.7 50 ± 11 36 ± 12 7.0 ± 0.7 155 ± 65 56 ± 15 0.46 ± 0.05 0.08 ± 0.04
co 248 ± 531 1.5 ± 0.8 53 ± 12 36 ± 13 6.5 ± 0.7 181 ± 69 54 ± 16 0.47 ± 0.06 0.05 ± 0.04
cu 772 ± 596 2.5 ± 1.0 50 ± 10 38 ± 11 7.2 ± 0.6 149 ± 68 56 ± 12 0.46 ± 0.06 0.08 ± 0.03
es 702 ± 556 2.4 ± 0.9 48 ± 11 34 ± 11 7.0 ± 0.7 155 ± 67 59 ± 20 0.45 ± 0.06 0.09 ± 0.04
mx 594 ± 477 2.3 ± 0.7 50 ± 11 36 ± 12 7.0 ± 0.6 149 ± 51 56 ± 14 0.46 ± 0.05 0.08 ± 0.04
pe 562 ± 466 2.4 ± 0.7 50 ± 11 36 ± 11 6.9 ± 0.7 155 ± 59 57 ± 16 0.46 ± 0.05 0.08 ± 0.04

Table 2: Style, richness and readability metrics for the dialectal variations in the CEREAL corpus. The numbers are
an average over the (up to) 30 k instances for each variation. Appendix A shows all 20 metrics for all varieties.

Ramesh et al., 2023; Kabra et al., 2023; Naous
et al., 2023). España-Bonet and Barrón-Cedeño
(2022) showed that multilingual neural models run
short at exhibiting cultural biases that are inherent
to members of different cultures. Their experi-
ments on 9 languages —including Spanish— show
that monolingual static embeddings exhibit human
biases at different levels across languages and that
multilinguality attenuates further the effect of the
bias. For properly inclusive NLP, cultural biases
should be taken into account.

Languages can evolve into several dialects or
varieties because of being spoken in different coun-
tries; this is a clear case where varieties reflect
cultural differences and it is the case for Spanish.
Treating it as a single unit dilutes these cultural
nuances. Collecting data in order to have all the
cultures equally represented is one of the strate-
gies identified by Haemmerl et al. (2023) for truly
cross-cultural NLP.

3 Country-Specific Spanish Texts

CEREAL Corpus. We use Open Super-large
Crawled Aggregated coRpus (OSCAR) version
22.01, a multilingual corpus obtained by filtering
Common Crawl (Ortiz Suárez et al., 2019; Abadji
et al., 2021). We download the dump for Spanish,
with data from all Spanish-speaking countries and
extract for each document its unique ID and source
URL. We use the country code top-level domain
(ccTLD) from the URL to label the texts according
to the country it belongs to (see Figure 1). For
documents without a ccTLD, we use the tag mix.
We do not process the text in any way, other than
marking paragraphs with tag <NS>.

Table 1 shows statistics. After deduplication, we
obtain 41 M documents, 33% of which include a
ccTLD. Still, 28 M documents have an unknown
origin. It is worth noting that almost half of the doc-

uments with ccTLD come from Spain. The rest are
distributed across the other 23 countries, predom-
inantly in Latin America. Corpora like CORPES
and NOW try to keep the proportion between Spain
and Latin America closer to the number of speak-
ers, but when resorting to the available digital data
to create a corpus this is not the case. Argentina,
Chile, Mexico and Spain all have more than 1 M
documents. An accurate identification of the ori-
gin of the remaining 28 M documents would allow
these varieties to have a representation compara-
ble to languages such as Arabic, Greek or Korean
in OSCAR.6 This is the goal in Section 4, where
we introduce our CEREALex corpus with automatic
annotations for country of origin.

Segment-Level CEREAL. In order to deal with
NLP tasks that do not need document-level data,
we produce a corpus at the segment level using the
<NS> tags for document segmentation. Deduplica-
tion reduces the size of the corpus from 391 M to
151 M sentences for the original data with country
information and from to 916 M to 337 M for the
part without origin information. Details in Table 1.

3.1 Stylistic Analysis

Different stylistic metrics are computed to infer
the background of a person/group of people behind
text, such as gender (Rangel and Rosso, 2019), na-
tive language (Volansky et al., 2013) or dialect (Lui
and Cook, 2013; van der Lee and van den Bosch,
2017). In the same vein, we compute a number
of such features to give light on whether the com-
monalities and divergences across variations are
generally reflected in large volumes of data. We
select a random sample of up to 30 k documents
per variety (see in Table 1 varieties with less docu-

6https://huggingface.co/datasets/
oscar-corpus/OSCAR-2201
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ments), and compute 20 features that account for
basic statistics and text complexity including tex-
tual richness and readability.7

Table 2 shows 9 of those features for represen-
tatives from the linguistic zones in Figure 1. Ap-
pendix A shows all 20 metrics for all dialect vari-
ations. As the absolute numbers of tokens reflect,
there is a tendency for both Cuban and Peninsular
Spanish documents to be longer: both 700+ tokens
(45 sentences) long on average. Still, the difference
with respect to other varieties is not significant.
Colombian Spanish is the one with the shortest ra-
tio of punctuation marks and also the one with the
shorter documents in terms of tokens. It also has
the largest word length, which is typically associ-
ated to a higher conceptual complexity. The rest
of the statistics metrics, including word lengths,
converge into very similar values for all varieties.

To assess the richness of vocabulary, we com-
pute the type–token ratio, the ratio of hapax legom-
ena and dislegomena, Shannon’s entropy (Shannon,
1948) and Yule’s K (Yule, 1944). Generally-large
type-token ratios (∼50 on average) and the abun-
dance of hapax legomena (36+) indicate rich texts
where the authors use a varied vocabulary in all
cases, with Bolivian Spanish lying below. Still,
high values of these metrics can be an artefact of
short texts. Shannon’s entropy and specially Yule’s
K are length-independent and show small varia-
tions across varieties. According to these measures,
Colombian is the least vocabulary-rich variety. The
Szigriszt-Pazos index (Szigriszt Pazos, 1992) —an
adaptation of the Flesch index for English (Kincaid
et al., 1975) for Spanish— allocates all varieties
into a “standard” level (Szigriszt Pazos, 1992, p.
265), with the lowest values for the Central Amer-
ican varieties reflecting higher levels of difficulty
and the largest value for Equatorial Guinea, posi-
tioning it as the least difficult to read.

Finally, we compare two graph-based com-
plexity measures: normalised Laplacian energy
(Cavers et al., 2010) and average clustering coeffi-
cient (Newman, 2010). As with previous metrics,
differences among varieties are not statistically sig-
nificant, with Peninsular Spanish in the highest
range of complexity and Colombian in the lowest.

4 Classification of Long Documents

The documents in OSCAR have an average length
of 900 words, significantly surpassing the 512 to-

7https://github.com/cristinae/stylometrics

document d

XLM-RoBERTa (large)

dropout (0.1)[CLS]

linear (1024 → 1024)

tanh

dropout (0.1)

linear (1024 → 4)

cl / es / mx / mix

Figure 2: docTransformer: fine-tuning for multi-class
classification. After encoding, d is split into n parts and
the average of the [CLS] token for each part is used for
the classification head.

ken limit from most LM-based classifiers which,
despite this limit, achieve state-of-the-art results in
many classification tasks. However, the differences
across language varieties might not be present in
short fragments, making it crucial to consider the
whole contents of a document, regardless of length.
Therefore, we implement docTransformer,8 a
multi-class classifier on top of XLM-RoBERTa
large (Conneau et al., 2020) that considers the
whole document, as shown in Figure 2. The exten-
sion to document-level is simple: the [CLS] token
is indeed an average of the [CLS] tokens for each
of the n fragments in the document. This is done
online, which allows for the full document to take
part in the classification and the backpropagation.
The best practice to split the document is explored
in the following.

Experimental Settings. We conduct 3 tasks:

3C 3 classes: es, mx and mix
4C 4 classes: cl, es, mx and mix
5C 5 classes: ar, cl, es, mx and mix

The tasks consider the top-k languages in terms
of number of documents (see Table 1). We select
balanced subsets of the CEREAL corpus for training
and validation. First, we consider documents with
lengths ranging from 80 to 3 k words and randomly
select 500 k documents per class (ar, cl, es, mx).
To build class mix, we select up to 30 k documents

8https://github.com/cristinae/docTransformer
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Figure 3: Statistics for the training documents in task
4C. The average is indicated with a dashed line.

from each variety not included in the other classes,
summing up to 510 k documents. We build the
validation set similarly, with 1 k documents per
class and 63 per language variety in mix.

For the test set, we use a subset of the corpus
with unknown origin. To assign the origin, we
collect sports, fashion, travel, gastronomy and news
sites without a country identifier in the URL for the
24 varieties, and extract the documents available in
CEREAL with the mix class. We build datasets with
the same proportions as the validation sets for the 3
classification tasks. Table 1 shows statistics about
the training, validation and test sets. Appendix B
lists the sites used to create the test set.

Figure 3 depicts the data distribution for the 4C
training set. Notice that only half of the documents
fit the 512 token limit. The average number of seg-
ments is 27, but a few surpass 100. Both length and
number of segments are relevant for the classifier.

Training Models. We train the classifiers along
three iterations for 3C and two iterations for 4C and
5C to explore a similar number of instances in the
three cases. We first explore the relevance of going
beyond the 512 input token limit of RoBERTa with
5 models in 4C. After encoding, we split an input
document d into 2, 3, 6, or 16 parts. The baseline
is a single split with the first 512 tokens. With the
2-splits model, one considers up to 1,024 tokens,
with 3 splits up to 1,536, and so on. We cover fully
every d in the training set with 6 splits (max. 3,072
tokens per document). With the model with 16
splits, we are interested in checking if the length of
the input fragments is relevant: the model with 6
and the model with 16 splits cover the same amount
of text because the documents are limited to 3,000
words, but in the latter the [CLS] tokens summarise

Figure 4: Evolution of the accuracy in validation over
2 M training steps for the three tasks 3C, 4C and 5C.

information of less context (specifically, max. 62
words vs 167 in the 6-splits model).

The splitting of d is done at the fragment level us-
ing the <NS> tags. If d has less or the same number
of segments as the desired splits, each split contains
a segment. If d has more divisions, we balance the
number of segments across splits. If d is longer
than the number of splits allowed, we first balance
the number of segments and then these fragments
are limited to the 512 limit each, so information is
lost homogeneously across d and not gathered at
the end, as the baseline system would do.

Figure 4 (top) shows the performance evolution
for the 5 models for 4C as measured by accuracy.
Table 3 shows the final accuracy per model. The
model with only 2 splits is systematically 2 points
above the baseline all along the training. At the
beginning of the training, models with more splits
are always below the 2-splits version, specially
those with 6 and 16 splits, but towards the end
of the training all the document-level models tend
to converge. Increasing the number of splits is
somehow equivalent to increasing the batch size,
more text is seen at every batch. So, for small
corpora with long documents, the document-level
extension is always preferred. For large corpora but
with relevant information all along the document,
as it is our case, the extension also shows significant
improvements. Given the length of our documents,
just 2 splits are enough to significantly improve
over the baseline; splitting further the data is not
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# Splits Validation Test

1 93.17±0.24 87.43±0.33
2 94.79±0.08 89.65±1.06
3 94.69±0.07 87.63±0.32
6 94.76±0.04 86.82±0.45

16 94.34±0.13 89.29±1.44

Table 3: Sampling mean of the accuracy (%) over 3 runs
with 95% CI standard error for the 5 models in task 4C.

always beneficial in test. Notice that the model with
2 splits fully covers around 75% of the documents.

After these observations, we evaluate the 3C and
5C tasks on the baseline and the 2-split model. We
experiment a drop in performance in test (Table 4).
Confusion matrices (included in Appendix C) show
that the loss in quality comes because some of the
Mexican articles are miss-classified as es or mix.9

CEREALex, Classifying the Unknown. Finally,
we apply the 3C, 4C and 5C classifiers with 2 splits
to the 28 M documents of the unknown part of
CEREAL. Table 1 (Classified column) reports the
number of classified documents per task and class.
We create CEREALex determining the ultimate clas-
sification through a majority vote across the three
tasks in case of intersection of classes. That is, all
ar articles are considered, cl, es and mx are con-
sidered as such if they appear in two classification
results, otherwise mix is kept. The final corpus
contains 36 M documents with annotated origin.

4.1 Salient Phrases per Variety

We use Layer Integrated Gradients (Sundararajan
et al., 2017) to determine which words or phrases
contribute more to the classification. We compute
the attribution of each subword with the integrated
gradients and define the attribution of a word as
the sum of its subunits. We consider the 1D dis-
tribution of attributions along the words of a docu-
ment after removing punctuation, extract the words
on local maxima which surpass a threshold and
build phrases in case the neighbouring words (±2
in our experiments) also surpass a threshold. After
manual inspection of individual documents, we es-
tablish the threshold for identifying the head of a
phrase as the 98% percentile and lower it to 68%
for neighbouring words.

At the document level, considering phrases is

9We consider it an effect of using articles from
mx.hola.com. Hola is a magazine based in Spain with several
other editions in Latin America. Some articles might therefore
be written in/by Spanish journalists and shared across editions.

3C 5C

1 split 2 splits 1 split 2 splits

Val. 95.2±0.2 96.5±0.1 92.3±0.3 94.3±0.1
Test 90.3±1.0 89.0±1.4 86.6±0.6 88.8±0.8

Table 4: Accuracy (%) over 3 runs on validation and
test for the models trained on the 3C and 5C tasks.

informative. However, at the corpus level the ad-
dition of phrases increases the sparsity, as it is
more difficult for phrases to be common in several
documents. For example, a document about the
Mexican dish mole has as the highest attributed
phrases: ‘El’, ‘herencia gastronómica’,
‘República Mexicana es el’, ‘Mazateca El’
and ‘Cañada El’. That is, an article, the key-
word that detects that the topic is food, and 3
Mexican locations in this order. In the four oc-
casions the article El is highlighted, it comes be-
fore word mole, showing that the classifier fo-
cuses on the left context of the keyword. A doc-
ument about alebrijes (Mexican sculptures of
fantastical creatures) has: ‘México’, ‘viernes
al Rockefeller Center’, ‘encomienda’,
‘Semana’, ‘coincidirá’, ‘mexicana Las’
and ‘México el’. In this case, besides locations,
we have two words (encomienda and coincidirá)
that might be used in a specific way in the Mexican
variety. ‘Semana de México’ is not extracted as
a phrase but as two words because the attribution
to de is very low; this is common to lots of other
prepositional phrases. It is interesting that the word
with the lowest (negative) attribution is España, as
the term appears as a positive clue in the es class.
These examples are fully depicted in Appendix C.3,
together with a list of top attributed phrases.

At the corpus level, we look at the top attributed
words/phrases per class in the test set. In the
4C experiment we obtain mostly stopwords (e.g.,
que, en, de, por) and locations (e.g., Chile,
España, Chiapas, Nicaragua). Other than that,
we observe “Clever Hans” by the classifier, as it
seems to learn boilerplate text common to a class
(e.g., ‘Inicio Nacionales’ can be the header of
a newspaper site) which cannot explain differences
among varieties.

5 Cultural Aspects in Embeddings

We analyse the quality and effect of variety-specific
word embeddings built from the CEREAL corpus.
We estimate fastText (Bojanowski et al., 2017) em-
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beddings as described in Appendix D. For bilin-
gual lexicon induction, we use fastText pretrained
English embeddings.10 For comparison purposes,
we use the Twitter embeddings from Tellez et al.
(2023).

5.1 Bilingual Lexicon Induction (BLI)
We study the relevance of the underlying embed-
dings to induce English–Spanish lexicons for 21
Spanish varieties. At the heart of BLI are crosslin-
gual word representations. We do not focus here
on the method to build the bilingual space, but use
a standard VecMap method (Artetxe et al., 2018)11

to construct the spaces. Both for our and the Twit-
ter models, we do the mappings between the En-
glish and the 21 Spanish embedding spaces with
VecMap, using a semi-supervised configuration
that uses identical words as seed dictionary.

Data Settings. We build the evaluation of bilin-
gual dictionaries grounded on VARILEX-R, a
database with linguistic data for 21 Spanish vari-
eties (Chacón García, 2016; Ueda and Moreno Fer-
nández, 2016). Linguistic concepts are instantiated
by words or phrases in all the varieties, as many
as the participants to the project provided by solv-
ing different kinds of cloze tests. All concepts
are aligned to an English word or phrase. Since
we work with word embeddings, we consider only
single-token entries, eliminating articles and speci-
fications (e.g., el pijama (Spain) and la pijama
(Mexico) both turn into pijama and palomitas
(de maíz) becomes palomitas). Appendix E de-
tails statistics of the final resource.

Experiments. We evaluate the quality of the
embeddings with respect to the accuracy on the
VARILEX BLI test using CSLS retrieval as imple-
mented by VecMap. Figure 5 shows the results
for the languages with the largest training sets,
those that have been enlarged with our classifier
—Argentinian, Chilean, Mexican, and Spanish—,
and for the combination of the 24 varieties (all).
The diagonal marks the cases where we use the em-
bedding space of the same variety of the dictionary
we want to induce. One would expect the diagonal
to have the highest values for a given dictionary,
and this is always the case with CEREALex even
when considering all the data together to build the
embeddings. With CEREAL and Twitter, which

10https://fasttext.cc/docs/en/crawl-vectors.
html

11https://github.com/artetxem/vecmap

(CEREAL) CEREALex

Twitter

Figure 5: Accuracy (%) in BLI for the high-resourced
varieties for the 3 embedding models used. The top
heatmap shows results for CEREAL (in parenthesis) and
for CEREALex.

use less training data per variety, this is not always
the case and using the combined corpus instead
of the corpus per variety does not represent a bad
alternative. The conclusions are in line for CEREAL,
CEREALex and Twitter, but the performance using
embeddings from Twitter is notably diminished,
despite the dediacritisation of the vocabulary.

Note that Chilean aligns with the same trends as
the other varieties, but at a lower performance. Con-
sulting with Chilean citizens regarding the quality
of the dictionary, we learned that its vocabulary
might not be used globally, but may reflect the
linguistic preferences of a specific localised or mi-
nority group. In general, lower values column-wise
might indicate a lower quality of the dictionary,
while lower values row-wise might indicate a low
quality of the embeddings. This trend is observed
when we consider all the varieties and do the 22x21
comparison (see the accuracies in Appendix E).

5.2 Human Biases in Embeddings

We resort to the Word Embedding Association Test
(WEAT) (Caliskan et al., 2017) as a measure for
cultural biases in word embeddings. WEAT is in-
spired by the Implicit Association Test (IAT) in
psychology (Greenwald et al., 1998), which mea-
sures differences in response time when subjects
are requested to pair items and attributes that they
find similar and when pairing items and attributes
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es mx combo

CEREAL-CAWEAT1 1.47+0.17
−0.30 1.08+0.30

−0.81 1.19+0.22
−0.50

CEREAL-CAWEAT2 1.39+0.15
−0.44 1.27+0.29

−0.46 1.50+0.08
−0.42

CEREALex-CAWEAT1 1.50+0.08
−0.38 1.10+0.28

−1.00 –

CEREALex-CAWEAT2 1.39+0.10
−0.54 1.31+0.27

−0.70 –

Twitter-CAWEAT1 1.29+0.10
−0.39 0.93+0.41

−1.06 1.09+0.26
−0.55

Twitter-CAWEAT2 1.01+0.33
−0.38 1.16+0.35

−0.40 1.25+0.29
−0.19

Table 5: Size effect (median and 95% CIs) of human
biases as measured by CA-WEAT1 and CA-WEAT2,
in the Mexican (mx), Peninsular Spanish (es) and the
union of 24 variants embeddings. In the latter we use
CA-WEAT lists for 5 variants (combo).

that they find different. For word embeddings, one
does not measure response times, but distances
in embedding spaces. Only two of the WEAT
tests available represent human biases: one mea-
suring associations between flowers/insects and
pleasant/unpleasant attributes (WEAT1) and one
measuring associations between musical instru-
ments/weapons and pleasant/unpleasant attributes
(WEAT2). The other tests represent social biases,
such as sexism or racism, and we cannot expect
them to be comparable across cultures. The semi-
nal work by Caliskan et al. (2017) provides lists in
English for WEAT1 and WEAT2 among other tests.
Here, we follow the approach in (España-Bonet
and Barrón-Cedeño, 2022) to collect cultural aware
lists (CA-WEAT) for the language varieties under
study as explained below.

Data Settings. We ask 30 volunteers from Bo-
livia, Colombia, Cuba, Ecuador, Mexico and Spain
to provide lists with 25 flowers, insects, weapons,
instruments, and both pleasant and unpleasant con-
cepts in Spanish in analogy to the original CA-
WEAT lists. After cleaning, we discard 4 lists with
noise or missing words and keep 12 Mexican, 9
Spanish, 2 Colombian, 2 Ecuadorian and 1 Boli-
vian. In order to deal with lists which only prob-
lem is a word —either missing, repeated or out of
context—, we implement and apply a matrix fac-
torisation model for collaborative filtering (Takács
et al., 2008) whose objective is recommending the
most likely missing item for a given native speaker
on the basis of the full decision history by all vol-
unteers, regardless of their background. After this
cleaning process, we have many more lists in Mex-
ican and Peninsular Spanish than in the other vari-
eties. Therefore, we group the lists into three sets:

12 Mexican (mx), 9 Spanish (es) and a combina-
tion with 2 Mexican, 2 Spanish, 2 Colombian, 2
Ecuadorian and 1 Bolivian (combo).

Experiments. We calculate the effect size of the
bias as explained in Appendix F in our variety-
specific and in the Twitter embeddings (es, mx and
all models). For the statistical analysis of the re-
sults, we provide the median over the lists of a
variety and 95% confidence intervals (CI) using
order statistics. As Table 5 shows, the observed
biases are not universal and they do depend on both
the domain of the data (embeddings) and the lan-
guage variety. In general, biases in Common Crawl
are stronger than in Twitter. Results with CEREAL
and CEREALex are not statistically significantly dif-
ferent. If we look at the language dimension, biases
in the mx embeddings are less pronounced than in
es embeddings except for the CA-WEAT2 case
on Twitter (instruments and weapons). When we
put all the varieties together (the all embedding
model) and use the combo set, no straightforward
trend is observed. This is an indication that when
joining different varieties together, biases or cul-
tural aspects can be erased, amplified or mixed.

6 Conclusions

Spanish is a language with large variations across
territories. Variations are reflected in written doc-
uments as the high accuracies of our classifiers
show. The amount of data we gather in CEREAL
and CEREALex turns Argentinian, Chilean, Colom-
bian, Mexican and Peninsular Spanish into high-
resourced varieties that do not need extra data to
achieve competitive results in tasks such a bilingual
lexicon induction. For other varieties, the addition
of data from the richest counterparts is still needed.

Ongoing work is being devoted to study the
topology of our variety-specific embedding spaces
and to derive data-based phylogenetic trees for
Spanish. Although currently the amount of docu-
ments in CEREAL that remains with unknown origin
is relatively small (5 M documents out of 41 M), we
plan to train classifiers for the lowest-resourced va-
rieties. Beside creating larger corpora, further work
should also focus on the development of variety-
specific curated resources for NLP tasks evaluation.

Corpora, code and models are available for the
research community in hope for fostering research
and development of technology that reflects cul-
tural variety beyond single languages.
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Limitations

In this work we build a corpus from the Web. This
inherently introduces a technological bias to the
corpus, as it excludes social groups with limited
access to technology. The disparity among Spanish-
speaking countries in this aspect becomes apparent
with the lack of a correlation between a country’s
population and the amount of online text.

An unintended bias in the analysis might ap-
pear due to the origin of the authors. The authors
are speakers of Peninsular and Mexican Spanish.
We also consulted with natives from Bolivia and
Chile. Citizens from other countries have not been
involved in the project.

The classification method that we use for Span-
ish would also work for other languages such as
English, French, Portuguese or German, but it is
not a generic method. Our goal in this work is to
provide a high-quality corpus for several Spanish
varieties. Within each variety there are also dif-
ferences which are not tackled here, but we hope
this corpus is useful to dig into large cultural differ-
ences.

Some of the experiments performed depend on
the quality of additional resources such as bilingual
lexicons and CA-WEAT lists. These resources face
the same problems as the corpus itself, data is more
challenging to collect for certain cultures compared
to others. While low-quality issues in bilingual
dictionaries were identified only in Chilean, the
number of CA-WEAT lists is only significant for
Mexican and Peninsular Spanish. Because of this,
the distribution of the effect size over the lists is not
normal. Some lists are outliers either because of
non-common words in the variety, typos or multi-
word expressions which translate into OOVs. Hav-
ing more lists at least for the higher-resourced vari-
eties (i.e. those with good embeddings) would help
in confirming the conclusions.
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A Style Characteristics in Spanish
Varieties

We report the scores given by 20 style-related met-
rics in Tables 6 and 7. Table 6 gathers the results
related to the basic text statistics and Table 7 to
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ability.

B Multi-Variety Test Sets

Table 8 shows the websites included in the test sets
used in the three classification tasks: 3C, 4C and
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Number of Ratio of Length of the Syllables Ratio of * words
sents. tokens∗ digits upper- punct. function sents. tokens per word short long

case words (words) (chars.) (<4chars) (>2syl)

ar 34 ± 30 578 ± 479 1.5 ± 2.7 4 ± 2 2.3 ± 0.9 10.0 ± 2.3 20 ± 9 5.1 ± 0.4 2.04 ± 0.15 42 ± 5 32 ± 5
bo 39 ± 31 672 ± 496 1.2 ± 1.3 4 ± 3 2.3 ± 0.9 9.7 ± 2.2 20 ± 9 5.2 ± 0.4 2.05 ± 0.13 42 ± 3 32 ± 5
cl 37 ± 31 621 ± 520 1.1 ± 1.8 4 ± 2 2.3 ± 0.7 9.9 ± 2.3 20 ± 10 5.2 ± 0.4 2.08 ± 0.16 41 ± 4 33 ± 6
co 16 ± 36 248 ± 531 0.5 ± 1.8 2 ± 2 1.5 ± 0.8 9.9 ± 2.4 16 ± 13 5.6 ± 0.5 2.14 ± 0.17 42 ± 4 36 ± 6
cr 35 ± 29 575 ± 471 1.1 ± 1.4 4 ± 2 2.3 ± 0.7 9.9 ± 2.2 19 ± 19 5.3 ± 0.4 2.11 ± 0.17 41 ± 4 34 ± 6
cu 45 ± 34 772 ± 596 2.0 ± 3.4 3 ± 2 2.5 ± 1.0 9.5 ± 2.2 20 ± 9 5.3 ± 0.4 2.10 ± 0.16 41 ± 4 34 ± 6
do 31 ± 25 541 ± 394 1.1 ± 1.1 4 ± 2 2.3 ± 0.7 9.7 ± 2.0 21 ± 9 5.2 ± 0.3 2.06 ± 0.13 42 ± 3 33 ± 5
ec 33 ± 27 522 ± 407 1.5 ± 2.8 4 ± 3 2.3 ± 0.7 9.6 ± 2.3 19 ± 14 5.3 ± 0.4 2.09 ± 0.18 41 ± 5 33 ± 6
es 45 ± 37 702 ± 556 1.3 ± 2.6 3 ± 2 2.4 ± 0.9 9.8 ± 2.3 18 ± 18 5.2 ± 0.4 2.06 ± 0.16 42 ± 5 32 ± 6
gq 23 ± 17 429 ± 322 0.8 ± 0.7 3 ± 3 2.2 ± 0.6 9.8 ± 2.0 20 ± 6 5.1 ± 0.3 2.04 ± 0.10 41 ± 4 28 ± 5
gt 34 ± 30 560 ± 464 1.5 ± 2.8 4 ± 2 2.3 ± 0.8 9.9 ± 2.3 19 ± 11 5.2 ± 0.4 2.09 ± 0.15 41 ± 4 33 ± 5
hn 31 ± 27 586 ± 513 1.0 ± 0.8 3 ± 2 2.2 ± 0.5 10.1 ± 1.9 22 ± 9 5.1 ± 0.4 2.03 ± 0.15 43 ± 3 32 ± 5
mx 33 ± 29 594 ± 477 1.1 ± 1.9 3 ± 2 2.3 ± 0.7 9.9 ± 2.2 22 ± 13 5.2 ± 0.4 2.05 ± 0.15 42 ± 4 32 ± 6
ni 27 ± 24 520 ± 431 1.6 ± 2.2 4 ± 2 2.2 ± 0.6 9.8 ± 2.1 23 ± 16 5.2 ± 0.4 2.07 ± 0.14 41 ± 4 33 ± 5
pa 35 ± 28 613 ± 497 2.4 ± 4.0 5 ± 10 2.3 ± 0.8 9.3 ± 2.5 25 ± 49 5.3 ± 0.4 2.08 ± 0.16 40 ± 5 34 ± 6
pe 35 ± 30 562 ± 466 1.3 ± 1.9 4 ± 3 2.4 ± 0.7 9.6 ± 2.2 19 ± 12 5.3 ± 0.4 2.08 ± 0.16 41 ± 4 33 ± 6
ph 36 ± 24 770 ± 509 0.6 ± 0.8 3 ± 3 2.0 ± 0.7 9.8 ± 2.1 22 ± 7 5.1 ± 0.3 2.05 ± 0.12 42 ± 4 30 ± 5
pr 25 ± 22 484 ± 369 1.0 ± 0.9 3 ± 1 2.1 ± 0.6 9.8 ± 2.0 22 ± 9 5.1 ± 0.3 2.01 ± 0.11 43 ± 3 30 ± 4
py 30 ± 27 527 ± 458 1.2 ± 1.5 4 ± 3 2.3 ± 0.7 9.7 ± 2.2 20 ± 10 5.2 ± 0.4 2.07 ± 0.15 42 ± 4 33 ± 5
sv 27 ± 26 476 ± 418 1.3 ± 1.7 4 ± 3 2.1 ± 0.8 9.6 ± 2.1 22 ± 11 5.3 ± 0.5 2.09 ± 0.16 41 ± 6 34 ± 6
us 50 ± 33 842 ± 585 0.9 ± 1.0 3 ± 2 2.2 ± 0.6 10.3 ± 2.3 20 ± 18 5.1 ± 0.4 2.02 ± 0.14 42 ± 4 30 ± 5
uy 39 ± 36 623 ± 542 1.2 ± 2.0 3 ± 2 2.4 ± 0.9 10.2 ± 2.3 19 ± 10 5.2 ± 0.4 2.06 ± 0.17 42 ± 4 32 ± 6
ve 36 ± 31 611 ± 519 1.2 ± 1.7 4 ± 3 2.4 ± 0.8 9.7 ± 2.2 20 ± 13 5.3 ± 0.4 2.09 ± 0.15 41 ± 4 34 ± 6
∗ Without punctuation or digits

Table 6: Stylistics 1. Text statistics used for the stylistic analysis. All numbers are averaged over (up to) 30 k
documents per country.

Ratio of hapax Fernandez Szigriszt-Pazos Laplacian
TTR legomena dislegomena Entropy Yule’s K Huerta /INFLEZ energy Clustering

ar 51 ± 10 37 ± 11 7 ± 3 6.9 ± 0.7 152 ± 59 63 ± 13 59 ± 13 0.46 ± 0.05 0.08 ± 0.04
bo 46 ± 12 31 ± 15 8 ± 4 7.0 ± 0.6 159 ± 60 62 ± 13 58 ± 13 0.45 ± 0.05 0.08 ± 0.03
cl 50 ± 11 36 ± 12 7 ± 3 7.0 ± 0.7 155 ± 65 61 ± 14 56 ± 15 0.46 ± 0.05 0.08 ± 0.04
co 53 ± 12 36 ± 13 9 ± 3 6.5 ± 0.7 181 ± 69 59 ± 16 54 ± 16 0.47 ± 0.06 0.05 ± 0.04
cr 50 ± 11 36 ± 11 7 ± 3 6.9 ± 0.7 162 ± 58 59 ± 22 54 ± 22 0.46 ± 0.05 0.08 ± 0.04
cu 50 ± 10 38 ± 11 6 ± 2 7.2 ± 0.6 149 ± 68 61 ± 12 56 ± 12 0.46 ± 0.06 0.08 ± 0.03
do 52 ± 9 38 ± 10 7 ± 2 7.0 ± 0.6 146 ± 44 60 ± 11 56 ± 11 0.46 ± 0.04 0.08 ± 0.03
ec 51 ± 10 38 ± 11 7 ± 3 6.9 ± 0.7 155 ± 55 61 ± 17 56 ± 17 0.46 ± 0.05 0.08 ± 0.04
es 48 ± 11 34 ± 11 7 ± 3 7.0 ± 0.7 155 ± 67 63 ± 20 59 ± 20 0.45 ± 0.06 0.09 ± 0.04
gq 52 ± 9 38 ± 10 6 ± 2 6.8 ± 0.4 145 ± 47 65 ± 9 61 ± 9 0.47 ± 0.04 0.07 ± 0.03
gt 51 ± 10 37 ± 10 7 ± 2 6.9 ± 0.7 152 ± 53 62 ± 14 57 ± 14 0.46 ± 0.05 0.08 ± 0.03
hn 52 ± 10 39 ± 10 7 ± 2 7.0 ± 0.7 142 ± 39 61 ± 12 57 ± 12 0.46 ± 0.05 0.07 ± 0.04
mx 50 ± 11 36 ± 12 7 ± 3 7.0 ± 0.6 149 ± 51 60 ± 15 56 ± 14 0.46 ± 0.05 0.08 ± 0.04
ni 53 ± 10 39 ± 11 7 ± 2 6.9 ± 0.7 149 ± 57 58 ± 18 53 ± 17 0.47 ± 0.05 0.07 ± 0.03
pa 49 ± 10 36 ± 10 7 ± 2 7.0 ± 0.7 156 ± 64 56 ± 55 52 ± 54 0.46 ± 0.05 0.08 ± 0.04
pe 50 ± 11 36 ± 11 7 ± 3 6.9 ± 0.7 155 ± 59 62 ± 16 57 ± 16 0.46 ± 0.05 0.08 ± 0.04
ph 47 ± 9 34 ± 9 6 ± 3 7.2 ± 0.7 135 ± 47 60 ± 10 55 ± 10 0.43 ± 0.05 0.08 ± 0.03
pr 52 ± 9 38 ± 9 7 ± 2 6.9 ± 0.6 148 ± 39 63 ± 11 58 ± 11 0.46 ± 0.05 0.08 ± 0.03
py 51 ± 10 37 ± 11 7 ± 3 6.9 ± 0.6 156 ± 60 60 ± 13 56 ± 13 0.46 ± 0.05 0.08 ± 0.04
sv 51 ± 9 36 ± 9 8 ± 3 6.7 ± 0.7 161 ± 68 59 ± 15 54 ± 15 0.46 ± 0.05 0.08 ± 0.04
us 45 ± 11 32 ± 11 6 ± 2 7.2 ± 0.6 147 ± 47 64 ± 21 59 ± 21 0.44 ± 0.05 0.09 ± 0.03
uy 50 ± 11 36 ± 11 7 ± 3 6.9 ± 0.7 154 ± 55 63 ± 13 59 ± 14 0.46 ± 0.06 0.08 ± 0.04
ve 51 ± 10 37 ± 11 7 ± 3 7.0 ± 0.7 152 ± 65 59 ± 15 55 ± 15 0.46 ± 0.05 0.08 ± 0.03

Table 7: Stylistics 2. Text richness measures used for the stylistic analysis. All numbers are averaged over (up to)
30 k documents per country.
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Country Freq. Site Country Freq. Site

ar 14 https://bilinkis.com es 37 https://hemeroteca.vozlibre.com
ar 3 https://elle.clarin.com es 18 https://losviajesdeclaudia.com
ar 353 https://elplanetaurbano.com es 11 https://losviajesdedomi.com
ar 171 https://www.clarin.com es 89 https://vozlibre.com
ar 3 https://www.fondodeolla.com es 3 https://www.donquijote.org
ar 113 https://www.perfil.com es 120 https://www.elplural.com
ar 5 https://www.poneteeldelantal.com es 36 https://www.elrincondesele.com
ar 96 https://www.tycsports.com es 2 https://www.gironafc.cat
ar 195 https://zuletasintecho.com es 113 https://www.recetasderechupete.com
ar 47 http://turismo.perfil.com es 571 https://www.telva.com
bo 63 https://www.lostiempos.com gt 63 https://www.prensalibre.com
cl 25 http://labrujitadejengibre.blogspot.com hn 4 https://contracorriente.red
cl 10 https://astroturismochile.travel hn 59 https://www.tunota.com
cl 161 https://chile.as.com mx 138 http://escrutiniopublico.blogspot.com
cl 28 https://ecochile.travel mx 300 https://mx.hola.com
cl 43 https://puconchile.travel mx 7 https://viajerosvagabundos.com
cl 145 https://rufianrevista.org mx 300 https://www.diariodemexico.com
cl 35 https://tradenews.chile.travel mx 154 https://www.motivosamarmx.com
cl 29 https://www.chile.travel mx 59 https://www.reforma.com
cl 523 https://www.latercera.com mx 11 https://www.tolucafc.com
cl 1 http://tradenews.chile.travel mx 24 http://www.marieldeviaje.com
co 14 https://www.mycolombianrecipes.com mx 7 http://www.yovivolamoda.com
co 49 https://www.semana.com ni 63 https://www.el19digital.com
cr 63 https://www.nacion.com pa 63 https://www.prensa.com
cu 52 https://diariodecuba.com pe 63 https://www.rcrperu.com
cu 1 https://eldiariodecuba.com py 63 https://www.ultimahora.com
cu 10 https://www.cuba.travel sv 63 https://www.elsalvador.com
do 1 http://espacinsular.org uy 1 http://decano.com
do 1 https://12y2.com uy 37 https://lapalomadiariodigital.com
do 1 https://matense.net uy 3 https://poracayporalla.com
do 1 https://www.alcarrizosdigital.net uy 22 https://www.uypress.net
do 56 https://www.diariolibre.com ve 1 https://es.aleteia.org
do 1 https://www.laprensatraslaverdad.com ve 1 https://festiverd.com
do 1 http://www.alcarrizosdigital.net ve 49 https://www.eluniversal.com
do 1 http://www.diariocristal.com ve 11 https://www.venezuelatuya.com
ec 63 https://www.elcomercio.com ve 1 http://www.grancine.net

Table 8: List of sites used to build the test set of documents without ccTDL.

5C. For ar and cl, we list the sites covering 1000
documents; when these varieties are used within
the mix class, we use a subset of 63 documents.
See Table 1 for the complete distribution across
varieties.

C docTransformer Characteristics

C.1 Hyperparameters

The classifier is a small network on top of
RoBERTa that first performs a dropout (p = 0.1)
on the averaged [CLS] token, followed by a linear
layer and a tanh activation function. After a second
dropout layer (p = 0.1) a linear classification layer
projects into the output classes. Back propagation
takes place over the whole architecture.

We train the classifiers along three iterations for
3C and two iterations for 4C and 5C. All models
have a batch size of 2 documents with gradient ac-
cumulation of 8. The batch size was chosen as the
largest batch that fit our machines (NVIDIA A100

80GB) for the model with 16 splits. A training on
4 M documents (two iterations on the 4C corpus)
takes 12 days in a single GPU. We use a cross-
entropy loss, AdamW optimiser and a learning rate
that decreases linearly starting at 5 · 10−6. The
learning rate was tuned in the range 10−5 − 10−6.

C.2 Performance and Confusion Matrices

Detailed evaluation performance of the classifica-
tion models. Figure 6 shows the confusion matrices
in validation and test for 4C, that is, the classifi-
cation task in cl, es, mx, and mix. Notice that
the main difference between the 2 sets (validation
and test) is that in test some of the Mexican doc-
uments are classified as corresponding to the es
or mix classes. The same effect is observed in
Figure 7, where is evident that most of the lost
in performance with respect of the validation data
comes because of mis-classification of Mexican
documents.
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(a) Validation — 1 split (b) Validation — 2 splits

(c) Test — 1 split (d) Test — 2 splits

(e) Validation — 3 splits (f) Validation — 6 splits (g) Validation — 16 splits

(h) Test — 3 splits (i) Test — 6 splits (j) Test — 12 splits

Figure 6: Confusion matrix for the validation and test sets. Test contains a combination of sports, fashion, travel,
gastronomy and news sites as summarised in Table 8.
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(a) Test 3C — 1 split (b) Test 3C — 2 splits

(c) Test 5C — 1 split (d) Test 5C — 2 splits

Figure 7: Confusion matrix for the 3C and 5C test sets. As in the 4C case, the test contains a combination of sports,
fashion, travel, gastronomy and news sites as summarised in Table 8.
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C.3 Explainability with Layer Integrated
Gradients

Example documents (Figures 8 and 9) and corpus
level top attributions (Table 9).

D Word Embeddings for Varieties

To compute the embeddings, we eliminate sen-
tences having only punctuation and numbers, as
well as those with at least one Arabic, Chinese,
Cyrillic or Greek character. We then normalise
and tokenise the texts using Moses’ scripts (Koehn
et al., 2007) and lowercase. We use the default
skipgram configuration in fastText (Bojanowski
et al., 2017) to train 300-dimensional embeddings
for tokens appearing 20+ times. We provide and
make publicly available Spanish embeddings for 24
countries (we name the models after their ccTLD
code) in addition to a model trained with all the
varieties together (named all12). Our setting is
comparable to (Tellez et al., 2023) except for the
minimum frequency of in-vocabulary tokens (the
default being 5 in their case) and the fact that we
keep diacritics. For comparison purposes, we use
their and our variety-specific embeddings in the
experiments. The statistics of the resources are
detailed in Table 10.

E Bilingual Lexicon Induction

We report in Table 11 the statistics for the
VARILEX-R extracted bilingual dictionaries both
at phrase and word level. The table lists the number
of phrases, words and the fertility, where fertility is
the ratio between the number of words in Spanish
and the unique words in English. Notice that higher
fertilities facilitate higher accuracies as there are
more chances to retrieve a term.

Our experiments use the word level version of
the dictionaries, but both versions are available at
the CEREAL-ES site.13

Figure 10 depicts the accuracy for all the combi-
nations of the embeddings (21+1) that can be used
to infer the dictionary (21). The all embeddings
are trained with data from the 21 varieties.

12We cut down the amount of peninsular Spanish data to
that of the second largest variety —Mexican— to build a more
balanced dataset.

13https://cereal-es.github.io/CEREAL

F Bias Effect Size in Embeddings

F.1 WEAT and Effect Size Equations
The Word Embedding Association Test
(WEAT) (Caliskan et al., 2017) is a bias
measurement method for word embeddings. It
uses lists of terms (e.g., flowers) and attributes
(e.g., pleasant concepts) that conceal implicit
human associations (e.g., flowers/insects vs.
pleasant/unpleasant thoughts). Mathematically,
the association of each term t is defined as its
average cosine similarity against the list of target
attributes A:

assoc(t, A) =

∑
a∈A cos(t,a)

|A| , (1)

where t is the embedding for t and a is the em-
bedding for an element a ∈ A. The association
difference ∆assoc for a term t between attributes A
(pleasant) and B (unpleasant) is then

∆assoc(t, A,B) = assoc(t, A)− assoc(t, B).
(2)

Given two sets of terms X and Y (e.g., flowers
and insects), we use Cohen’s d as standardised
measure of the effect size (i.e. the strength of the
bias). The effect size is defined as the difference
between the two means divided by the standard
deviation for all instances in X and Y :

d =
µ (∆assoc(x,A,B)∀x∈X)− µ (∆assoc(y,A,B)∀y∈Y )

σ (∆assoc(w,A,B)∀w∈X∪Y )
.

(3)

Sawilowsky (2009) defined the scale of magni-
tude for d as very small (< 0.01), small (< 0.20),
medium (< 0.50), large (< 0.80), very large
(< 1.20), and huge (< 2.00).

F.2 Fine-grained Analysis
Figure 11 shows the detailed effect sizes per indi-
vidual lists and how they contribute to the mean
value of a variety.
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Figure 8: Attribution scores as obtained by the layer integrated gradients method after summing attributions from
subunits. The snippet corresponds to the first 300 words of a Mexican article classified as such by the 4C classifier.
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Figure 9: Attribution scores as obtained by the layer integrated gradients method after summing attributions from
subunits. The snippet corresponds to the first 366 words of a Mexican article classified as such by the 4C classifier.
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cl es mx mix
Chile, 953 que, 373 Chiapas, 780 Nicaragua, 96
que, 374 España, 172 México, 254 en, 93
en, 271 tras, 169 de, 180 Panamá, 82
por, 119 y, 159 que, 110 el, 61
de, 94 Madrid, 129 en Chiapas, 102 Cuba, 60
Qué, 80 Cómo, 107 las, 59 que, 60
Boric, 78 con, 95 Cómpralo, 58 por, 48
Elecciones, 74 los, 94 Ciudad, 53 Guatemala, 43
pero, 71 las, 88 en, 47 Venezuela, 42
La Tercera, 62 obligatorios, 81 impresa, 46 Nacional, 36
en Chile, 58 la, 78 por, 46 su, 33
Tiempo, 57 por, 72 Chiapas a, 43 En, 33
y, 50 Recetas, 69 pues, 43 Municipales Economicas

Deportes, 32
Santiago, 49 rebeló, 63 como, 40 Bolivia, 29
La, 47 os, 61 lo, 39 Costa Rica, 28
del, 47 euros, 60 del, 36 Cochabamba, 27
la, 46 lo, 56 y, 35 Ecuador, 27
chileno, 45 vacunación obligatoria, 53 Chiapas en, 34 como, 27
a, 44 Cómo hacer, 47 Chiapas El, 33 Actualidad, 25
Tercera, 44 superó, 45 pero, 31 Foto, 24
La Tercera Secciones, 42 TELVA, 44 para, 29 Colombia, 24
En, 40 y aprendió, 43 En, 29 Argentina, 22
La Serena, 40 Actualidad, 42 mexicana, 27 El Salvador, 21
un, 38 Qué, 41 es, 27 Ministerio, 21
como, 37 para, 41 Casas Chiapas, 24 pero, 21
Tercera Secciones, 37 coalición, 40 Chiapas México, 24 GN, 20
chilena, 36 coalición por, 38 una, 21 Fotogalerías, 20
país, 36 pero, 37 los, 21 Honduras, 20
UNAM, 36 aprovechó, 35 mexicano, 20 El, 19
Kast, 34 QAnon, 34 Tuxtla Gutiérrez Chiapas, 20 Boliviana, 18
chilenos, 33 Si, 33 El, 20 este, 18
al, 33 En, 33 al, 20 Noticias, 17
las, 33 como, 33 la, 20 Inicio Nacionales Municipales

Economicas Deportes, 17
los, 32 en, 32 bitácora, 19 es, 17
Deco, 31 impaciente, 31 mil, 19 Municipales Economicas Deportes

Internacionales, 16
lectura, 30 URJC, 31 un, 19 Municipales Economicas Deportes

Internacionales Coronavirus, 15
Y, 29 recetas, 30 OaxacaChiapasNacional, 19 Ñucanchi, 15
de Chile, 29 Y, 29 fomentar en Chiapas, 19 sesión, 15
Cómo, 29 Comprar, 28 pesos, 18 Perú Inicio Economía, 15
El, 28 podéis, 27 mexicanos, 17 Nacionales Municipales

Economicas Deportes, 15
Cuáles, 28 Cuáles, 25 noticias, 16 Honduras Farándula internacional, 15
chino, 27 español reduce, 25 ARTE, 15 en el, 15
comuna, 26 a, 25 La, 15 Investigación Opinión

Entretenimiento, 14
feminismo, 26 impaciente invierno Ciudad de México, 15 Buenos Aires, 14

provoca, 24
el, 26 este, 24 su, 15 se, 14
Chile y, 25 te, 24 REPÚBLICA, 14 Perú, 14
insomnio, 24 Recetasderechupetecom, 23 Chiapas En, 13 EL COMERCIO, 14
Síguenos, 23 Telvacom, 23 Síguenos, 13 y, 14
minutos, 23 si, 23 Gutiérrez Chiapas, 13 Panamá y, 13
mapuche, 20 Fundación Jiménez, 22 de la, 13 DIARIO DE CUBA, 13
nacional, 20 PSOE, 21 Su, 12 país, 13
Ministerio, 20 superó un, 21 en Chiapas ANTONY, 12 Morales, 13
Ñublense, 20 Gobierno español reduce, 20 muy, 12 en Panamá, 12
chilenas, 19 Galicia, 20 ppm, 12 Policía, 12
a Chile, 19 español, 19 primavera 2020, 12 Panamá Ellas, 12

Table 9: Top 55 phrases according to the attribution score of Layer Integrated Gradients (phrase, frequency). Data
correspond to the classification of the test set with 4C.
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Figure 10: Accuracy (%) for the bilingual lexicon induction task for the 21 varieties with available test dictionaries.
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CEREAL

(a) CA-WEAT1 — es (b) CA-WEAT1 — mx (c) CA-WEAT1 — combo

(d) CA-WEAT2 — es (e) CA-WEAT2 — mx (f) CA-WEAT2 — combo

Twitter

(g) CA-WEAT1 — es (h) CA-WEAT1 — mx (i) CA-WEAT1 — combo

(j) CA-WEAT2 — es (k) CA-WEAT2 — mx (l) CA-WEAT2 — combo

Figure 11: Effect sizes for the individual lists for each variety set (es, mx and combo) in the two embeddings domains
(web and twitter), using CA-WEAT1 and CA-WEAT2. Median and confidence intervals are estimated with order
statistics at 95% level for CA-WEAT. CIs for each list are estimated by bootstrap resampling also at 95% level.3710



ccTLD Segments Words Vocab. VocabTw

ad 13,023 543,047 2,671 –
ar 20,950,705 986,413,066 284,191 673,424
bo 975,429 49,518,821 53,799 47,012
cl 12,079,476 548,257,312 199,493 282,737
co 8,323,794 375,326,751 163,212 324,635
cr 825,513 37,760,657 45,893 103,086
cu 1,919,998 93,368,177 82,275 18,682
do 1,183,336 48,726,587 52,409 108,655
ec 1,624,269 66,662,454 64,312 147,560
es 20,950,705 880,495,659 596,842 571,196
gq 4,050 329,469 1,698 1,167
gt 561,714 23,421,191 35,860 95,252
hn 656,212 24,971,660 35,707 60,580
mx 20,875,244 912,645,564 250,313 438,136
ni 405,935 18,921,537 31,345 68,605
pa 448,974 18,431,387 31,268 111,635
pe 5,066,369 213,937,404 122,884 178,113
ph 1,382 75,761 405 –
pr 128,103 5,619,179 15,062 23,062
py 775,101 33,771,401 46,513 124,162
sv 401,348 17,068,212 29,433 73,833
us 376,839 21,335,770 34,368 292,465
uy 1,804,329 85,809,183 75,491 200,032
ve 1,201,624 55,514,289 59,334 271,924
all 101,553,472 4,518,924,538 736,895 1,696,232

Table 10: Number of segments and words used to com-
pute the variety-specific word embeddings. The last
columns show the vocabulary size of these embeddings
and the equivalent for the Twitter embeddings in Tellez
et al. (2023).

ccTLD # Phrase # Word English Fertility
entries entries uniques (words)

ar 3237 1619 502 3.2
bo 1670 812 478 1.7
cl 2204 999 411 2.4
co 785 453 294 1.5
cr 908 565 354 1.6
cu 3828 1911 499 3.8
do 2042 1014 479 2.1
ec 2078 983 480 2.0
es 3085 1466 490 3.0
gq 1538 683 428 1.6
gt 1782 915 486 1.9
hn 2381 1165 491 2.4
mx 3886 1743 504 3.5
ni 3413 1616 491 3.3
pa 2028 907 427 2.1
pe 1699 924 477 1.9
pr 3231 1678 500 3.4
py 2790 1313 494 2.7
sv 1290 682 403 1.7
uy 1688 766 477 1.6
ve 2432 1195 480 2.5

Table 11: Statistics for the bilingual dictionaries
English–Spanish extracted from VARILEX (Ueda and
Moreno Fernández, 2016).
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