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Abstract

Event temporal graphs have been shown as con-
venient and effective representations of com-
plex temporal relations between events in text.
Recent studies, which employ pre-trained lan-
guage models to auto-regressively generate lin-
earised graphs for constructing event temporal
graphs, have shown promising results. How-
ever, these methods have often led to subopti-
mal graph generation as the linearised graphs
exhibit set characteristics which are instead
treated sequentially by language models. This
discrepancy stems from the conventional text
generation objectives, leading to erroneous pe-
nalisation of correct predictions caused by the
misalignment of elements in target sequences.
To address these challenges, we reframe the
task as a conditional set generation problem,
proposing a Set-aligning Framework tailored
for the effective utilisation of Large Language
Models (LLMs). The framework incorporates
data augmentations and set-property regularisa-
tions designed to alleviate text generation loss
penalties associated with the linearised graph
edge sequences, thus encouraging the genera-
tion of more relation edges. Experimental re-
sults show that our framework surpasses exist-
ing baselines for event temporal graph genera-
tion. Furthermore, under zero-shot settings, the
structural knowledge introduced through our
framework notably improves model generalisa-
tion, particularly when the training examples
available are limited.1

1 Introduction

Understanding the temporal relation between
events mentioned in long documents is crucial to
modelling complex text with articulated narratives.
One of the widely adopted benchmarks for event
temporal relation understanding is the SemEval
2013 TempEval-3 (UzZaman et al., 2013), requir-
ing end-to-end generation of event temporal graphs

1For access to experimental code and data, please refer
to: https://github.com/Xingwei-Warwick/Set-Aligning-Event-
Temporal-Graph-Generation

directly from raw text. An event temporal graph
is a natural representation of temporal information,
with the nodes representing events and the edges
the temporal relationships between them, such as
“before”, “after”, or “simultaneous”.

Existing studies typically approach the problem
of constructing event temporal graphs through a
two-step pipeline, with the first step focusing on
detecting events in text, and the second step on clas-
sifying the temporal relations between them (Mc-
Dowell et al., 2017; Ning et al., 2018b). However,
such pipeline-based approaches suffer from well-
known limitations, including (i) the need for fine-
grained annotations at each step; and (ii) the poten-
tial for error propagation throughout the pipeline.
In the first step, the event extractor aims at locat-
ing as many event triggers as possible in the given
documents, leading to the inclusion of numerous
trivial events that often lack relevance to the nar-
rative and have no relation with other events. As
a result, the next step for temporal relational ex-
traction becomes burdened with many noisy events,
significantly impacting the overall accuracy and
efficiency of the models.

To address these limitations, Madaan and Yang
(2021) introduced a reformulation of the task by
generating event temporal graphs directly through
conditional text generation. This approach allows
for the use of pre-trained language models and,
more importantly, overcomes the typical limitations
associated with the pipeline architecture. While
this method involved fine-tuning a text generation
model, such as GPT-2, for the generation of lin-
earised event temporal graphs as sequences, it fails
to consider an important aspect. Specifically, it
does not account for the fact that the target se-
quence (i.e. the list of event temporal relations)
is order-invariant, and should therefore be treated
as a set rather than as an ordered sequence. For
example, the following two sequences represent
the same temporal graph:
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S1: [(Cuomo leaving his office, before, speak to reporters),

· · · (Cuomo leaving, before, met with representatives)]

S2: [(Cuomo leaving, before, met with representatives),

· · · (Cuomo leaving his office, before, speak to reporters)]

In this scenario, the conventional text generation
loss will (mistakenly) yield a high value because
most of the tokens in the corresponding positions
do not match, even though the event relations are
the same. This issue has a detrimental effect on
the model performance for several reasons. First,
it discourages the language model from generating
additional edges. Generating more edges implies
a greater number of potential permutations in the
edge sets, making it less likely to match the target.
Secondly, if the initially generated edge in the se-
quence differs in token count from the one in the
target, it causes all subsequent edges to misalign
with the target, even if they are identical, leading
to a high loss value.

In this work, we propose a Set-Aligning Frame-
work (SAF) that enables efficient employment of
LLMs for auto-regressive event temporal graph
generation. SAF incorporates a group of novel reg-
ularisations, named Set Property Regularisations
(SPR), along with augmented data, which aims at
tackling the problems associated with the use of
LM loss in contextualised graph generation by miti-
gating its penalisation towards the target sequences.
For example, the S1 and S2 above are different
sequences of the same edge set. Even if S1 has the
same order as the target edge sequence and thus
has a lower LM loss than S2, both of them will
be added with the same SPR. Therefore, the rela-
tive difference of their loss values becomes smaller,
which avoids overfitting the model towards the spe-
cific edge order of S1. Moreover, if the model
explores generating one more edge after S2 and the
edge is correct, the SPR value will decrease while
the LM loss will probably increase.

Using the proposed SAF, we fine-tune language
models from the T5 (Raffel et al., 2020) family with
weak supervision. Additionally, we introduce the
first human-annotated dataset for contextualised
event temporal graph generation built on the New
York Times, which we combine with existing event
relation extraction datasets to evaluate the effective-
ness of the SAF framework. Experiments on the
newly annotated New York Times corpus2 show
that SAF significantly increases the number of gen-
erated edges, resulting in improved recall. Further-

2https://doi.org/10.35111/77ba-9x74

more, we assess the performance of our approach
on existing sentence-level event temporal relation
extraction datasets, namely MATRES (Ning et al.,
2018a) and TB-Dense (Cassidy et al., 2014), under
zero-shot settings, and we find that the structural
knowledge introduced through the proposed SAF
has an even greater impact on model generalisation
when the training examples available are limited.

Our contributions are three-folded:

• We introduce a model-agnostic framework,
called SAF, for event temporal graph gener-
ation. SAF incorporates novel Set-Aligning
regularisations, data augmentation, and weak
supervision techniques.

• We offer a human-annotated test set and
a weakly-supervised dataset specifically de-
signed for document-level event temporal gen-
eration.

• Our extensive experimental results in various
settings demonstrate the effectiveness of our
proposed model. Our thorough analysis shows
that our SAF framework encourages language
models to generate at least 24% more edges
than previous graph generation approaches
across various datasets.

2 Related Work

2.1 Event Temporal Graph
The task of event temporal graph extraction serves
as an important task for evaluating an end-to-end
system which takes raw text as input and output
TimeML annotations (i.e., temporal relations) (Uz-
Zaman et al., 2013). Early attempts on the task
include CAEVO (McDowell et al., 2017) and Cog-
comptime (Ning et al., 2018b), which relied on
a combination of statistical and rule-based meth-
ods. In recent years, more efforts have been put
into developing specialised sub-systems with neu-
ral network-based approaches (Ning et al., 2019;
Han et al., 2019a; Tan et al., 2021a). The emer-
gence of large language models has paved the way
for end-to-end learning, treating temporal graph
generation as conditional text generation (Madaan
and Yang, 2021). To tackle the set misalignment
issue which remained unexplored in Madaan and
Yang (2021), we propose a framework based on a
group of novel Regularisations, aiming at enhanc-
ing autoregressive event temporal graph generation.

It is worth noting that there is another related
and more widely-recognised task called temporal
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relation extraction, which aims at classifying the
type of temporal links between pre-extracted events
(Wang et al., 2020; Wen and Ji, 2021; Tan et al.,
2023). While Han et al. (2019b) proposed a joint
extraction model for events and event temporal
relations, they rely on event extraction supervision
signals, which our work does not need.

2.2 Graph Generation with Language Models
Generating graphs with language models has been
explored in many areas. For example, Bosselut
et al. (2019) fine-tunes GPT on the ATOMIC com-
monsense knowledge graph (Sap et al., 2019). Mel-
nyk et al. (2022) proposed a multi-stage system
for knowledge generation based on T5. However,
these studies do not generate an entire graph in one
generation. In contrast, Madaan et al. (2021) gen-
erated inference graphs using a combination of a
graph generator and a graph corrector for queries
in defeasible reasoning. Zaratiana et al. (2023)
generate entities and entity relations with an auto-
regressive LM, but they did not consider the set
property of the target. Different from them, we fo-
cus on the set property of the generation sequence,
which is particularly important in the setting where
both the input document and output sequence are
considerably longer.

2.3 Conditional Set Generation
Text generation models are primarily designed for
generating text with strict linear orders, making
them suboptimal for generating sets. This limi-
tation has been acknowledged in recent NLP re-
search, where efforts have been made to adapt
seq2seq frameworks for tasks like multi-label clas-
sification and keyword generation (Qin et al., 2019;
Ye et al., 2021). Vinyals et al. (2016) studied the
general challenge of using sets as either input or tar-
get output for text generation models. They found
in both cases, the order of elements in the set has a
significant impact on convergence and final perplex-
ity. This implies that there may exist an optimal
order for the input or output set sequence, and they
proposed allowing the model to search for this or-
der during training. Instead of resorting to exhaus-
tive search, Madaan et al. (2022) proposed a data
augmentation method to enforce order-invariance
and prepend the set’s cardinality to the target se-
quence to ensure the correct cardinality. While
previous research has tackled multi-label predic-
tion and keyphrase generation, our work delves into
the unique challenges presented by event temporal
graph generation, which involves long sequences

and partially ordered properties.
In a more general sense, the object detection task

from computer vision also involves set prediction
(Chen et al., 2022). Carion et al. (2020) use parallel
decoding to generate the elements in a set based
on object queries. Tan et al. (2021b) adopted a
similar approach in name entity recognition with
a non-autoregressive decoder. Different from the
entities in images, the set elements (event relations)
in our task are not concrete spacial objects or text
spans but instead are varied in length and scattered
across each document. This makes object queries
and non-autoregressive decoding inapplicable in
our settings.

3 Set-Aligning Framework

Madaan and Yang (2021) first explored the possibil-
ity of end-to-end event temporal graph generation
using neural language modelling. Since then, how-
ever, this task has remained under-explored, with
numerous unresolved issues. To elaborate, the first
concern is that Madaan and Yang (2021) framed
graph generation as a conventional sequence gen-
eration problem, whereas it is fundamentally a set
generation problem. Secondly, the dataset they
built primarily consists of small-sized graphs, fail-
ing to challenge the model in terms of document-
level understanding. Lastly, their investigation
mainly centred on GPT-2, while the landscape of
LLMs has evolved with the emergence of models
featuring distinct structures (e.g., encoder-decoder)
and new paradigms (e.g., in-context learning) in
recent years. In this study, we address these three
aspects to enhance the understanding of sequence-
to-sequence temporal graph generation.

Although our proposed framework is designed to
be model-independent, several factors have led us
to choose Flan-T5 as the base model for our exper-
iments: (i) Based on our preliminary experiments,
Flan-T5-base hits the sweet spot in terms of perfor-
mance vs. resource consumption, allowing us to
test more variants; (ii) its encoder-decoder structure
is well-suited to document-level graph generation,
due to its efficiency in processing comprehensive
information in lengthy documents.

3.1 Event Temporal Graph Modelling as Edge
Set Generation

An event temporal graph is a directed graph with no
isolated vertex. Each edge in the graph describes
a temporal relation between two events, and self-
loops are not permitted. Following Madaan and
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Document: Governor Cuomo (e1: leaving) his office in Albany yesterday to (e2: speak) to 
          reporters after he (e4: met) with representatives of groups pushing for higher 
          ethical standards for public officials in the state. “We (e3: wanted) the Governor 
          and the Legislature to know that the feeling is out there.” said Paul Elisha.

Large
Language Model

e1: leaving

e2: speak

e3: wanted

Edge Embedding

e4: met

digraph G {
  “Gov. Cuomo leaving his office” -> “To speak to reporters” [l = before];
  “Gov. Cuomo leaving his office” -> “He met with representatives” [l = before];
  “He met with representatives”   -> “Gov. Cuomo leaving his office” [l = before];
  […]
}

Hausdorff
distance e1'

e2'

e3'

e1'

- Matching Regularisation:     𝑅!"#$%&'((
 - Cardinality Regularisation: 𝑅)"'%
 - Duplication Regularisation: 𝑅%#*+

Edge Set – Gold 
[𝑒,- , 𝑒.- , …, 𝑒/- ]

Edge Set – Generated 
[𝑒,, 𝑒., …, 𝑒/]

Parsing

𝓛	 - Combined with LM LossAugmented
Data

𝑅!"#$ 𝑅%"&'$(#))

Set-Property Regularisations

Figure 1: Set-Aligning framework (SAF).

Yang (2021), we represent these graphs by lineariz-
ing them into strings using the DOT graph descrip-
tion language (Gansner, 2006) (example shown in
Figure 1). Given that event temporal graphs do
not have isolated vertices, the sequence essentially
represents the edge set of the graph.

We model the probability of generating a string
y, which is a linearised representation of the event
temporal graph G, conditioned on a document X =
(x1, x2, ..., xn) using a language model:

pLM(y|X) =
T∏

t=1

p(yt|X, y<t) (1)

where y is a string formatted in DOT notation.

3.2 Data Augmentation
The target sequences of event temporal graph gener-
ation are essentially sets rather than strictly ordered
text sequences. Therefore, conventional text gen-
eration loss can inadvertently penalise the token
order and force the arrangement of elements to
match the order in the target sequence, which is
not necessarily the optimal order. This enforced or-
der may lead to sub-optimal performance (Vinyals
et al., 2016). A potential solution is to introduce
random permutations of set elements as augmented
training examples, which has already been shown
effective in tasks like multi-label classification and
keyphrase generation (Madaan et al., 2022). Specif-
ically, in the context of event temporal graph gener-
ation, the elements correspond to the edges in the
target string. The substrings representing the edges
are randomly shuffled, while the rest of the string
remains unchanged.

Prepending the set cardinality of the ground-
truth edge set to the generation target may also

help constrain the generation model to avoid over-
generation (Madaan et al., 2022). However, such
attempts in our preliminary experiment led to an
approximate 4% drop in edge F1 score, despite a
significant reduction in the number of generated
edges. Thus, we decided not to incorporate the
cardinality into the final framework.

3.3 Set Property Regularisations (SPR)
Simply adding augmented data to train models does
not address the fundamental issue of set alignment.
Several challenges arise in this approach. First of
all, it is unrealistic to add all permutations, espe-
cially when dealing with long documents contain-
ing numerous event relations, as the training data
will grow at a rate proportional to the factorial of
the cardinality of the target set. More importantly,
with each augmented example, the loss function
would still penalise the unobserved permutations
of the set. This would make the training unstable.

The core challenge lies in finding an effective
way to compare the linearized target graph with
the linearized generated graph, without relying on
a strict token-by-token comparison as in conven-
tional text generation. To tackle this issue, we pro-
pose introducing modifications to the generation
objective. As the linearized graph essentially repre-
sents the edge set of the graph, we can simplify the
graph comparison problem into a set comparison
problem. Our approach involves several compo-
nents. Firstly, we add a set cardinality regularisa-
tion to encourage the model to generate an adequate
number of temporal relation edges. Then, we in-
troduce a duplication regularisation to penalise any
repetition of elements in the edge set. Lastly, we
design a set matching regularisation that assesses
the semantic similarity between elements in the
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target edge set and those in the generated edge set.
Collectively, the above regularisations are referred
to as Set Property Regularisations (SPR). They are
integrated with the token-level cross-entropy loss
through a weighted average.

To compute the set property regularisations, a
graph string needs to be first sampled from a lan-
guage model given a training input. Then, this
sequence is parsed into a list of edges E, where
each edge e is a triplet consisting of a head event,
a relation type, and a tail event (h, r, t). The pars-
ing is done with a rule-based parser which turns
the graph text string into a structured data repre-
sentation. As the edges are loaded in a structured
list, the number of edges and duplicated edges can
be counted. Let E denote the set of all the unique
edges in E. The values for the set cardinality regu-
larisation and the duplication regularisation can be
computed as follows:

E = {e|e ∈ E} (2)

Rdupl =
|E| − |E|

|E| (3)

Rcard =
abs(|E ′| − |E|)

|E| (4)

where function abs(·) denotes taking the absolute
value, E ′ denotes the ground-truth edge set.

To compute the set matching regularisation, we
assess the similarity between the generated set and
the target set by comparing the semantic similarity
of the edges across the two sets. We take the last
layer of the decoder’s representations of the respec-
tive tokens as the semantic representations of the
events and the relation type. Then, we concatenate
these representations as the semantic representation
of each edge:

zh = H[h1,h2,...,hm] (5)

zr = H[r1,r2,...,rs] (6)

zt = H[t1,t2,...,tn] (7)

ē =
[
pool(zh); pool(zr); pool(zt))

]
(8)

where H is the last-layer hidden states of the de-
coder. [h1, ..., hm], [r1, ..., rs], and [t1, ..., tn] are
the indices of the head event, relation type, and
tail event, respectively. zh, zr, zt denote the seman-
tic representations of the head event, relation type,
and tail event, respectively. pool(·) represents the
average pooling function. ē denotes the semantic
representation of the edge.

We now possess two sets of embeddings: one
compassing the edge embeddings extracted from
the target graph, and the other containing the edge
embeddings derived from the generated graph. Es-
sentially, they can be considered as two sets of
points in the representation space. Thus, we can
measure the similarity of the two graphs by measur-
ing the distance between the two point sets (mani-
folds) in the representation space. The Hausdorff
distance, originally defined to measure the sepa-
ration between two subsets within a metric space,
has recently found applications in machine learn-
ing for measuring the distance between two sets
of embeddings (Schutze et al., 2012; Wang et al.,
2023). We compute the average Hausdorff distance
as the measure:

dH(E ′, E) = 1

|E ′|
∑

ē′∈E ′

min
ē∈E

dcos(ē′, ē)

+
1

|E|
∑

ē∈E
min
ē′∈E ′

dcos(ē′, ē) (9)

where the distance of an edge pair is computed by
the cosine distance dcos(·).

When the model generates the set elements in a
different order than the target sequence, the token-
level cross-entropy loss would be high. If the model
generates more correct elements as suffixes of the
sequence with a wrong order, the loss value would
probably increase further. However, the SPR will
have a lower value and thus alleviate the discour-
agement for generating more elements caused by
the token-level cross-entropy loss.

3.4 Fine-tuning with Set Property
Regularisations

Unlike the set prediction methods based on parallel
decoding (Carion et al., 2020; Tan et al., 2021b),
SPR cannot be directly used as the main objective
in auto-regressive generation. There are two pri-
mary reasons for this. The first reason is that obtain-
ing the SPR requires sampling from the decoder,
which would reduce the training speed significantly.
Moreover, the second reason is that the language
model will struggle to generate sequences in DOT
format accurately because learning the token de-
pendency for such format requires the language
modelling objective. Consequently, the sequence
parser will fail to recognize any valid edges within
the sequence, resulting in high SPR values and
hindering the training.
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To avoid the problems mentioned above, we in-
troduce the SPR after a certain number of fine-
tuning iterations. Once the model has acquired
a basic proficiency in generating correct DOT se-
quences, the SPR can function as intended. SPR
can prevent the language model from overfitting
to the order of the target set shown in the training
samples.

We explored alternative approaches to incorpo-
rate SPR, but they reported inferior performance
compared to the method eventually included in our
framework. We discuss those alternative methods
in the Appendix A.

4 Experiment

4.1 NYT Temporal Event Graph Dataset

NYT-train NYT-test NYT-human

Total documents 18, 263 1, 000 22
Total events 846, 022 47, 251 661
Node degree 2.52 2.54 2.34
Total relations 1, 066, 264 60, 056 528
before 578, 216 32, 729 465
after 412, 704 23, 200 0
includes 7, 922 450 12
is_included 41, 964 2, 332 0
simultaneous 25, 458 1, 345 51

Table 1: The statistics of the NYT temporal event graph
dataset. Node degree represent the average number of
relations each event has.

There are several event temporal relation extrac-
tion datasets with pairwise event relation annota-
tions, such as MATRES and TBD. It is theoret-
ically possible to convert these annotations into
document-level event temporal graphs. However,
our preliminary experiments have shown that even
when merging all of these datasets (resulting in
4,684 training documents), it is not sufficient to
fine-tune a large language model to achieve accept-
able performance. To address this limitation, we
opted to build a significantly larger dataset on a
selection of data from the New York Times (NYT)
corpus using a weak supervision approach, draw-
ing inspiration from the work of Madaan and Yang
(2021). Nevertheless, we introduced additional
steps in the data selection process to ensure that
the selected documents contain high-quality event
temporal graphs, which were not taken in Madaan
and Yang (2021).

Firstly, we performed topic modelling using La-
tent Dirichlet Allocation (LDA) on the MATRES

and TBD datasets to extract a set of topics. Then,
we identified general descriptors that are semanti-
cally similar to these topics (e.g., politics, diploma,
sports, etc.). This selection process was crucial
because, following training with noisy labels, our
intention was to evaluate the model’s performance
on these datasets under zero-shot settings. We fur-
ther analysed the most noteworthy events in these
descriptors to ensure they were narrative-oriented,
because articles that weave stories tend to contain a
wealth of event temporal relations. To identify the
most significant events, we employed a metric sim-
ilar to TF·IDF which we could describe as “event
frequency × inverse-descriptor frequency”.

ef·idf =
fe,d∑

e′∈d fe′,d
·log |D|

|{d ∈ D : e ∈ d}| (10)

where e is an event and d is a descriptor. fe,d is the
number of times that event e occurs in the docu-
ments with the descriptor d.

∑
e′∈d fe′,d is the total

number of event occurrence in the descriptor d.
|D| is the total number of descriptors in the corpus.
|{d ∈ D : e ∈ d}| is the number of descriptors
where the event e appears.

The descriptors that are selected and the number
of documents in them are listed in the Appendix
D.1. After choosing the documents, we acquire the
event temporal graph by running an off-the-shelf
event and temporal relation extraction tool called
CAEVO (McDowell et al., 2017). CAEVO is more
scalable than Cogcomptime (Ning et al., 2018b),
making it suitable for building a large-scale dataset.

Then, each temporal graph is represented in DOT
format, and every event verb is prefixed and suf-
fixed with its noun phrase and object, respectively.
Note that we did not break the documents into
short segments as Madaan and Yang (2021) did.
Instead, we keep the data strictly at the document
level which is a more challenging setting because
the model needs to analyse the entire document
and generate a much larger graph. In the dataset
we built, a target graph has about 46 nodes and
58 edges on average. While in Madaan and Yang
(2021), the average number of nodes is 4 and the
average number of edges is 5 in a document-level
event temporal graph. Moreover, their events have
1.54 relations on average, while events in our data
have 2.52 relations on average, showing that the
graphs in our dataset are much more complex. In
practice, these complex documents are the ones
that require analysis, and a model developed based
on simpler inputs cannot handle them directly.
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4.2 Human-annotated Test Data

Aside from testing with the CAEVO-created data,
we recruited human annotators to annotate a test
split of the NYT data. We performed a preprocess-
ing step regarding the relation types by merging the
reciprocal relations, such as transforming after into
before, is_included into includes by swapping the
head and tail events. For example, “I had dinner af-
ter I had lunch” is equivalent to “I had lunch before
I had dinner”. This processing not only stream-
lined the annotation process but also enhanced the
model performance (refer to experimental results
in Appendix C). We recruited crowd workers from
Prolific3 platform, which is a research-focused plat-
form providing verified human workers. We re-
cruited 24 participants in total (including pilot test-
ing runs). To make sure the participants can un-
derstand and annotate the article efficiently, we
only recruited native English speakers who have an
education level higher than High school diploma/A-
levels. We put 4 documents, which are randomly
sampled from the same descriptor set as the train-
ing and testing of the selected NYT corpus, into
each unit task. There is a shared document across
all the tasks to compute the inter-annotator agree-
ment (IAA). To minimize discrepancy, we asked
2 participants to first identify the event triggers in
each unit task. We then merged the event annota-
tions from the participants by taking the union of
the spans (if there are overlapped spans, we take the
longer span). Then, we asked another participant
to annotate the event temporal relation based on
the identified events. We also included the outputs
from the CAEVO model to serve as examples, but
we explicitly asked the participants to correct the
annotations by adding, removing, or changing the
CAEVO’s annotations. In the end, we collected 22
documents as the human-annotated test set. On the
event identification, we compute IOU (Intersection
over Union) as a measure of agreement between
the annotators. Average across 7 tasks, the IOU
between the event spans is 0.8986. For the relation
annotations, we compute the average Cohen’s κ of
every participant pair in the relation annotation task
(on the shared document). The average Cohen’s κ
is 0.7465. Details of instructions and interfaces are
in Appendix D.1.

The statistics of the constructed datasets are
shown in Table 1. The distributions of relation
types are highly imbalanced, with a majority falling
into either the before or after categories. We also

3prolific.com

evaluated the trained models on the MATRES test
set (comprising 20 documents) and TBD test set
(consisting of 9 documents), both of which are
based on human annotations and processed into
DOT using the methods previously described.

4.3 Model Setting

We employed Flan-T5-base as the backbone model
for contextualised graph generation. We first
trained a Flan-T5-base model following the same
setup as in Madaan and Yang (2021) as the baseline.
SAF (w/o DA) is our proposed framework with-
out the augmentations of edge order but with Set
Property Regularisations (SPR). SAF (w/o SPR) is
the framework without the use of SPR but with the
augmentations. As our SAF framework with SPR
requires additional training steps and the augmenta-
tions enlarge the training set, we keep the number
of training steps balanced in the methods to exclude
the influence of seeing different amounts of train-
ing data. The model is trained for 10 epochs, with
each document being augmented through 4 random
permutations, followed by a further 3 epochs of
training, during which the SPR are adopted with-
out permutations. We use a learning rate of 2e− 5,
along with a weight decay of 0.01. Batch size of 5
before SPR, and 3 during SPR because additional
memory is required for sampling. We used AdamW
optimizer (Loshchilov and Hutter, 2019). We use
the beam search (Graves, 2012) with a beam size of
5 and a maximum length of 2048 to sample results.
We balanced the training steps in the compared
methods to make sure they saw the same amount of
training data. Experiments are conducted on a GPU
node under an HPC cluster using 4 Nvidia A100
80G GPUs. The models are trained based on 3 ran-
dom seeds (ChatGPT was tested for 3 times) and
the metrics are the average values of them. Train-
ing with the augmented data for 10 epochs requires
approximately 19 hours. Training with SPR for 3
epochs takes about 27 hours. Training a vanilla
Flan-T5-base for the same number of training steps
demands approximately 20 hours.

4.4 Evaluation Metrics

Following the previous research (Madaan and Yang,
2021), we evaluate the results using the metrics of
precision, recall, and F1 score for both node set
and edge set predictions. The primary metric is the
edge F1 because the quality of the node generation
is also reflected in it.
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NYT-test NYT-human

PE RE FE
1 PE RE FE

1

Flan-T5-base 51.27 32.43 39.73 22.61 25.88 24.14
SAF (w/o DA) 50.28 34.82 41.15 25.80 32.13 28.62
SAF (w/o SPR) 51.88 36.64 42.95 27.08 34.91 30.50
SAF 50.97 39.96 44.80 25.92 40.21 31.52

Table 2: Edge-based metrics on the NYT datasets

NYT-test NYT-human

PN RN FN
1 PN RN FN

1

Flan-T5-base 75.52 58.24 65.76 53.36 47.66 50.35
SAF (w/o DA) 75.34 60.64 67.20 54.86 50.43 52.55
SAF (w/o SPR) 75.43 62.36 68.27 54.14 51.59 52.84
SAF 75.47 65.16 69.95 53.63 54.51 54.06

Table 3: Node-based metrics on the NYT datasets

4.5 Results
As shown in table 2 and 3, SAF (w/o SPR) con-
sistently outperform Flan-T5-base in terms of F1

scores on the NYT-test and NYT-human datasets,
suggesting the benefits of introducing permutated
training examples. For example, SAF (w/o SPR)
improves upon Flan-T5-base by about 3% on the
NYT-test and 6% on the NYT-human in terms of
edge F1. SAF (w/o DA) achieves an improvement
of approximately 1.5% on the NYT-test and 4.5%
on the NYT-human datasets in terms of edge F1,
demonstrating the effectiveness of SPR alone. Fur-
thermore, our SAF model yields the best perfor-
mance when both SPR and augmentation are in-
corporated. We also observe that models utilizing
SAF have much higher edge recalls while their
edge precision scores are either similar or occasion-
ally even lower than those of other models. This
suggests that the performance improvement primar-
ily comes from the generation of more edges. This
observation is reinforced by the information pre-
sented in Figure 2, where models trained with SAF
can generate 24% − 48% more edges compared
to the conventional text generation framework on
these datasets. These additional edges play a piv-
otal role in the improvement of the edge F1 since
precision stays nearly the same.

It is worth mentioning that the NYT-human
dataset has a different label distribution compared
to the NYT dataset used for training, where its
events and event temporal relations were produced
by CAEVO. Notably, the frequency of simultane-
ous is significantly higher, accounting for 9.66%,
in contrast to the 2.39% observed in the training set
(see Appendix D.1 for more comprehensive anal-
yses). Based on our observation, it appears that

Figure 2: The comparison of generated edges between
SAF and vanilla Flan-T5-base. The y axis is normalised
by dividing the number of edges generated by Flan-T5-
base in the respective datasets.

MATRES-test TBD-test

PE RE FE
1 PE RE FE

1

ChatGPT 10.58 6.56 8.09 25.92 5.94 9.66
Flan-T5-base 13.06 7.16 9.25 23.26 4.59 7.67
SAF 18.05 14.31 15.96 37.53 11.04 17.05

Table 4: Experiment results on human-annotated MA-
TRES and TBD under the zero-shot setting.

human annotators tend to apply a more lenient cri-
terion for the simultaneous label whereas CAEVO
enforces a stricter definition of this label.

Similar trends are also observed in Table 4,
which were obtained through evaluation on MA-
TRES and TBD. We used the models trained on
the NYT training set to test on these datasets un-
der zero-shot settings. ChatGPT shows our best
attempts to generate event temporal graphs with
gpt-3.5-turbo model through Openai API. We used
two hops: (i) ask ChatGPT to generate events from
the documents, (ii) ask ChatGPT to generate an
event temporal graph based on the generated events
and the documents. The results show that ChatGPT
is outperformed by fine-tuned models, which is
in line with the recent papers on exploring Chat-
GPT’s ability on event understanding (Li et al.,
2023; Chan et al., 2023; Gao et al., 2023).

Upon examining the responses of ChatGPT, it
appears that it conceptualises events as a broader
and high-level notion which diverges from the def-
inition commonly used by the information extrac-
tion community in event processing. In our task,
each predicate can signify an event, but ChatGPT
tends to approach event identification more like
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a summarisation task, where it summarises text
chunks in a document. This likely explains why
ChatGPT identified only approximately half of the
events present in the target graph, resulting in low
recall. These observations confirm that event tem-
poral graph generation cannot be solved solely with
prompt engineering on ChatGPT. It is noteworthy
that ChatGPT consistently produces graphs in the
correct DOT format across both the MATRES-test
and TBD-test datasets, indicating that formatting
issues are not the primary factor in ChatGPT’s un-
derperformance. The details regarding the inputs,
outputs, and parameter settings for ChatGPT are
presented in Appendix E.

4.6 Error Analysis

A major error type we found is that the model of-
ten fails to deduce temporal relationships that in-
volve inference. This is due to the reliance of weak
supervision signals provided by CAEVO, which
primarily rely on syntactical rules. Consequently,
this problem led to a lower edge F1 on the human-
annotated test set, as human annotators provided
many temporal relations that were inferred through
commonsense reasoning. For example, the model
does not perceive a clear temporal sequence in
the sentence:“<person A> won the gold medal in
women’s 1,500m. <person B> won the silver and
<person C> won the bronze.” However, human
annotators can readily identify an obvious tempo-
ral order among “<person A> won”, “<person B>
won”, and “<person C> won”, as it aligns with the
common knowledge that in a race, the first person
who crossed the finish line won the gold, followed
by the silver and the bronze winners.

5 Conclusion

This study proposes a framework for fine-tuning
language models to generate event temporal graphs
directly from raw documents in an end-to-end man-
ner. The proposed framework includes a data
augmentation method and set property regularisa-
tions to mitigate the problem caused by conven-
tional generation loss, promoting the generation of
more edges by language models and, consequently,
leading to improved performance. Extensive ex-
periments show the effectiveness of our proposed
model on multiple widely used datasets with real-
world articles. The thorough analysis demonstrates
that our framework can encourage language mod-
els to generate more edges for constructing event
temporal graphs in various settings.

Limitations

Due to the presence of noisy labels used in fine-
tuning, a major limitation of the proposed method
is the inclusion of many imaginary events, trivial
events, and negative expressions of events. For ex-
ample, CAEVO identified phrases like “<someone>
did not fire” as an event. While “fire” serves as a
predicate and the notion of “did not fire” can hold
narrative significance, it may not be entirely suit-
able within the context of event temporal graphs.
This is because it is not about the occurrence of
an action or a change of state, but rather describes
the absence of an event. Similarly, in some articles,
there are descriptions of multiple potential future
developments, such as "he might buy product A".
Including such expressions as events might intro-
duce confusion into the event temporal graph, as
these represent possibilities rather than actual oc-
currences. This problem mainly arises from the
behaviour of the CAEVO method, which primarily
focuses on identifying fine-grained predicates as
events. The resolution to this problem lies in obtain-
ing better-quality supervision signals which focus
on salient events (i.e., events which are mentioned
frequently and are important to the narrative).

Ethics Statement

The proposed method analyses the text provided
and extracts relevant information from it. The al-
gorithm cannot acquire information beyond the
boundary of the given text. Thus, any associated
risks stem solely from the data itself. This research
only utilised publicly available data. As long as the
data input to the model is collected according to the
relevant data policies and guidelines, the proposed
method does not introduce further risks.
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A Discussion of Alternative Approaches
for Incorporating Set Property
Regularisation (SPR)

In our preliminary studies, we tested several way
of incorporating SPR into the training process. We
tried using the weighted average of SPR and the
language modelling loss in every training step (the
weight of SPR increases across the training pro-
cess). However, the training becomes very slow
due to the added decoding processes.

We also experimented with introducing random-
ness into the incorporation of the SPR in some of
the training steps. In each training step, there was
a 0.5 probability that the SPR were computed and
backpropagated, while in other cases, only the lan-
guage modelling loss was considered. This proba-
bility increased progressively with the epoch num-
ber. For example, during the initial epoch (epoch 1),
the probability was set to 0, as we explained in Sec-
tion 3.4, the model struggled to generate outputs
in the correct format during the early stages. Sub-
sequently, the probability was increased linearly,
reaching 1 by the last epoch.

However, this approach proved to be ineffective
and caused training instability. The loss value fluc-
tuated between steps, leading to confusion for the
model. It is worth noting that this was an initial
experiment and significantly differed from the final
version of the proposed method.

B Additional Error Analysis

We observed a type of error involving the model’s
incorrect prediction of long-distance temporal rela-
tionships. The model sometimes predicts a tempo-
ral relation between two events that are separated
by more than ten sentences. This is unexpected, as
the CAEVO model, which produces weak super-
vision signals, typically does not extract relations
for events that are more than two sentences apart
from each other. In essence, it primarily focuses
on events within close proximity. Our observations
suggest that human annotators also tend not to an-
notate temporal relations for events that are distant
from each other, arguably because such relations
are often implicit and can be challenging to track
across large chunks of text.

C More Analysis about the Generation
Results

Table A1 shows a preliminary experiment in which
the augmented Flan-T5-base models were trained

and tested on NYT-test before and after merging
reciprocal relation types. The first row is the model
trained with before, after, includes, is_included,
and simultaneous. The second row is the model
trained by merging after with before, is_included
and includes by swapping the head and tail events.
Both models are trained with 4 augmented in-
stances for each original instance. The results show
the model benefits from the simpler label set.

PN RN FN
1 PE RE FE

1

With reciprocal relations 76.05 55.05 63.87 52.07 30.90 38.78
Merge reciprocal 75.48 61.96 68.05 52.03 36.34 42.79

Table A1: Comparison between model trained with
reciprocal relations or merging reciprocal relations.

Table A2 shows the relation type distribution
generated by the models. The relation distributions
are highly unbalanced.

before includes simultaneous

Target graph 93.13 4.63 2.24
Flan-T5-base 92.82 3.19 3.99
T5-base 92.48 3.94 3.59
SAF (Flan-T5-base) 93.45 3.28 3.27
SAF (T5-base) 93.00 3.65 3.35

Table A2: Generated graph temporal relation label dis-
tribution (in percentage).

Table A3 shows the average degree for the nodes
in the generated graphs. SAF generates more com-
plex graphs with a higher average node degree than
the compared approaches.

average node degree

Flan-T5-base 2.06
SAF (w/o SPR) 2.16
SAF 2.31

Table A3: The average node degree of the generated
graphs on NYT.

We also investigate the effect of the order of the
target edge set (Table A4). The first row is Flan-
T5-base fine-tuned with the target edge set ordered
based on random order in the documents. The sec-
ond row is Flan-T5-base fine-tuned with target edge
set ordered based on their appearance order in the
documents. We could observe that the appearance
order results in slightly better performance than the
random order. Each method was run on 5 different
random seeds and trained for 50 epochs.
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NYT-test NYT-human

PE RE FE
1 PE RE FE

1

Random order 51.02 29.37 37.28 18.15 20.45 19.24
Appearance order 51.20 30.24 38.02 19.24 21.78 20.43

Table A4: Comparison based on different sequence or-
ders on NYT-test and NYT-human.

D Annotation of the Test Set

D.1 Overview

We recruited crowd workers from Prolific4 plat-
form, which is a research-focused platform pro-
viding verified human workers. We recruited 24
participants in total (including pilot testing runs).
In order to make sure the participants can under-
stand and annotate the article efficiently, we require
the participants to be native English speakers and
have an education level higher than High school
diploma/A-levels. We put 4 documents, which are
randomly sampled from the same descriptor set as
the training and testing of the selected NYT corpus,
into each unit task. There is a shared document
across all the tasks for the purpose of computing
the inter-annotator agreement (IAA). In order to
maximize the IAA, we asked 2 participants to first
identify the event triggers in each unit task. Af-
ter that, we merged the event annotations from
the participants by taking the union of the spans
(if there are overlapped spans, we take the longer
span). Then, we asked another participant to an-
notate the event temporal relation based on the
identified events. We also included the outputs
from the CAEVO model to serve as examples, but
we explicitly asked the participants to correct the
annotations by adding, removing, or changing the
CAEVO’s annotations. In the end, we collected 22
documents as the human-annotated test set.

On the event identification, we compute IOU (In-
tersection over Union) as a measure of agreement
between the annotators. Average across 7 tasks,
the IOU between the event spans is 0.8986. For
the relation annotations, we compute the average
Cohen’s κ of every participant pair in the relation
annotation task (on the shared document). The
average Cohen’s κ is 0.7465.

D.2 Chosen Descriptors

Here are the chosen descriptors: “airlines and air-
planes”, “olympic games”, “tennis”, “united states
international relations”, “international relations”,

4prolific.com

“civil war and guerrilla warfare”, “track and field”,
“soccer”, “bombs and explosives”, “politics and
government”. We choose 2, 000 documents from
each descriptor. After preprocessing and filtering
out some invalid documents, we have 18, 263 docu-
ments in NYT-train, 1, 000 documents in NYT-test,
and 22 documents in NYT-human.

D.3 Instructions and Interface

We use a popular open-sourced annotation interface
called Doccano. As shown in Figure A1, annotators
can select text spans for events. To direct annota-
tors to distinguish events that actually occurred and
imaginary events, we also provide an “imaginary
event” label type. We asked them to annotate the
predicates that are about a negative expression of
an action or just a hypothesis in the context as an
imaginary event. Imaginary events are orthogonal
to the real-world timeline and thus have limited
meaning for understanding the narrative.

Figure A2 shows the interface for annotating the
relation. On this page, annotators can select two ex-
isting event spans, and then select the relation type
from “before”, “includes”, and “simultaneous”.

Before the annotators came to the annotation
platform, they went through a website where we put
detailed descriptions and terminology definitions
about the task. We also provided a video tutorial
for using the annotation platform.

E ChatGPT prompting

We used the OpenAI API chat completion model
gpt-3.5-turbo-0613. We used the “function call”
method to ensure better parsing quality. The func-
tion call parameters are shown in Figure A5. The
temperature is set to 0. The other parameters are
set as default. We show the inputs and outputs of
the multi-hop prompting in Table A5.

F GPT-4 Case Study

We present various test cases of prompting with
GPT-4 through this link5. The responses from GPT-
4 essentially serve as summaries of the documents
provided. The events it understood are quite broad,
akin to abstracts of segments in the documents.
This diverges from the NLP community’s defini-
tion of event understanding, which typically fo-
cuses on specific action occurrences and aims to
obtain more granular information within the event
temporal graph.

5Test cases on the TBD dataset.
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Another notable aspect of the graphs generated
by GPT-4 is its tendency to represent a linear se-
quence of items ordered by their appearances in
the document. This ties back to the first issue con-
cerning how GPT-4 comprehends events. It essen-
tially generated a summary of the document, which,
while not incorrect, does not adhere to the standard
of event temporal graph extraction defined in Se-
mEval 2013 TempEval-3(UzZaman et al., 2013).

Simply providing the definition of an event has
not resulted in a change in its behaviour6. While ex-
tensive prompt engineering might help, we believe
that incorporating certain supervision signals could
still be necessary. Our framework could prove valu-
able for instruction finetuning, aligning specific
instructions with the event temporal graph genera-
tion task.

6Prompting with event definition.
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Figure A1: Annotation interface for event identification.

Figure A2: Annotation interface for event relation identification.
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Figure A3: Disclaimers.
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Figure A4: Guides.
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1 FUNCTION_LIST = [
2 {
3 "name": "save_events",
4 "description": "Store the extracted events in a list",
5 "parameters": {
6 "type": "object",
7 "properties": {
8 "event_list": {
9 "type": "string",

10 "description": "This is a list of event strings",
11 }
12 },
13 "required": ["event_list"],
14 },
15 },
16 {
17 "name": "save_graph",
18 "description": "Store the constructed graph in DOT language",
19 "parameters": {
20 "type": "object",
21 "properties": {
22 "graph": {
23 "type": "string",
24 "description": "The constructed graph in DOT language. \
25 This graph is a strict graph , in which every edge containing \
26 two event nodes , and a temporal relation label from \
27 [\" before\", \" includes\", \" simultaneous \"]. For example , \
28 \" strict graph {\n\"The Organization asserted responsibility \
29 \" -- \"a United States Navy diver killed \" [rel=before ];\n}\"",
30 }
31 },
32 "required": ["graph"],
33 },
34 }
35 ]

Figure A5: Function list for OpenAI API call
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Input Output

First hop:
Instructions: Analyse the given document. Extract
the main events. Store the events as a JSON list
by calling the saveeventsfunction.
Example input document: Governor Cuomo leav-
ing his office in Albany yesterday to speak to re-
porters after he met with representatives of group
pushing for higher ethical standards for public of-
ficials in the state.
Example output events: Governor Cuomo leaving
his office, Governor Cuomo speak to reporters,
Governor Cuomo met with representatives."
Document: President Clinton says he is committed
to a possible strike against Iraq, despite objections
from other countries. Steve Hurst has that. The
US military buildup in the Persian gulf contin-
ues apace, more planes headed from the united
states and senior officials say Iraq’s president Sad-
dam Hussein can expect punishing air strikes to
continue well into the future if he doesn’t stop
building biological and chemical weapons. Sad-
dam will know by our actions and our warning
that we will be prepared to act again if we have ev-
idence he is trying to rebuild his weapons of mass
destruction capabilities. In a bit of television diplo-
macy, Iraq’s deputy foreign minister responded
from Baghdad in less than one hour, saying Wash-
ington would break international law by attacking
without UN approval. The united states is not au-
thorized to use force before going to the council.
President Clinton, meantime, glossed over stern
warnings from Moscow on Thursday that US air
strikes against Iraq could do serious harm to re-
lations with the Kremlin. We’re trying to find a
diplomatic solution. And I hope that, whatever
happens today, that our relationships with Rus-
sia will continue to be productive and construc-
tive and strong, because that’s very important to
the future of our peoples. One contrary view of
the issue presented itself to the president as he ar-
rived in Philadelphia later in the day. Nevertheless,
the president said Washington would use force if
diplomacy fails to force Saddam Hussein to back
down.

strict graph {
"President Clinton’s commitment to a possible
strike against Iraq" -> "The US military buildup
in the Persian Gulf" [label="before"];
"The US military buildup in the Persian Gulf" ->
"Senior officials’ statement about punishing air
strikes against Iraq" [label="before"];
"Senior officials’ statement about punishing air
strikes against Iraq" -> "Iraq’s deputy foreign min-
ister’s response from Baghdad" [label="before"];
"President Clinton’s attempt to find a diplo-
matic solution" -> "Contrary views expressed in
Philadelphia" [label="before"];
"Contrary views expressed in Philadelphia" ->
"President Clinton’s statement about using force
if diplomacy fails" [label="before"];
"The Russian foreign minister’s suggestion to wait
for UN Secretary General Kofi Annan’s visit" ->
"Secretary of State Madeleine Albright, Berger,
and Defense Secretary William Cohen’s plans to
travel and explain military force necessity" [la-
bel="before"];
}
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The Russian foreign minister, meanwhile, sought
to soften the harsh words of his military coun-
terpart, saying on Friday that Russia now feels
the US must hold off at least until UN secretary
general Kofi Annan visits Baghdad in a last-ditch
effort at diplomacy. Annan has no trip planned
so far. Meanwhile, secretary of state Madeleine
Albright, Berger and defense secretary William
Cohen announced plans to travel to an unnamed
city in the US heartland next week, to explain to
the American people just why military force will
be necessary if diplomacy fails. Steve Hurst, CNN,
the state department.
Second hop:
For every possible pair of events, please infer the
relative temporal order (e.g., before, includes, si-
multaneous) between them based on the context.
Make a graph where the nodes are the events, and
the edges represent the temporal relation between
the events. Lastly, please output the graph using
DOT graph description language.
Conversation link:
https://chat.openai.com/share/
a7c8659d-4fbd-4cfa-b60c-b4066ac77ee9
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First hop:
Instructions: Analyse the given document. Extract
the main events. Store the events as a JSON list
by calling the save_events function.
Document: For The World, this is Pamela McCall
in the BBC news room in London. More heavy
gunfire in the Serbian province of Kosovo. It’s the
second day of an offensive by the security forces
against villages populated by ethnic Albanians.
BBC correspondent Karyn Coleman reports from
Kosovo. There were more accounts of people flee-
ing from the villages near where the offensive was
taking place. They were too afraid to stay, fearing
the forces may also move their operations further
afield. By mid afternoon, official Serb sources
were saying the operation was over, but that has
not yet been confirmed from Belgrade, the capi-
tal of Serbia, which is where the whole attack is
thought to have been planned. The ethnic Albani-
ans here in Kosovo are considerably worried about
the future and fear they are witnessing the begin-
nings of a much wider conflict. Karyn Coleman,
BBC news, Pristina.
Second hop:
For every possible pair of events, please infer the
relative temporal order (e.g., before, includes, si-
multaneous) between them based on the context.
Make a graph where the nodes are the events, and
the edges represent the temporal relation between
the events. Lastly, please output the graph using
DOT graph description language.
Conversation link:
https://chat.openai.com/share/
6bdeb237-247d-486f-91ba-146c3b4fd3b2

strict graph {
"Heavy gunfire in the Serbian province of
Kosovo." – "The second day of an offensive by
the security forces against villages populated by
ethnic Albanians" [rel=before];
"The second day of an offensive by the security
forces against villages populated by ethnic Alba-
nians" – "People fleeing from villages near the
offensive" [rel=before];
"The second day of an offensive by the security
forces against villages populated by ethnic Albani-
ans" – "Official Serb sources stating the operation
was over" [rel=before];
"Official Serb sources stating the operation was
over" – "Uncertainty regarding the operation’s sta-
tus in Belgrade" [rel=simultaneous];
"Uncertainty regarding the operation’s status in
Belgrade" – "Ethnic Albanians in Kosovo express-
ing worry about the future and fear of a wider
conflict" [rel=before];
}

Table A5: Example of ChatGPT promoting on the TBD data.
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