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Abstract

Despite their general capabilities, LLMs still
struggle on biomedical NER tasks, which are
difficult due to the presence of specialized ter-
minology and lack of training data. In this
work we set out to improve LLM performance
on biomedical NER in limited data settings
via a new knowledge augmentation approach
which incorporates definitions of relevant con-
cepts on-the-fly. During this process, to pro-
vide a test bed for knowledge augmentation,
we perform a comprehensive exploration of
prompting strategies. Our experiments show
that definition augmentation is useful for both
open source and closed LLMs. For example, it
leads to a relative improvement of 15% (on
average) in GPT-4 performance (F1) across
all (six) of our test datasets. We conduct ex-
tensive ablations and analyses to demonstrate
that our performance improvements stem from
adding relevant definitional knowledge. We
find that careful prompting strategies also im-
prove LLM performance, allowing them to out-
perform fine-tuned language models in few-
shot settings. To facilitate future research in
this direction, we release our code at https:
//github.com/allenai/beacon.

1 Introduction

Despite the impressive zero- and few-shot capa-
bilities of LLMs generally, their performance on
named entity recognition (NER) over biomedical
text remains underwhelming. For instance, Gutiér-
rez et al. (2022) observe that using GPT-3 (Brown
et al., 2020) with in-context learning performs
worse than a smaller, fine-tuned pretrained lan-
guage model given the same amount of data. De-
spite significant real-world utility, several aspects
make this task challenging even for state-of-the-
art LLMs. Biomedical texts use specialized ter-
minology that often requires domain expertise to
interpret. In addition to complicating the task, this
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Given the sentence from an abstract, extract 
all the diseases and return as a JSON.

Sentence: There are several common 
polymorphisms in the BRCA1 gene which 
generate amino acid substitutions. 

Output:  {'diseases': ['BRCA1]}

Using the definition given below ...return as 
a JSON.

Definitions:
BRCA1 gene: A tumor suppressor gene (GENES, 
TUMOR SUPPRESSOR)...component of DNA repair 
pathways.

Output:{'diseases': []}

Figure 1: Illustration of our approach using a zero-shot
example, with incorrect extraction (red) and correct
extraction (green) when provided with the definition of
the extracted entity (yellow).

requirement of requisite background knowledge
makes annotation expensive, time-consuming, and
difficult to acquire, resulting in limited availability
of labeled data.

LLMs have shown promising improvements in
performance on general information extraction (IE)
tasks (Ashok and Lipton, 2023; Wadhwa et al.,
2023). Motivated by this, we aim to improve their
performance on a specific domain (biomedicine)
via a new knowledge augmentation approach which
incorporates definitions of relevant concepts dy-
namically. To facilitate this, we perform a compre-
hensive exploration of prompting strategies; this
provides a solid test bed for experimenting with
knowledge augmentation for NER. More specifi-
cally, we first design an experimental framework
for assessment of LLMs on biomedical NER (§ 2).
Starting from the BigBIO (Fries et al., 2022) collec-
tion of 100+ biomedical datasets, we systematically
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construct an evaluation set consisting of six NER
datasets. These cover extraction tasks of varying
complexity, ranging from open extraction (i.e., no
entity types) to extraction according to large, fine-
grained schemas (10+ types). We use this test bed
to benchmark the performance of a series of SOTA
LLMs, both open and closed, on biomedical NER
in both zero-shot and few-shot settings (§ 3).

Our benchmarking effort includes an extensive
exploration of prompting strategies which have pro-
vided utility in recent work on using LLMs for IE
such as using definitions/explanations (Ashok and
Lipton, 2023) and producing extractions in struc-
tured formats like code (Dunn et al., 2022; Li et al.,
2023b). To the best of our knowledge, this is the
first effort investigating such methods for biomedi-
cal NER, and we report promising results. In par-
ticular, we find that these strategies enable LLMs
to surpass smaller, fine-tuned LMs in few-shot set-
tings, contrary to prior work.

Building on these strong baselines, we propose
a knowledge augmentation approach to further im-
prove LLM performance. Our approach, illustrated
in Figure 1, focuses on identifying and provid-
ing definitions of relevant biomedical concepts as
a follow-up step at inference time, allowing the
model to correct its entity extractions.

We explore two strategies for follow-up prompt-
ing: (i) Single-turn, which requires models to make
all entity corrections in a single step, and; (ii) Itera-
tive prompting, which simplifies the correction task
by allowing models to make changes one entity at a
time. Our results show that definition augmentation
provides meaningful performance improvements
across the LLMs considered (including both closed
and open models). For example, including defi-
nitions increases GPT-4 performance by 15% on
average across the datasets we use for evaluation.

Through a series of ablations, we verify that
these performance improvements are due to the
presence of relevant concept definitions. For ex-
ample, we find that adding irrelevant definitional
knowledge yields little to no performance im-
provement. Finally, we evaluate the utility of
definitions retrieved from various human-curated
sources (UMLS, WikiData) as well as ones au-
tomatically generated using LLMs, and find that
human-curated definitions lead to higher perfor-
mance improvements. Our results raise interesting
questions about the value of definitional knowledge
for improving LLM performance on different tasks

and across diverse domains where data is limited.

2 Experimental Framework

Models We evaluate SOTA LLMs over a set of
biomedical NER datasets from the BigBio bench-
mark (Fries et al., 2022). We assess a variety of
models including closed models available via API—
i.e., Open AI’s GPT-3.5 (Brown et al., 2020) and
GPT-4 (OpenAI, 2023) and Anthropic’s Claude
2 (Anthropic, 2023)—and an open-source model
(Llama 2; Touvron et al. 2023). We list all models
in Table 13. We also conducted preliminary ex-
periments with Google’s PaLM (Chowdhery et al.,
2022) but found its performance subpar and so did
not pursue further.

Evaluation We evaluate all models according to
entity-level F1. Prior work has shown that strict
F1 may underestimate the performance of gener-
ative models on information extraction tasks, be-
cause such models can generate outputs that differ
from reference annotations but which are still cor-
rect (Wadhwa et al., 2023). To address this, we
complement our automatic evaluation with manual
evaluation of a subset of examples; we present this
in Appendix C.

Dataset Entity Types Size

CHEM (Krallinger et al.,
2017)

Chemicals,
Proteins

800

CDR (Li et al., 2016) Chemicals,
Diseases

500

NCBI (Doğan et al., 2014) Diseases 100

MEDM (Mohan and Li,
2019)

Biomedical
Concepts

879

PICO (Nye et al., 2018) Populations,
Interventions,
Outcomes

187

CHIA (Kury et al., 2020) Clinical Trial
Criteria

600

Table 1: Overview of all datasets included in our final
biomedical NER evaluation test bed. The size column
reports the size of the test split.

Dataset Selection As a test bed for biomedical
NER, we select datasets from the BigBIO bench-
mark, a meta-resource of 100+ datasets sourced
from various areas of biomedicine, covering 12 task
types and 10+ languages. NER is the dominant task
category in BigBIO, consisting of 76 datasets (Fries
et al., 2022). We narrow these down by first ex-
cluding datasets that contain: Clinical/EHR data,
social media content, and non-English texts. Sev-
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eral of the remaining datasets contain annotations
for the same entity types. Therefore, we further
filter the corpora by retaining only 1-2 represen-
tative datasets for all entity types. This filtering
yields 16 datasets. We further narrow the selection
of datasets based on two factors: (i) Prevalence in
common benchmarks such as three datasets (CDR,
CHEM, NCBI) of the final six, are included in
popular biomedical benchmarks (BLURB, BLUE,
BoX, and so on) or; (ii) Presence of interesting IE
phenomena that could be challenging for LLMs,
such as the presence of long entities (PICO), large
fine-grained entity type schema (CHIA) and open-
ended entity extraction (MEDM). These datasets
are summarized in Table 1 and further described in
Table 14, which also provides examples.

3 ICL for Biomedical NER

In this section we establish the baseline perfor-
mance of LLMs in zero- and few-shot settings over
all datasets. To contextualize these results, we also
report on the performance of a smaller, fine-tuned
model (Flan-T5 XL; Chung et al. 2022).

3.1 Zero-Shot Experimental Setup

We evaluate zero-shot prompting strategies along
two main axes: (i) Input format, controls how the
task description and expected target categories are
provided to the model; (ii) Output format, controls
how the model structures outputs.

We explore two possible types of input format:
(i) Text, using a standard prompt with a brief de-
scription of the task and a list of valid target entity
types to be extracted; and (ii) Schema Def, aug-
menting the standard prompt with detailed descrip-
tions of all target entity types following prior work
(Ashok and Lipton, 2023; Shao et al., 2023).

For output format, we explore two types of struc-
tured formats: (i) JSON (Dunn et al., 2022; Li
et al., 2023a), and (ii) Code snippets (Li et al.,
2023b; Wang et al., 2023a). Recent work has
shown that such formats improve zero-shot IE per-
formance of LLMs, while producing valid extrac-
tions which are easier to post-process and evaluate.

Our zero-shot experiments evaluate the perfor-
mance of all four combinations of input and output
formats on all models (except GPT-4, omitted in
these experiments given the high costs of querying
the API). Example prompts for each combination
are presented in Appendix 4.

3.2 Few-Shot Experimental Setup

For our few-shot experiments, we adopt the combi-
nation of input/output formats that performed the
best for each dataset in the zero-shot setting. We
validated this decision by evaluating all combina-
tions of input/output formats on one of the datasets
(i.e., CDR) and observing that the best performing
format in zero-shot also applies to the few-shot set-
ting (for k = {1, 3, 5}). These results are shown in
Table 8 of the Appendix B.1.

In addition to input/output formats, few-shot
prompting can also vary along two axes: (i) Se-
lection of few-shot exemplars, and; (ii) Ordering
of chosen exemplars. For the former, we compared
selection of few-shot exemplars at random to the
similarity-based approach from (Gutiérrez et al.,
2022). For the latter, we compared passing exem-
plars in a random but fixed order against shuffling
exemplars per test instance. In preliminary experi-
ments, we did not observe meaningful differences
in performance based on these strategies. There-
fore, we executed the rest of the experiments with
randomly selected exemplars shuffled per test in-
stance. See Appendix B.2 for additional details on
these few-shot prompting strategies.

We evaluate all the models for k = {1, 3, 5} and
report the average performance across three seeds
(additional results for larger values of k are pro-
vided in Figure 3).

3.3 Fine-tuning Experimental Setup

To put our results into context, we also measure
the performance of a smaller language model fine-
tuned on the each of the datasets. Specifically, we
fine-tune Flan-T5 XL on linearized targets. We
train the model on the same set of 5 instances used
in the few-shot experiments using LoRA, a param-
eter efficient fine-tuning method (Hu et al., 2021).
We provide implementation details in Appendix E.

3.4 Results

In preliminary experiments, we see that prompts
augmented with schema definitions perform worse
across all models and datasets. As for output for-
mats, we find that JSON was preferred on most
datasets with the exception of PICO and CHIA.
This observation holds consistently across all mod-
els. See Table 2 for the results of GPT-3.5, Claude
2 and Llama 2 on all datasets.

These findings motivate our few-shot setup, in
which we unsurprisingly find that performance
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Model Input Output CHEM CDR MEDM NCBI PICO CHIA

GPT-3.5

Text JSON 49.60 65.64 43.42 54.05 10.71 7.43
Code 42.31 50.72 42.91 44.23 14.88 31.28

+ Schema Def JSON 47.70 64.74 43.72 46.79 9.53 4.72
Code 41.49 51.16 42.46 47.13 13.52 29.43

Claude 2 Text JSON 56.36 67.96 36.39 44.17 7.70 19.96
+Schema Def JSON 45.19 60.51 34.30 37.93 4.81 19.11

Llama 2

Text JSON 59.75 66.77 28.93 34.23 7.49 4.03
Code 57.53 55.18 23.69 24.64 15.39 21.59

+Schema Def JSON 52.47 55.47 23.05 28.22 3.95 3.32
Code 56.04 54.91 28.82 24.05 15.12 7.49

Table 2: Zero-shot scores with text input and JSON output, text input and code output, definition input and JSON
output and definition input and code output, with an exception of Claude 2 which we experimented on JSON (did
not output executable code).

Model #Shots CHEM CDR MEDM NCBI PICO CHIA

GPT-3.5
0 49.60 65.64 43.42 54.05 14.88 31.28
1 56.06 (± 1.03) 64.05 (± 2.92) 49.15 (± 1.69) 44.27 (± 2.59) 15.83 (± 1.9) 33.72 (±0.99)
3 59.54 (± 2.24) 67.44 (± 0.52) 48.47 (± 1.63) 54.20 (± 1.53) 17.11 (± 1.65) 34.8 (±0.65)
5 58.66 (± 0.79) 68.19 (± 1.07) 48.10 (± 1.28) 56.02 (± 1.48) 17.12 (±3.83) 36.47 (±0.6)

Claude 2
0 56.36 67.96 36.39 44.17 7.70 19.96
1 55.19 (± 2.21) 66.43 (± 3.08) 44.82 (± 3.04) 37.89 (± 13.42) 6.3 (± 1.2) 18.94 (± 1.43)
3 59.68 (± 1.61) 68.13 (± 6.01) 48.20 (± 1.91) 43.89 (± 1.63) 6.21 (± 2.6) 19.87 (± 3.41)
5 63.04 (± 0.21) 69.74 (± 1.47) 48.12 (± 1.45) 42.99 (± 1.59) 6.12 (± (8.21) 19.88 (± 1.63)

Llama 2
0 59.75 66.77 28.93 34.23 15.39 21.59
1 57.11 (± 1.73) 54.77 (± 12.23) 45.04 (± 1.07) 37.88 (± 14.05) 12.95 (±1.49) 24.1 (±2.75)
3 55.23 (± 4.94) 64.76 (± 0.99) 45.25 (± 1.51) 45.08 (± 6.17) 17.08 (±1.32) 32.78 (±1.79)
5 59.86 (± 0.93) 64.89 (± 1.63) 47.37 (± 1.33) 46.96 (± 3.75) 18.26 (±0.91) 35.44 (±1.85)

Flan-T5 5 30.32 (±6.62) 29.33 (±1.8) 38.84 (±4.23) 30.68 (±12.53) 14.74 (±6.78) 4.84 (±1.32)

Table 3: Few-shot scores with k = {1, 3 and 5}. We ran experiments with 3 seeds and averaged the results. Results
show F1 scores and standard deviation. We have chosen the format that works best for each dataset. CHEM,
CDR, MEDM, NCBI on text input and JSON output and PICO and CHIA with text input and code output, with an
exception of Claude 2 which we experimented on JSON.

tends to increase with the number of shots (Ta-
ble 3). Finally, we see that few-shot learning with
instruction tuned LLMs dramatically outperforms
a small LM fine-tuned on the same 5 instances.

4 Augmenting Prompts with Definitions

ICL approaches rely on the parametric knowledge
acquired by the models during pre-training. How-
ever, this internal knowledge can be incorrect, in-
sufficient, or outdated. Prior work has tried to
address knowledge gaps in LLMs by augmenting
prompts with relevant factual knowledge on-the-fly,
improving performance on language understanding
tasks like question answering (Baek et al., 2023;
Wang et al., 2023b).

This motivates us to explore whether dynam-

ically augmenting prompts with relevant knowl-
edge improves ICL performance for biomedical
NER. In our work, we focus on a specific category
of knowledge—definitions of biomedical concepts
present in the input text. Intuitively, generic LLMs
may not be proficient with biomedical concepts;
providing targeted information at test time may
permit fast adaptation to this domain.

We propose to operationalize this approach as
follows. First, we curate a knowledge base of
biomedical concept definitions and leverage an
off-the-shelf entity linker to map occurrences of
concepts to entries in the knowledge base (§4.1).
Second, we perform inference with a sequence of
prompts: We prompt models to extract entities as
discussed in §3, and then craft follow-up prompts
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Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT-3.5

ZS 48.61 67.65 43.77 54.05 10.25 7.50
+Def 48.34 (-0.27) 68.21 (+0.56) 45.00 (+1.23) 51.94 (-2.11) 10.20 (-0.05) 7.95 (+0.45)
IP 47.27 (-1.34) 66.12 (-1.53) 42.71 (-1.06) 51.18 (-2.87) 10.27 (+0.02) 7.59 (+0.09)
+Def 56.39 (+7.78) 72.86 (+5.21) 50.05 (+6.28) 58.24 (+4.19) 9.88 (-0.37) 17.64 (+10.14)

Claude 2

ZS 54.28 70.07 36.98 44.17 7.26 20.12
+Def 57.62 (+3.34) 68.91 (-1.16) 36.12 (-0.86) 43.65 (-0.52) 7.67 (+0.41) 19.17 (-0.95)
IP 52.93 (-1.35) 69.34 (-0.73) 36.71 (-0.27) 43.43 (-0.74) 7.66 (+0.40) 19.82 (-0.30)
+Def 59.96 (+5.68) 73.04 (+2.97) 41.82 (+4.84) 51.60 (+7.43) 8.98 (+1.72) 22.12 (+2.00)

Llama 2

ZS 60.30 64.07 25.98 47.38 7.88 4.24
+Def 67.49 (+7.19) 68.54 (+4.47) 35.56 (+9.58) 51.44 (+4.06) 8.54 (+0.66) 9.50 (+5.26)
IP 58.31 (-1.99) 65.63 (-1.56) 24.54 (-1.44) 45.58 (-1.80) 7.49 (-0.39) 4.50 (+0.26)
+Def 67.54 (+7.24) 69.05 (+4.98) 34.90 (+8.92) 50.57 (+3.19) 9.59 (+1.71) 9.42 (+5.18)

GPT-4

ZS 62.12 70.92 47.13 54.67 7.29 16.39
+Def 67.05 (+4.93) 76.19 (+5.27) 51.91 (+4.78) 60.91 (+6.24) 9.24 (+1.95) 20.88 (+4.49)
IP 59.67 (-2.45) 69.41 (-1.51) 47.01 (-0.12) 52.31 (-2.36) 7.47 (+0.18) 17.94 (+1.55)
+Def 65.39 (+3.27) 75.62 (+4.70) 52.13 (+5.00) 58.72 (+4.05) 9.47 (+2.18) 20.09 (+3.70)

Table 4: Zero-shot (ZS) scores with Definition Augmentation (+Def), Iterative Prompting (IP) and Iterative
Prompting augmented with Definitions (+Def) on four models. Results show F1 scores and the delta wrt zero-shot
in the parenthesis.

Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT-3.5 FS 57.92 (± 0.78) 68.89 (± 1.03) 49.08 (± 01.33) 56.02 (± 1.48) 11.07 (± 1.77) 21.72 (± 1.23)
+Def 59.23 (± 1.54) 68.7 (± 2.47) 48.41 (± 0.77) 57.6 (± 2.75) 11.19 (± 0.52) 22.15 (± 1.03)

Claude 2 FS 61.6 (± 0.36) 71.95 (± 2.62) 48.3 (± 1.44) 44.92 (± 1.62) 6.2 (± 2.83) 19.72 (± 2.94)
+Def 61.17 (± 0.26) 72.81 (± 1.58) 49.32 (± 1.36) 48.98 (± 1.51) 9.97 (± 2.13) 22.21 (± 1.03)

Llama 2 FS 60.15 (± 0.92) 66.77 (± 1.32) 38.92 (± 11.83) 47.97 (± 3.65) 8.0 (±1.98) 9.32 (± 0.45)
+Def 59.86 (± 0.93) 64.89 (± 1.63) 47.37 (± 1.33) 46.96 (± 3.75) 18.26 (± 0.91) 35.44 (± 1.85)

GPT-4 FS 64.92 (± 1.28) 74.23 (± 3.48) 54.59 (± 1.89) 62.28 (± 1.97) 8.74 (± 1.68) 23.21 (± 1.60)
+Def 69.72 (± 0.68) 79.63 (± 2.96) 59.17 (± 1.5) 66.21 (± 0.96) 7.63 (± 0.58) 24.51 (± 0.77)

Table 5: Few-shot scores with Definition Augmentation (+Def) with k = 5. We ran experiments with 3 seeds and
averaged the results. Results show F1 scores and standard deviation in the parenthesis.

augmented with concept definitions that ask the
model to revise initial extractions. Revisions can
remove or add entities, or re-assign entity types.
We provide definitions for all the entities identified
by the model in the first turn, and all other biomed-
ical concepts that can be linked to the knowledge
base (as identified by the entity linker).

We hypothesize that adding definitions for LLM-
extracted entities may improve precision (original
model extractions could be corrected) and adding
definitions for other noun phrases can improve re-
call (model recognizes potential entities that were
missed in the first pass).1 We evaluate this approach
in zero-shot (§4.2) and few-shot (§4.3) settings.

1We also tested the pipeline without adding definitions for
other noun phrases (i.e., removing potential recall improve-
ments) and observed smaller improvements in performance
compared to our overall approach.

4.1 Concept Definitions

We obtain concept definitions from Unified Med-
ical Language System (UMLS), a collection of
key terminology and coding standards from several
biomedical vocabularies, standards and knowledge
bases (Bodenreider, 2004).

Some concepts in UMLS belong to fairly broad
categories (e.g., event, activity, group) and their
definitions might not provide much utility to LLMs.
We avoid including definitions for such concepts
by curating a set of fine-grained categories where
two of the authors independently went through the
entire list of 127 semantic types in UMLS and
discarded generic ones (e.g., ’Plant’, ’Chemical’)
which did not require additional biomedical knowl-
edge to comprehend. All types retained by both
authors were included in the final list, provided
in the Appendix 16. Note that some entities do
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not have definitions in either UMLS nor Wikipedia.
For such entities (about 10% of all entities in each
dataset), we do not provide any definitions.

At inference time, we use the entity linker avail-
able in the SciSpaCy package (Neumann et al.,
2019) to map all mentions of biomedical concepts
in the input text to entries in UMLS, and retrieve
the associated definitions.

4.2 Zero-Shot Definition Augmentation

In the zero-shot setting, we first prompt the model
to extract entities as described in §3.1. Then we
consider two strategies for follow-up prompting.

Single-turn (ZS+Def): A single definition aug-
mented follow-up prompt asks the model to make
corrections to all extracted entities.

Iterative Prompting (IP+Def): Iterative
prompts augmented with the definition of a
single concept and asking the model to make
corrections to a single extracted entity (if needed)
at a time. This breaks down the correction process
into atomic steps, but significantly increases the
number of inference steps (which incurs additional
costs when using proprietary models).

Our approach is related to prior work suggesting
that LLMs are able to correct and revise their own
outputs and this self-verification can improve per-
formance in clinical information extraction tasks
(Gero et al., 2023). The novelty on offer here is pro-
viding contextual knowledge to aid the process of
self-verification. In our experiments, we ablate the
impact of self-verification from that of the concept
definitions.

4.3 Few-Shot Definition Augmentation

In the few-shot setting, again we first prompt the
model to extract entities as described in §3.2, and
then ask it to correct the extractions in a follow-up
prompt with concept definitions. The follow-up
prompt includes: (i) all few-shot exemplars pro-
vided in the first prompt along with the associated
concept definitions; and (ii) definitions for all the
concepts identified in the current input (both for
extracted entities and other biomedical concepts).

Here, we only test the single-turn strategy be-
cause including few-shot examples dramatically
increases context size, rendering iterative prompt-
ing prohibitively expensive.

4.4 Definition Augmentation Results

All experiments are carried out with JSON outputs
to maintain a uniform experimental setting across
all datasets. The few-shot experiments are executed
with k = 5 shots randomly selected and shuffled
per test instance. We run each experiment with
three different random seeds and report average
performance. In addition to the models considered
in the previous section, here we also evaluate GPT-
4—this is motivated by prior work suggesting that
GPT-4 is more competent that GPT-3.5 at editing
previous outputs (Gero et al., 2023), which is a key
step in our proposed approach. However, given
the high costs of querying the API, we subsampled
our test sets to 100 instances for these experiments.
Tables 4 and 5 present the performance of GPT-
3.5, Claude 2, Llama 2 and GPT-4 with definition
augmentation on all datasets in the zero- and few-
shot settings, respectively.

In zero-shot settings, we see consistent and sig-
nificant improvements in the performance of Llama
2 and GPT-4 with both prompting strategies. We
observe an average increase of 32.6% and 33.9%
for Llama 2 and 15% and 13.7% for GPT-4 using
single turn and iterative prompting, respectively.
However, Claude 2 and GPT-3.5 only benefit when
using the iterative prompting approach, with aver-
age gains of 12% and 29.5%, respectively. We also
assessed the performance of iterative prompting but
without the definitions—this is similar to the Gero
et al. (2023) self-verification method. However, our
results show that the models are not able to correct
their predictions in the absence of definitions.

In the few-shot setting, we also see improve-
ments in most cases. Claude 2 and GPT-4 improve
on 5 of 6 datasets; Llama 2 and GPT-3.5 show gains
on 3 and 4 datasets, respectively. Overall, we found
that GPT-4 with iterative prompting achieves the
best performance.

Our results show that concept definition aug-
mented prompts improve the performance of
biomedical NER. A key step of this approach
is linking biomedical concepts to definitions in
UMLS. One natural question is how much of the
observed gains are simply due to the use of an en-
tity linking model which was explicitly trained to
recognize entities. To answer this, we first mea-
sured the performance of the entity linker by itself
on the same test sets and found that it performs
poorly, with an average F1 of 1.05 across all the
datasets. Then, to verify that LLM is not just copy-
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Figure 2: Definition relevance ablations with GPT-4 on CDR dataset (top-left), NCBI (top-right) and Llama 2 on
MEDM dataset (bottom-left) and CHIA (bottom-right). We see similar trends across all models and datasets - a
consistent decrease in performance with less relevant definitions.

ing candidate entities identified by the entity linker,
we conducted an ablation where we simply add the
candidate entities without the corresponding con-
cept definitions. The results in Table 6 show that
this is not as effective as our proposed approach
and in some cases underperforms compared to the
zero-shot baseline.

5 Assessing the Utility of Definition
Knowledge

We further assess the utility of concept definitions
by conducting ablation experiments probing the
following dimensions: (1) Relevance of concept
definitions; and (2) Source of definition knowledge.

We conduct all experiments in the single-turn
zero-shot setting (§4.2), with one closed model
(GPT-4) and one open-source model (Llama 2), on
the two datasets with the largest gains in perfor-
mance from concept definitions (CDR and NCBI
for GPT-4; MEDM and CHIA for Llama 2).

5.1 Probing Definition Relevance

Motivated by prior work showing that LLMs often
produce correct predictions even with misleading

or irrelevant prompts (Webson and Pavlick, 2022),
we ablate over the relevance of definitions provided
for a given entity. This allows us to assess whether
performance gains are due to accurate definitions or
simply from additional context, irrespective of rele-
vance. To this end, we measure the performance of
increasingly less relevant knowledge by swapping
out various components of provided definitions.
These ablations are realized as follows.
Diff Entity include definitions of concepts men-
tioned in a different instance (within the same
dataset). As this samples instances in the same
dataset, it will include concepts from the same
entity types being extracted (e.g., for NCBI, the
swapped concepts will include some diseases).
Diff Type include definitions from concepts men-
tioned in a different instance within the same
dataset, but exclude concepts from the entity types
being extracted (e.g., for NCBI, add all swapped
concepts that are not diseases).
Swap Def replace definitions for all concepts men-
tioned in the current instance with random incorrect
definitions (e.g., for NCBI, if the disease extracted
is Arrhythmia, we provide an incorrect definition
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Setting CDR NCBI MEDM CHIA

ZS 70.92 54.67 25.98 4.24
Def Aug 76.19 60.91 35.56 9.50
Only ents 68.14 47.29 28.92 7.48

Table 6: Ablations with GPT-4 [CDR, NCBI] and Llama
2 [MEDM, CHIA], providing only the entities without
the definitions.

for Arrhythmia).

Diff Domain include definitions for concepts men-
tioned in an instance from a different domain. For
instance, for datasets containing Pubmed abstracts
(MEDM), we add concepts mentioned in a dataset
of clinical trial criteria (CHIA) and vice versa.

Figure 2 shows the performance of GPT-4 and
Llama 2 under different definition relevance abla-
tions on these datasets. We see similar trends across
all models and datasets: A consistent decrease in
performance with less relevant definitions. This
provides evidence that the model is indeed cap-
italizing on the definitions and suggests that the
quality of the definitions plays a critical role on our
proposed method. Interestingly, we observe that
augmenting prompts with definitions of other enti-
ties (of the same type) also yields consistent gains
across models and datasets. We are unsure what
explains this, though perhaps because the entities
are of the same type, they are similar enough for
the model to make use of the definitions. Finally,
we do observe some gains from definitions of en-
tities of a different type, but these are smaller and
less consistent.

5.2 Probing Definition Sources

After establishing that the success of our approach
is largely due to adding relevant definition knowl-
edge, we assess the impact of the source of defini-
tion knowledge. We evaluate the same models and
datasets as in the previous experiments but using
concept definitions: (i) collected from Wikidata;
and (ii) automatically generated by GPT-4.

Table 7 shows the results for all models and data
sources. We observe that definitions from Wikidata
also improve over the zero-shot baseline, albeit to
a lesser degree than UMLS. On the other hand, the
definitions generated by GPT-4 seem to have little
to no impact on the model’s performance. These
results again highlight the importance of the knowl-
edge source: we see larger improvements with
concept definitions from a more domain-specific

Setting CDR NCBI MEDM CHIA

ZS 70.92 54.67 25.98 4.24
+UMLS 76.19 60.91 35.56 9.50
+Wiki 72.9 57.5 32.6 9.53
+GPT-4 69.24 54.83 25.29 7.32

Table 7: Ablations with GPT-4 [CDR, NCBI] and Llama
2 [MEDM, CHIA], providing definitions from different
sources. Original source being UMLS and ablations
with Wikipedia and GPT-4 generated definitions.

source. However, seeing that models can also ben-
efit from concept definitions from more general
sources such as Wikidata, suggests that our pro-
posed approach may also be suitable for applica-
tions in other, less specialized, domains.

6 Related Work

Information Extraction with LLMs Recent work
has shown that LLMs are capable of extracting in-
formation from documents in zero- and few-shot
settings. For instance, Agrawal et al. (2022) found
that GPT-3 competes with or outperforms smaller
models on a small set of clinical tasks extraction
tasks. However, in the scientific and biomedical
domain, LLMs underperformed relative to fine-
tuned models (Gutiérrez et al., 2022). GPT-3’s
ICL (Brown et al., 2020) compares favorably to
supervised models on many standard NLP tasks
(e.g., NLI, text classification, machine translation
(Liu et al., 2022)). Several methods have been in-
troduced to improve its performance, optimizing
prompt retrieval (Shin et al., 2021), ordering (Lu
et al., 2022), and design (Perez et al., 2021).

Iterative Prompting with LLMs In recent
work, Gero et al. (2023), used self-verification to
improve clinical information extraction by itera-
tively prompting a LLM to sequentially identify
entities, detect missing entities, ground the extrac-
tions in evidence (i.e., specific spans in the input),
and remove incorrect extractions.

This builds on prior works that iteratively prompt
LLMs to improve their performance (Wu et al.,
2022; Wang et al., 2022).

Knowledge Augmentation with LLMs Prior to
LLMs, REALM (Guu et al., 2020) and RAG (Lewis
et al., 2021) proposed to integrate knowledge by
retrieving documents from unstructured corpora
(e.g., Wikipedia) and facts from Knowledge Graphs
(KGs), and conditioning outputs on these.

Recently, concurrent to this work, Nori et al.
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(2023) explores iterative prompting with knowl-
edge augmentation in clinical domain. Their
prompting strategy combines kNN-based few-
shot example selection, GPT-4–generated chain-
of-thought prompting, and answer-choice shuffled
ensembling to reduce the error of rate medical ques-
tion answering (MedQA) by 27%.

7 Conclusions

In this work, we extensively evaluated the perfor-
mance of ICL approaches for biomedical NER with
modern LLMs. We compared different combina-
tions of input and output formats and characterized
the main types of errors made by these models. We
then proposed and evaluated a method for rapid
adaptation of general LLMs to biomedical NER
tasks by providing models with concept definitions
from an external knowledge base dynamically.

We perform inference with a sequence of
prompts, allowing models to revise their predic-
tions given definitions of key concepts in the input.
The first prompt asks the model to extract entities
from the input; subsequent prompts are augmented
with definitions for all biomedical concepts includ-
ing the entities identified in the first prompt, and
ask the model to revise its predictions.

Our evaluation—conducted over 6 datasets—
showed consistent and often substantial improve-
ments over baselines, especially in zero-shot set-
tings. Ablations confirm that the observed gains
stem from the models’ ability to capitalize on the
concept definitions. In particular, we observe that
without these definitions the models are unable to
meaningfully improve their predictions.

While we only considered datasets from a spe-
cialized domain (biomedicine), our ablations show
that our approach can also be used with more gen-
eral knowledge bases, such as Wikidata. This pro-
vides some evidence for the potential utility of this
approach in other domains. We leave a thorough
exploration of this for future work.

8 Limitations

Since our work evaluates (some) LLMs that have
been trained on undisclosed data sources, it is pos-
sible that the models have seen parts of our evalua-
tion sets in either pre-training or instruction tuning.
The underlying text corpora for all datasets in our
NER evaluation testbed are sourced from easily
accessible text collections (e.g., PubMed, AACT)
and so it is quite likely that these have been seen

by models during pre-training. However, this is
(probably) not a major issue in the case of NER,
because simply training on these sentences with a
language modeling objective is unlikely to impart
the signal necessary for NER.

Consequently, our primary concern is potential
exposure of label information from these datasets
during some form of entity-aware training or in-
struction tuning phase. To assess this, we provide
models with the raw text and some entity labels
and test whether they are able to correctly produce
the remaining entities in the original format. We
observe that all models failed at this, indicating
that though we cannot make strong claims about
data contamination, it is unlikely that models have
successfully memorized these test sets.

Another limitation of our work is that we only
evaluate only on English biomedical NER corpora
and did not test how well our approach would work
for other languages, tasks, or domains. Addition-
ally, we rely on the availability of expert-curated
knowledge (UMLS) for biomedicine—however,
such resources may not be readily available for
for other tasks or domains. Even within biomedical
NER, we test our approach on a limited number
of datasets due to the experimental costs of test-
ing proprietary LLMs, and it is possible that our
approach may not work for other datasets.

Finally, current metrics for IE tasks are not well-
suited to generative models. We mitigate this by
performing additional human evaluation, but this
approach is not scalable.

Acknowledgements

We would like to thank Doug Downey and the
rest of the Semantic Scholar team at AI2, as well
as the reviewers, for their valuable feedback and
comments that helped improve this work.

References
Monica Agrawal, Stefan Hegselmann, Hunter Lang,

Yoon Kim, and David Sontag. 2022. Large language
models are few-shot clinical information extractors.

Anthropic. 2023. Anthropic. introducing claude
2, 2023. https://www.anthropic.com/
index/claude-2. Accessed: 2023-07-11.

Dhananjay Ashok and Zachary Chase Lipton. 2023.
Promptner: Prompting for named entity recognition.
ArXiv, abs/2305.15444.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.
Knowledge-augmented language model prompting

3841

http://arxiv.org/abs/2205.12689
http://arxiv.org/abs/2205.12689
https://www.anthropic.com/index/claude-2
https://www.anthropic.com/index/claude-2
https://api.semanticscholar.org/CorpusID:258887456


for zero-shot knowledge graph question answering.
arXiv preprint arXiv:2306.04136.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.
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A Input Format

Selection of few-shot examples: Prior work has
shown that in-context learning can benefit from so-
phisticated strategies for selecting exemplars, e.g.
based on diversity (Hongjin et al., 2022) or infor-
mativeness (Wu et al., 2023) of the samples. We
defer a thorough exploration of these strategies to
future work, and here focus on two relatively sim-
ple approaches: (i) Random, where k examples
are randomly sampled; and (ii) Retrieval, which
follows Gutiérrez et al. (2022). The training set is
subsampled to 100 examples; then for every test in-
stance, k most similar examples are retrieved from
this pool. Similarity between examples is com-
puted using SPECTER2 embeddings (Singh et al.,
2022).

Ordering of few-shot examples: Prior work has
also shown that models can be very sensitive to
the order in which examples are provided for in-
context learning (e.g., Lu et al. (2022)), thus we
compared two ordering criteria: (i) Fixed order,
chosen at random; and (ii) Shuffled order of ex-
amples per test instance. Note that for the retrieval-
based shot selection, examples are provided in de-
creasing order of similarity (Gutiérrez et al., 2022).

B Ablations

B.1 Best output format in Few Shot

Ablation experiment testing multiple format com-
binations on CDR with k=1, 3 and 5 shots. We
use text as the input format as this was the best
performing over def prompts across all models and
all datasets.

Setting K CDR

JSON
1 64.35
3 65.98
5 66.26

Code
1 56.17
3 60.26
5 60.56

Table 8: Few-shot JSON input and code output ablations.
Results show F1 scores. We evaluate combinations of
input/output formats on CDR dataset and observe that
the best performing format in zero-shot also applies to
the few-shot setting.

B.2 Ordering shots in Few Shot

Ablations testing example selection and ordering
strategies on CDR with k=1, 3 and 5 shots.
• Random: Fixed order of k examples are ran-

domly sampled.

• Retrieval: For every test instance, k most similar
examples are retrieved from this pool. Similarity
between examples is computed using SPECTER
V2 embeddings and examples are provided in
decreasing order of similarity.

• Random + Shuffle: Shuffling order of examples
per test instance where k examples are randomly
sampled.

Setting K CDR

Random
1 68.25
3 70.93
5 72.02

Random + Shuffle
1 68.06
3 70.29
5 71.93

Retrieved
1 63.94
3 71.46
5 72.22

Table 9: Few-shot shot selection ablations. Results show
F1 scores. We do not observe meaningful differences
in performance based on these strategies, therefore we
carried few-shot experiments with randomly selected
exemplars shuffled per test instance.

C Qualitative Error Analysis

To better understand the performance of LLMs
on biomedical NER and characterize errors these
models still make, we conduct a qualitative error
analysis of 50 examples from the best performing
zero-shot and few-shot models per dataset. This
analysis surfaced four major categories of errors:
• Type mismatch: An entity is extracted correctly

but assigned the wrong type.
• Boundary issues: The extracted entity is missing

terms or contains extra terms when compared to
the gold entity.

• Extra entities: Model extracts entities which
are not present in gold annotations. We observe
that these extractions are not always errors either,
which motivates the need for human evaluation.

• Missing entities: Model does not extract entities
present in gold annotation.
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(a) Few shot performance on CHEM (b) Few shot performance on CDR

(c) Few shot performance on MedM (d) Few shot performance on NCBI

(e) Few shot performance on PICO (f) Few shot performance on CHIA

Figure 3: F1 score plotted against the number of shots in few-shot setting. Performance of all models tends to
increase with the number of shots (except for NCBI and MEDM datasets where we observe minor fluctuations in
performance).

Table 11 in the appendix provides an overview of
the error distribution for every dataset. Several er-
ror categories mentioned above could potentially
be corrected by providing models access to addi-
tional definition knowledge about those entities.
This further motivates our exploration of definition-
augmented information extraction using LLMs.

Manual Evaluation Prior work has shown that
strict F1 can underestimate the performance of
generative models on information extraction tasks
(Wadhwa et al., 2023). To quantify the impact of
this issue on our results, we conduct a small scale
human evaluation on two of our datasets (i.e., PICO
and CHIA) by randomly sampling 100 sentences
with incorrect predictions and re-assessing all the
false positive and false negatives. Our analysis
showed 51% of PICO and 30% of CHIA predic-
tions deemed incorrect were actually correct.

D Definition Augmentation Error
Analysis

We wanted to understand which categories of er-
rors (as per the taxonomy in §C) does definition
augmentation help with. For each dataset, we ran-
domly sampled 50 instances with one or more in-
correct extractions which were corrected with defi-
nition augmentation (in the zero-shot setting). We
then looked at the distribution of error types, and
found that extra entities and missing entities were
the most common error types fixed using definition
information (Table 12).
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Model CDR CHEM MedM NCBI PICO CHIA

Missing Entities 75 22.6 47.1 5.5 10.6 39.2

Extra Entities 14.5 21.3 14.2 75 54.54 11.7

Boundary Issues 10.4 22.6 38.5 19.4 12.12 49

Entity Mismatch 0 33.3 - - 22.7 0

Table 10: Percentage (%) distribution of different types of errors mentioned in C for all datasets in zero-shot setting.
Note that NCBI and MEDM datasets have only one entity type, hence there are no type mismatch errors.

Model CDR CHEM MedM NCBI PICO CHIA

Missing Entities 51.2 19.7 24.3 17 32.7 46

Extra Entities 12.1 25.35 18.9 70.2 21.8 9.5

Boundary Issues 34.1 28.1 56.7 12.7 12.7 44.4

Entity Mismatch 2.4 26.7 - - 32.7 0

Table 11: Percentage (%) distribution of different types of errors mentioned in C for all datasets in few-shot setting.
Note that NCBI and MEDM datasets have only one entity type, hence there are no type mismatch errors.

Setting CDR NCBI MEDM CHIA

Type Mismatch 7.5 - - 28.9
Boundary Issue 9.4 5.8 0 24
Extra Entities 71.6 82.3 16.4 42
Missing Entities 11.3 11.7 83.5 4.8

Table 12: Percentage (%) distribution of different types
of errors mentioned in C for 4 datasets. Note that NCBI
and MEDM datasets have only one entity type, hence
there are no type mismatch errors.

Model Engine Cutoff

GPT 3.5 gpt-3.5-turbo-0613 Sep 2021
GPT 4 gpt4-0613 Sep 2021
Claude 2 claude-2 Dec 2022
LLaMa 2 llama-2-70b-chat Jul 2023

Table 13: Overview of all models.
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Dataset Descriptions Examples

CHEM The BioCreative VI Chemical-Protein
Interaction corpus (Krallinger et al.,
2017) contains biomedical abstracts
with annotations for chemical and pro-
tein entities.

Sentence : AMPK activity was measusalmon as
the amount of radiolabelled phosphate transfer-
salmon to the SAMS peptide. Entities : ’Chem-
icals’: [’phosphate’], ’Proteins’: [’AMPK’]

CDR The BioCreative V Chemical-Disease
Relation corpus (Li et al., 2016) contains
biomedical abstracts with annotations
for diseases and chemical entities.

Sentence : Pre-treatment of bupivacaine-
induced cardiovascular depression using differ-
ent lipid formulations of propofol. Entities :
Chemicals : [’bupivacaine’, ’propofol’], "Dis-
eases": [’cardiovascular depression’]

NCBI The Natural Center for Biotechnol-
ogy Information Disease corpus (Doğan
et al., 2014) contains biomedical ab-
stracts annotated with disease mentions

Sentence: Twins with AS were identified from
the Royal National Hospital for Rheumatic Dis-
eases database. Entities: [’AS’, ’Rheumatic
Diseases’]

MEDM (Mohan and Li, 2019)corpus consists of
biomedical abstracts with annotations
for biomedical concepts that can be
found in knowledge bases.

Sentence: A premature electrical impulse from
one of four grid corners was utilized to initiate
activation. Entities : [’premature’, ’electrical
impulse’, ’initiate’, ’activation’]

PICO The EBM-NLP corpus (Nye et al., 2018)
contains clinical trial abstracts annotated
with (P)articipants, (I)nterventions, and
(O)utcomes.

Sentence: Evaluation of lidocaine in human in-
ferior alveolar nerve block. Entities : ’popula-
tion’: [’human inferior alveolar nerve block’],
’intervention’: [’lidocaine’], ’outcome’: []

CHIA This dataset contains text snippets from
clinical trial eligibility criteria annotated
with entities that can be used to form
executable logic statements/queries rep-
resenting the criteria.(Kury et al., 2020)

Sentence: Use of medications that alter the ab-
sorption or metabolism of levothyroxine. Enti-
ties : ’Drug’ : [’medications’, ’levothyroxine’],
’Negation’ : [’alter’], ’Observation’ : [’absorp-
tion of levothyroxine’, ’metabolism of levothy-
roxine’], ’Scope’ : [’absorption or metabolism
of levothyroxine’]

Table 14: Overview of all datasets included in our final biomedical NER evaluation testbed.
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TUI id Name of the entity

T017 Anatomical Structure
T018 Embryonic Structure
T019 Congenital Abnormality
T020 Acquisalmon Abnormality
T021 Fully Formed Anatomical Structure
T024 Tissue
T025 Cell
T026 Cell Component
T028 Gene or Genome
T032 Organism Attribute
T034 Laboratory or Test Result
T037 Injury or Poisoning
T038 Biologic Function
T039 Physiologic Function
T040 Organism Function
T041 Mental Process
T045 Genetic Function
T046 Pathologic Function
T047 Disease or Syndrome
T048 Mental or Behavioral Dysfunction
T059 Laboratory Procedure
T060 Diagnostic Procedure
T061 Therapeutic or Preventive Procedure
T064 Governmental or Regulatory Activity
T082 Spatial Concept

Table 15: The final set of categories used for all defini-
tion augmentation experiments (Part 1)

TUI id Name of the entity

T082 Spatial Concept
T063 Molecular Biology Research Technique
T083 Geographic Area
T085 Molecular Sequence
T086 Nucleotide Sequence
T087 Amino Acid Sequence
T088 Carbohydrate Sequence
T089 Regulation or Law
T095 Self-help or Relief Organization
T097 Professional or Occupational Group
T101 Patient or Disabled Group
T121 Pharmacologic Substance
T122 Biomedical or Dental Material
T123 Biologically Active Substance
T125 Hormone
T126 Enzyme
T127 Vitamin
T129 Immunologic Factor
T131 Hazardous or Poisonous Substance
T169 Functional Concept
T170 Intellectual Product
T191 Neoplastic Process
T192 Receptor
T203 Drug Delivery Device
T204 Eukaryote

Table 16: The final set of categories used for all defini-
tion augmentation experiments (Part 2)
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E Implementation Details

We used OpenAI API 2, Anthropic API 3 and To-
gether API 4 to run inference. We use the following
settings for all closed source models. Temperature
is 0 and max number of tokens for extractions be-
ing 256. For generating definitions with GPT-4,
we increase the max number of tokens to 4096.
We use the spaCy (en_core_web_sm) library (Hon-
nibal and Montani, 2017) for tagging biomedical
entities.

We fine-tune Flan-T5-XL from HuggingFace
(Wolf et al., 2020) library on NVIDIA RTX A6000
GPU. We fine-tune with a learning rate of 1e-3
for 10 epochs. We adapt Low-Rank Adaptation of
LLM (LoRA) (Hu et al., 2021) with the following
parameters : lora_alpha: 32, lora_dropout: 0.05
and SEQ_2_SEQ_LM as the task type.

Output formatting: For datasets with a sin-
gle entity type (i.e., MEDM and NCBI), we
format the outputs as entity_name <sep>
entity_name; for datasets with multiple types
(i.e., CHEM, CDR, PICO and CHIA) we use
the format: [entity_name:entity_type,
..., entity_name:entity_type].

2https://platform.openai.com/
3https://console.anthropic.com/
4https://api.together.xyz/
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Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT-3.5 ZS 48.61 67.65 43.77 54.05 10.25 7.50
SC 47.18 68.01 45.6 52.29 8.16 8.53

Claude 2 ZS 54.28 70.07 36.98 44.17 7.26 20.12
SC 55.43 68.75 35.55 37.28 6.9 20.17

Llama 2 ZS 60.30 64.07 25.98 47.38 7.88 4.24
SC 57.63 64.07 26.08 44.81 6.7 5.87

GPT-4 ZS 62.12 70.92 47.13 54.67 7.29 16.39
SC 63.85 71.02 46.86 56.75 7.41 16.96

Table 17: F1 scores of zero-shot (ZS) followed by self-consistency (SC) for all models and datasets. We don’t see
gain in the performance when prompted without augmenting with the definitions.

Given the following sentence from an abstract, extract all the chemicals and diseases and 
return as a json.

Sentence: In the present case, complete atrioventricular (AV) block with syncopal attacks 
developed secondary to lithium therapy, necessitating permanent pacemaker implantation.

Output: {"Chemical": ["lithium"], "Disease": ["atrioventricular (AV) block", "syncopal 
attacks"]}

Figure 4: Zero-shot Prompt with text input and JSON output

Given the following sentence from an abstract and the definitions of chemicals and diseases, 
extract all the chemicals and diseases.

Chemicals: A chemical substance is a form of matter having constant chemical composition and 
characteristic properties. Chemical substances cannot be separated 
into their constituent elements by physical separation methods, i.e., without breaking 
chemical bonds. Chemical substances can be simple substances (substances 
consisting of a single chemical element) chemical compounds, or alloys.

Diseases: A disease is a particular abnormal condition that negatively affects the structure 
or function of all or part of an organism, and that is not immediately due to any external 
injury. Diseases are often known to be medical conditions that 
are associated with specific signs and symptoms. A disease may be caused 
by external factors such as pathogens or by internal dysfunctions.

Sentence: In the present case, complete atrioventricular (AV) block with syncopal attacks 
developed secondary to lithium therapy, necessitating permanent 
pacemaker implantation.

Output: {"Chemical": ["lithium"],  "Disease": ["atrioventricular (AV) block", "syncopal 
attacks"]}

Figure 5: Zero-shot Prompt with schema def input and JSON output
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def named_entity_recognition(input_text):   
"""  
Given a sentence from an abstract,extract all the chemicals and diseases. 
A chemical entity is a dictionary of the format {"text": "extracted            

entities", "type": "chemicals"}
A disease entity is a dictionary of the format {"text": "extracted entities", "type": 

"diseases"}
Find all the entities in input_text and append only the entities and not other 

information to entity_list one by one. """

input_text = “Pre-treatment of bupivacaine-induced cardiovascular depression using 
different lipid formulations of propofol.”

entity_list = [] 
# extracted entities 
entity_list.append({\''

Output: "text': 'bupivacaine', 'type': 'chemicals'})
  entity_list.append({'text': 'propofol', 'type': 'chemicals'})"

Figure 6: Zero-shot Prompt with text input and code output

def named_entity_recognition(input_text):   
"""
Chemicals: A chemical substance is a form of matter having constant chemical 

composition and ...single chemical element) chemical compounds, or alloys.
    Diseases: A disease is a particular abnormal condition that negatively affects the 

structure or function of all ...A disease may be caused by external factors such as pathogens 
or by internal dysfunctions.

Given a sentence from an abstract, and the definitions of chemicals and diseases, 
extract all the chemicals and diseases. 

A chemical entity is a dictionary of the format {"text": "extracted entities", "type": 
"chemicals"}

A disease entity is a dictionary of the format {"text": "extracted entities", "type": 
"diseases"}

Find all the entities in input_text and append only the entities and not other 
information to entity_list one by one. """

input_text = “Pre-treatment of bupivacaine-induced cardiovascular depression using 
different lipid formulations of propofol.”

entity_list = []
# extracted entities
entity_list.append({\''

Output: "text': 'bupivacaine', 'type': 'chemicals'})
entity_list.append({'text': 'propofol', 'type': 'chemicals'})"

Figure 7: Zero-shot Prompt with schema def input and code output

Given the sentence from an abstract, extract all the chemicals and diseases and return as a 
json.

Sentence: BE-Induced seizures occurred more frequently and had significantly longer latencies 
than those induced by equimolar amounts of cocaine.'}, 

Output : {"chemicals": ["BE", "cocaine"],"diseases": ["seizures"]} 

Sentence: Famotidine-associated delirium. 

Output: {"chemicals": ["Famotidine"],"diseases": ["delirium"]} 

Figure 8: Few-shot Prompt with text and JSON output
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def named_entity_recognition(input_text):
""" Given the above definitions of entities, Extract a list of all population, 

intervention, comparator and outcome spans from input_text.
A population entity is a dictionary of the format {"text": entity, "type": 

"population"}
... 
Find all entities in input_text and append them to entity_list one by one. If there are 

no entities, return an empty list.
"""

input_text = One subject was identified to be a poor metabolizer.
entity_list = [] 
# extracted entities

Output : entity_list.append({text": "poor metabolizer ", "type": "outcome"}

input_text = “OBJECTIVE To compare the effect of budesonide Turbuhaler 400 microg/day 
with budesonide aqua 256 microg/day in the treatment of seasonal allergic rhinitis ( SAR ) .”

entity_list = [] 
# extracted entities

Output: 'entity_list = [{"text": "budesonide Turbuhaler 400 microg/day", 
"type":"intervention"}

   entity_list.append{"text": "budesonide aqua 256 microg/day", "type": "intervention"}
   entity_list.append{"text": "seasonal allergic rhinitis", "type": "population"}\n]

Figure 9: Few-shot Prompt with text and code output

Given the sentence from an abstract, extract all the chemicals and diseases and return as a 
JSON. 

Sentence: There are several common polymorphisms in the BRCA1 gene which generate amino acid 
substitutions.

 Output:  {'diseases': ['BRCA1']} 

To assist you with extraction, here are the definitions of the extracted entities:
BRCA1 gene: A tumor suppressor gene (GENES, TUMOR SUPPRESSOR) located on human CHROMOSOME 17 
at locus 17q21. Mutations of this gene are associated with the formation of HEREDITARY BREAST 
AND OVARIAN CANCER SYNDROME. It encodes a large nuclear protein that is a component of DNA 
repair pathways.

Using these definitions only as a reference, add or remove incorrect entities from the output 
json only if you think the entities in the output json are wrong else don't change the 
output. Please only output the final json.

Sentence: There are several common polymorphisms in the BRCA1 gene which generate amino acid 
substitutions.

Output: Output:  {'diseases': []}

Figure 10: Zero-shot Definition Augmentation with Single Turn

Given the following sentence from an abstract, extract all the chemicals and diseases and 
return as a json.

Sentence: There are several common polymorphisms in the BRCA1 gene which generate amino acid 
substitutions. 

Output: {'diseases': ['BRCA1]}

Using this definition as a reference, answer only true / false. Please only output the final 
answer.
BRCA1 gene: A tumor suppressor gene (GENES, TUMOR SUPPRESSOR) located on human CHROMOSOME 17 
at locus 17q21.
Does “BRCA1” belong to the entity type “chemical”?

Output 🤖: False 

if True, 
no change 
to output

False, pop 
the entity 
from output

Figure 11: Zero-shot Definition Augmentation with Iterative Prompting with extracted entities
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Entity_types = [“chemical”, “disease”]
Given the following sentence from an abstract, extract all the chemicals and diseases and 
return as a json.

Sentence: There are several common polymorphisms in the BRCA1 gene which generate amino acid 
substitutions. 

Output: {'diseases': ['BRCA1]}

Using this definition as a reference, answer only true / false. Please only output the final 
answer.
Amino acid: Amino acids are organic compounds that contain both amino and carboxylic acid 
functional groups.

Does “amino acid” belong to the any of [“chemical”, “diseases”]?

Output 🤖: True

Does this “amino acid” belong to entity type “chemical”? 

Output 🤖: True
... 

if False, 
no change 
to output

if True, 
add to 
output JSON

if True, 
continue 
prompting

if False, 
no change 
to output

Figure 12: Zero-shot Definition Augmentation with Iterative Prompting with biomedical phrases

Given the sentence from an abstract, extract all the chemicals and diseases and return as a 
json. 

Sentence: BE-Induced seizures occurred more frequently and had significantly longer latencies 
than those induced by equimolar amounts of cocaine.

To assist you with extraction, here are the definitions biomedical concepts from the 
sentence: 
Bacterial Endocarditis: Inflammation of  … intravenous drug use.
cocaine: An alkaloid ester … involves inhibition of dopamine uptake.
Startle-induced seizure: Startle … effective acoustic stimulus.
Output:{"chemicals": ["BE", "cocaine"], "diseases": ["seizures"]}

Sentence: Pre-treatment of bupivacaine-induced cardiovascular depression using different 
lipid formulations of propofol. 

To assist you with extraction, here are the definitions biomedical concepts from the 
sentence: 
propofol: An intravenous anesthetic agent which … ANTICONVULSANTS and ANTIEMETICS.

Using these definitions only as a reference, add or remove incorrect entities from the output 
json only if you think the entities in the output json are wrong else don't change the 
output. Please only output the final json. 

Output: {"chemicals": ["bupivacaine", "propofol"], "diseases": []}

Figure 13: Few-shot Definition Augmentation with Single Turn
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