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Abstract

Recent works have demonstrated success in
controlling sentence attributes (e.g., sentiment)
and structure (e.g., syntactic structure) based
on the diffusion language model. A key com-
ponent that drives the impressive performance
for generating high-quality samples from noise
is iteratively denoise for thousands of steps.
While beneficial, the complexity of starting
from the noise and the learning steps has lim-
ited its implementation to many NLP real-
world applications. This paper proposes Lan-
guage Rectified Flow (LF). Our method is
based on the reformulation of the standard prob-
abilistic flow models. Language rectified flow
learns (neural) ordinary differential equation
models to transport between the source distri-
bution and the target distribution, hence provid-
ing a unified and effective solution to genera-
tive modeling and domain transfer. From the
source distribution, our language rectified flow
yields fast simulation and effectively decreases
the inference time. Experiments on three chal-
lenging fine-grained control tasks and multiple
high-quality text editing show that our method
consistently outperforms its baselines. Exten-
sive experiments and ablation studies demon-
strate that our method can be general, effective,
and beneficial for many NLP tasks.

1 Introduction

Traditional pretrained large-scale language mod-
els (LM) can generate high-quality text for spe-
cific real-world applications (Radford et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; Zhang
et al., 2022c, 2023). However, updating the LM
parameters or finding proper prompts for each con-
trol task can be expensive and unscalable given the
combinatorially many possible compositions and
the lack of supervised data.

Recent research thus has started to explore plug-
and-play solutions. With a pretrained language
model (LM), the plug-and-play approaches (Krause

et al., 2020; Kumar et al., 2021; Yang and Klein,
2021; Zhang et al., 2022a; Mireshghallah et al.,
2022) are served as the light-weight constrained
guidance to the targeted text sequence generations
(Dathathri et al., 2019). The approaches, however,
typically rely on search or optimization in the com-
plex text sequence space. The discrete nature of
text makes the search/optimization extremely diffi-
cult. Though some recent work introduces continu-
ous approximations to the discrete tokens (Kumar
et al., 2021; Qin et al., 2022), the high dimensional-
ity and complexity of the sequence space still ren-
der it inefficient to find accurate high quality text.
The most recent approach Diffusion LM (Li et al.,
2022) induces continuous latent representations,
which enables efficient gradient-based methods for
the controllable generation.

However, despite the advantage of Diffusion LM
for separating the distribution map learning from
a noise distribution to a meaningful shape distri-
bution, it always requires thousands of steps. The
transport trajectory learns from a noise distribution
to a meaningful shape the distribution. This is a ma-
jor efficiency bottleneck during inference since a
standard diffusion model requires thousands of gen-
eration steps and a proper SDE solver to produce
high-reconstruction and diverse text. In addition,
the existing denoising diffusion techniques requires
substantial hyper-parameter search in involved de-
sign space.

We propose language rectified flow, a surpris-
ingly simple approach to the transport mapping
problem, which unifiedly solves both generative
modeling and domain transfer. The language recti-
fied flow is an ordinary differential equation (ODE)
model that transports distribution source distri-
bution π0 to target distribution π1 by following
straight line paths as much as possible. The straight
paths are theoretically preferred because it is the
shortest path between two end points, and com-
putationally preferred because it can be precisely
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simulated without time discretization. Hence, flows
with straight paths bridge the gap between few-step
and continuous-time models. Specifically, we for-
mulate an ODE transport flow as the initial text
generator with a simpler trajectory compared with
the diffusion model formulated in SDE. Meanwhile,
we optimize the transport flow cost for the initial
flow model to significantly straighten the learning
trajectory while maintaining the model’s perfor-
mance. Further, a VAE is utilized to connect the
text sequence space and the flow latent space. This
can be used to produce the initial values in the
language flow for our controllable text generation.

To demonstrate control of language rectified
flow, we consider three control targets ranging from
span-anchored controls (e.g., length control and
infilling) to complex structures (e.g., parse trees).
Our LF can generate high-quality text, performing
favorably relative to the diffusion-based LM with a
27x faster sampling on the controllable text gener-
ation task. In addition to these individual control
tasks, we conduct experiments on three challeng-
ing settings, including sequential editing of text.
Results show that composing operators within our
method manage to generate or edit high-quality
text, substantially improving over respective base-
lines in terms of quality and efficiency. Further-
more, we provide extensive ablation studies on
different design choices for the proposed method,
including the evidence with different generation
steps, influence of the constrained optimization,
flow in the latent space. Our analysis shows that LF
contributes the performance improvement, helping
the sampling efficiency and generation. With little
modification, ours can be easily applied to other
NLP tasks for better controllable text generation.
Our contributions are summarized as follows:

• Present a language rectified flow for control-
lable text generation embracing domain trans-
fer and fast simulation with the ordinary dif-
ferential equation.

• Propose an efficient and effective way to train
the language rectified flow, which can op-
timize the trade-off between representation
learning and flow matching.

• Verify the effectiveness and general applica-
bility of the proposed method in various NLP
tasks, e.g., fine-grained text generation and
text editing benchmarks, and provide a rich
analysis of our method with various design
choices.

2 Method

We now introduce our method, Language Rectified
Flow (LF), the transport flow for the controlled lan-
guage generation. Generating text with transport
flow can be viewed as transporting from source
distributions to target distributions by following
a learned trajectory. Specifically, we suggest a
general recipe for the language rectified flow: 1)
construct the continuous latent space, 2) learn a
neural velocity flow network, construct an ODE
process in the latent space with the shortest trans-
port path, and utilize a neural network to fit this
process, 3) propose the lexicographic (lexico) op-
timization strategy for the joint learning. In this
section, we present in detail our proposed method,
LF (Algorithm 1).

2.1 Encoding and Latent Space
As the text input is discrete, encoding the language
as the latent vector serves as the higher-level and
differentiable sentence representations (Dai et al.,
2019; Li et al., 2020). Variational auto-encoders
(VAEs) (Kingma and Welling, 2013; Mai et al.,
2020) have been used to model text with a low-
dimensional continuous latent space with certain
regularities (Bowman et al., 2015). A VAE con-
nects the text sequence spaceX and the latent space
with an encoder q(z|x) that maps text x into latent
vector z, and a decoder p(x|z) that maps a z into
text. We learn text VAEs from scratch, optimiz-
ing the encoder and decoder parameters with the
following objective:

LVAE(h) = −Eq(z|x)[log p(x | z)]
+ KL

(
q(z | x)∥pprior (z)

)
,

(1)

where pprior(z) is a standard Gaussian distribution
as the prior, and KL(·∥·) is the Kullback-Leibler
divergence that pushes qenc to be close to the prior.
The first term encourages z to encode relevant in-
formation for reconstructing the observed text x,
while the second term adds regularity so that any
z ∼ pprior(z) can be decoded into high-quality text
in the text sequence space Z . Finally, VAE decoder
p(x|z) offers a way to map any given latent vector
z into the corresponding text sequence.

2.2 Probability Flows
A stochastic differential equation (SDE) charac-
terizes a diffusion process that maps real data to
random noise in continuous time t ∈ [0, T ]. Specif-
ically, let zt be the variable of the process following
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Figure 1: Overview of language rectified flow. Some notations are labeled along with corresponding components.

zt ∼ πt, indexed by time t. At start time t = 0,
z0 ∼ π0 which is the data distribution, and at the
end t = T , zT ∼ πT which is the noise distribution
(e.g., standard Gaussian). The reverse SDE instead
generates a real sample from the noise by working
backwards in time (from t = T to t = 0). This
diffusion process can be modeled as the SDE:

dzt = vθ (zt, t) dt+ gtdw, z0 ∼ π0, (2)

where gt is a scalar function known as the diffusion
coefficient of zt and SDE adds a stochastic term
w (the standard Wiener process (a.k.a., Brownian
motion)) in each update. The recent successful
diffusion models (Song et al., 2020; Ho et al., 2020)
can be understood as learning stochastic differential
equations (SDEs) (Anderson, 1982), and lots of
SDE techniques have been applied for developing
better models (Karras et al., 2022). In practice,
an SDE transport flow usually needs thousands of
steps to reach the target distribution. In this work,
instead of focusing on SDE, language rectified flow
aims to build ODE with a simple training objective
and fast sampling.

Our goal is to build a transport flow to push the
latent text input from the source distribution to the
target distribution. Specifically, given i.i.d. samples
D =

{
z(i)

}N

i=1
, we denote z0 as the data samples

from the source distribution π0 and z1 as the data
samples from the complex target distribution π1. A
probability flow can be effectively learned by train-
ing a velocity field vθ of an ordinary differential
equation (ODE), which is indexed by a continuous
time variable t ∈ [0, T ] as below:

dzt = vθ (zt, t) dt, z0 ∼ π0, (3)

where zt is the intermediate state representation
at time t and it serves as the linear interpolation
of z0 and z1. The velocity field vθ(zt, t) is a neu-
ral network parameterized by θ. The drift force
v : Rd → Rd is set to drive the flow to follow the

direction (z1 − z0) of the linear path pointing from
z0 to z1 at any given time t as much as possible.
To optimize the velocity, with t ∈ [0, 1], the flow
is followed the ODE process dxt = (z1 − z0)dt
by solving a least squares regression problem

as minθ
∫ 1
0 Ez∼D

[
∥(vθ(zt, t) − (z1 − z0)∥2

]
dt

with zt = tz1 + (1 − t)z0. During the training,
we discretize the above as

LFLOW = minθ Ez∼D,t∼[0,1]

[
∥(vθ(zt, t)− (z1 − z0)∥2

]
.

(4)

By fitting the drift vθ with z1 − z0, the language
flow causalizes the paths of linear interpolation
zt, yielding an ODE flow that can be simulated.
After we get v, we solve the ODE starting from
z0 ∼ π0 to transfer π0 to π1, backwardly starting
from z1 ∼ π1 to transfer π1 to π0. The forward
and backward sampling are equally favored by the
training algorithm, because the objective in Eqn (4)
is time-symmetric in that it yields the equivalent
problem if we exchange z0 and z1 and flip the sign
of v.

2.3 Efficiency with Language Rectified Flows
After the neural velocity field vθ is well-trained,
samples can be generated from the ODE to get z1
as draws from the target distribution π1 by discretiz-
ing the ODE process with Euler solver in Eqn (3)
into N steps,

z(k+1)/N ← zk/N +
1

N
vθ(zk/N , k/N), (5)

where the integer time step t̂ is defined as
t̂ ∈ {0, 1, · · · , N − 1}. k is defined as k ∈
{0, 1, . . . , N − 1}. Here z0 = z0/N is a random
sample from π0 and z1 = zN/N is the generated
data. The number of discretization steps, N , de-
termines the closeness of the simulated trajectory
Eqn (5) and the learned continuous ODE trajec-
tory. When N → ∞, the simulated trajectory
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Eqn (5) has approached the same endpoint as the
continuous one. Intuitively, the solver will be more
accurate with a larger N . The language ODE flow
follows straight line paths as much as possible.
Compared to SDE (e.g., diffusion language model
usually requires 1000 to 2000 steps), the straight
paths are preferred both theoretically because it is
the shortest path between two end points (Lipman
et al., 2022; Liu et al., 2022b, 2023a,b), and com-
putationally because it can be exactly simulated
without time discretization. In practice, it is often
found that an appropriate choice of N for existing
probability flow ODEs ranges from 10 to 20.

2.4 Constrained Optimization
Trade-off is a Problem. The encoder-decoder
network aims to encode and decode the represen-
tation of input text and the flow network aims to
transfer from the source distribution to the target
distribution. We consider this problem with a bi-
level optimization perspective: we want to identify
the ideal flow path within the optimized latent rep-
resentation of the input text. We solve the prob-
lem with a simple gradient descent-like approach
that iteratively updates the flow network and the
encoder-decoder network in a guaranteed fashion.
The key feature of our method is that it ensures to
optimize the reconstruction loss as a typical opti-
mization method while adding transfer from the
source distribution to the target distribution as an
extra constrained loss,

minLVAE s.t. LFLOW < Constraint, (6)

where LVAE refers to the reconstruction loss,
LFLOW is referred to the Eqn (4), and Constraint
is a constraint threshold. The linear combination
of multiple objectives is the most widely used ap-
proach. However, the coefficient of the combina-
tion requires manual tuning, and it is theoretically
unsuitable for non-convex functions. This work
considers constrained optimization on trading off
two objectives, with a special emphasis on lexico-
graphic (lexico) optimization.

Our Equation. To optimize the trade-off be-
tween flow optimization and representation con-
struction in Eqn (6), we use lexicographic opti-
mization, in which the parameters are iteratively
updated to obtain such a goal:

θs+1 ← θs−γs(∇LVAE

+ λs∇LFLOW (θs)), (7)

where γs ≥ 0 is an adaptive step size,
∇LFLOW and ∇LVAE are estimated by score
function, and the λs can be computed as λs =

max
(
ϕ(θt)−∇LVAE(θs)

⊤∇LFLOW(θs)

∥∇LFLOW(θs)∥2
, 0

)
. ϕ(θs)

equals to q(θs)−c and the c represents the minimal
loss and s is the number of optimization iterations.

The Proposed Algorithm. Our text flow with
sampling efficiency and lexico optimization is
shown in Algorithm 1. We iteratively update the
language rectified flow and the latent representa-
tion network in a single-loop manner. Overall, our
algorithm gives a ten-step text generation approach.
After these three training stages, one can sample a
language rectified flow in a few steps starting from
a source domain by following Eqn (5).

3 Experimental Settings

We evaluate our method on control tasks and text
editing tasks. Table 1 shows the experimental data
configuration.

3.1 Control Tasks and Evaluation Metrics

Dataset. We consider three control tasks shown
in Table 1: the first two tasks (parts-of-speech and
length) rely on the E2E dataset (Novikova et al.,
2017), and the last task (infill) is based on Abduc-
tive NLG dataset (Bhagavatula et al., 2019). For
E2E, the dataset provides information about restau-
rants and consists of more than 50K combinations
of dialogue-act-based meaning representations. Ab-
ductive NLG (aNLG) is a conditional generation
task for explaining given observations in natural
language. It is based on the ART (Bhagavatula
et al., 2019) that consists of over 20k commonsense
narrative contexts and 200k explanations.

Setting and Metrics. Following Li et al. (2022),
for each control task, we sample 200 control targets
from the validation splits, and we generate 50 sam-
ples for each control target. To evaluate the fluency
of the generated text, following the prior works
(Dathathri et al., 2019; Yang and Klein, 2021; Li
et al., 2022), we report the perplexity (PPL) of gen-
erated text. In prior works (Li et al., 2022), this
metric is named as fluency score. A lower perplex-
ity score indicates better sample quality.

We define success metrics (SR) for each control
task as follows: ❶ For Parts-of-speech, given a
sequence of parts-of-speech (POS) tags (e.g., Pro-
noun Verb Determiner Noun), generate a sequence
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Algorithm 1: Language Rectified Flow
1: Input: Source text x0 ∈ X0 and target text x1 ∈ X1. The initial velocity field vθ parameterized by θ.
2: Training Stage
3: for s iterations do
4: Randomly sample x0 ∼ X0 and x1 ∼ X1.
5: Encode the x0, x1 as latent vector z0 ∈ π0, z1 ∈ π1.
6: Train vθ follows the objective function Eqn (4) with t uniformly sampling from [0, 1].
7: Update θ with the lexicographic optimization in Eqn (7).
8: end for
9: Sample Stage

10: Given a x0 ∈ X0, encode it to z0 ∈ π0, transfer it to domain π1 using Eqn (5) and well-trained vθ . Then, decode it to
target text domain X1.

of words of the same length whose POS tags (un-
der an oracle POS tagger) match the target (e.g.,
I ate an apple). We quantify success via word-
level exact match. ❷ For length, given a target
length 10, · · · ,40, generate a sequence with a
length within ±2 of the target. ❸ For infilling,
given a left context (O1) and a right context (O2)
from the aNLG dataset, and the goal is to generate
a sentence that logically connects O1 and O2. For
evaluation, we report automatic metrics (BLEU
(Papineni et al., 2002), ROUGE (Lin and Hovy,
2003), and BertScore (Zhang et al., 2019)).

Baselines. For POS and length, we compare our
method with FT (Radford et al., 2019), FUDGE
(Yang and Klein, 2021), and Diffusion LM (DLM)
(Li et al., 2022). FT is a fine-tune GPT-2 on
text pairs, yielding an oracle conditional language
model (Li et al., 2022). FUDGE is controllable gen-
eration approach based on an autoregressive LM.
Diffusion LM is a diffusion based language model.
For infilling, three baseline methods are compared
including Delorean (Qin et al., 2020), Cold (Qin
et al., 2022), and Diffusion LM (Li et al., 2022).

3.2 Text Editing Task and Evaluation Metrics

Dataset. We evaluate in two domains, including
the Yelp review (Shen et al., 2017) preprocessed by
Li et al. (2018) and the Amazon comment corpus
(He and McAuley, 2016). For Yelp, each example
is a sentence from a business review on Yelp, and
is labeled as having either positive or negative sen-
timent. Amazon dataset is similar to Yelp. Each
example is a sentence from a product review on
Amazon, and is labeled as having either positive or
negative sentiment (He and McAuley, 2016).

Setting and Metrics. We conduct the sequen-
tial editing whose goal is to edit the given text
by changing an attribute each time and keep the
main content consistent. For example, we consider

Task Dataset Train Val Test

Control Task E2E 42.1K 4.7K 4.7K
Abductive NLG 256.6K 4.6K 9.2K

Text Editing Yelp 450K 4K 1K
Amazon 555K 2K 1K

Table 1: Dataset Configuration. The top block is for the
control task and the bottom block is for the text editing.

the input sentence as the source distribution with
negative sentiment and the goal is to transfer the
input sentence from the negative sentiment to posi-
tive sentiment. Generation accuracy is given by a
BERT classifier to evaluate the success rate (Zhang
et al., 2019). Perplexity (PPL) is calculated on
the corresponding domain to measure fluency. To
further evaluate the ability of content preservation,
we measure BLEU (Papineni et al., 2002) between
human-annotated ground truth and output. For each
case, we sample 100 examples to evaluate.

Baselines. Following the prior work (Liu et al.,
2022a), we compare with FUDGE (Yang and Klein,
2021) , Style Transformer (Dai et al., 2019), and La-
tentOps (Liu et al., 2022a) models to sequentially
edit the source sentences as a baseline of sequen-
tial editing. ① For FUDGE, it has a discriminator
that takes in a prefix sequence and predicts whether
the generated sequence would meet the conditions.
② Style transformer makes no assumption about
the latent representation of source sentence and
takes the proven self-attention network. The Trans-
former at here serves as a basic module to train a
style transfer system. ③ For LatentOps, following
Liu et al. (2022a), it permits plugging in attribute
classifiers applied on text latent vectors in the latent
space and utilize an ordinary differential equations
sampler to draw latent vector samples.

3.3 Implementation Details

Following the Li et al. (2022) and Ho et al. (2020),
for language flow, we set the generation time steps
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Model
Parts of Speech Length

SR ↑ PPL ↓ SR ↑ PPL ↓
FUDGE 27.0 7.96 46.9 3.11

FT 89.5 4.72 98.1 3.84

DLM 90.0 5.16 99.9 2.16

Ours 94.2 4.65 99.3 1.74

Infill

BLEU ↑ ROUGE-L ↑ BERTScore ↑
DELOREAN 1.6 19.1 41.7

COLD 1.8 19.5 42.7

DLM 7.1 28.3 89.0

Ours 8.2 32.7 92.1

Table 2: Comparison to models on Parts of Speech, Length, and Infill. ‘SR’ and ‘ PPL’ refer to the success metric
and the fluency of the generated text, in Section 3.1.

to be 10 and the sequence length to be 64. A U-
Net (Ho et al., 2020) backbone is utilized. We
use self-attention at the 32 feature map resolution
(Wang et al., 2018). All models have two convo-
lutional residual blocks per resolution level and
self-attention blocks at the 16 resolution between
the convolutional blocks (Chen et al., 2018). The
generation time t is specified by adding the Trans-
former sinusoidal position embedding into each
residual block. We train language flow using Adam
optimizer and a learning rate at 1× 10−5, dropout
of 0.1, batch size of 64, and the total number of
training iteration is 20K for control tasks, and 30K
for text editing tasks. For the details about the
latent space structures, we include the details in
Appendix A.

4 Experiments

We evaluate the performance of our language rec-
tified flow and learning framework in this section.
We bold the best result within each column block.
The results of our method are obtained with three
independent runs to determine the variance. See
Appendix A for full results with error bars.

4.1 Control Tasks Results
Table 2 reports our results on three control-oriented
text generation tasks. ➀ The top block displays the
performance of baselines and the LF on the parts
of speech and length, and the bottom block shows
the results of infill task. We report the results with
success metric (SR) and PPL. LF shows consistent
performance gains and better model generalization
on both complex controls task (Parts-of-speech)
and precise future planning tasks (Length) (e.g.,
90.0 → 94.2 on success rate, 5.16 → 4.65 on
fluency). ➁ Our language rectified flow continually
outperforms the baseline methods for infilling. Our
method achieves better performance in automatic
evaluation. These results suggest that LF can solve

many types of controllable generation tasks that
depend on generation order or lexical constraints
(such as infilling) without specialized training. ➂

Through these results, it further confirms that LF
can work as an effective method to be incorporated
into different-type models on the challenging fine-
grained text generations.

Generation Efficiency. We provide the running
time of generating 50 examples for the parts of
speech task. Experiments in this part are performed
on a single GPU during generation. The results of
our method are tested with three independent runs
and the average results are reported in Table 3. Our
language flow with the domain transfer flow and
straight through sampling is 26.7× faster than Dif-
fusion LM and 16.7× faster than FUDGE. It shows
that LF gives the best performance outperforming
plug-and-play LM (FUDGE) and Diffusion LM
(DLM), while keeping the lowest generation time.

Model FUDGE DLM Ours

Time (s) 50 80 3

Table 3: Results of the generation time for each method.
‘s’ represents the second.

4.2 Text Editing

We further show the experimental results on the text
editing in Table 4. We adopt several baselines from
the existing literature. Following Liu et al. (2022a),
we compare our method with FUDGE (Yang and
Klein, 2021), Style Transformer (Dai et al., 2019)
models, LatentOps (Liu et al., 2022a). In Table
4: ❶ We observe sizable gains over all baselines
with a clear margin (from LatentOps’ 24.1 to Ours
25.8). ❷ LF demonstrates the strong capability of
controllable editing during the training and allow-
ing the transport from the source distribution to
the target distribution. Thus, it comes to the best
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performance in most of the settings.

Model BLEU ↑ Accuracy ↑ PPL ↓
STrans (Dai et al., 2019) 25.6 0.89 41.4
FUDGE (Yang and Klein, 2021) 17.2 0.36 38.9
LatentOps (Liu et al., 2022a) 24.1 0.93 26.1
Ours 25.8 0.95 24.2
FUDGE (Yang and Klein, 2021) 35.3 0.25 50.2
LatentOps (Liu et al., 2022a) 28.7 0.77 44.8
Ours 39.9 0.86 40.1

Table 4: Comparison to models on Yelp (top) and Ama-
zon (bottom) dataset. Automatic evaluations (BLEU, ac-
curacy, and PPL) are reported for each model. ‘STrans’
represents style transformer.

5 Analysis
What is the influence of the constrained opti-
mization vs. manually tuning coefficient? Here
we verify whether the constrained optimization in
LF is better than the manually tuning strategies.
With the designed trade-off, LF targets optimizing
between the flow and representation construction.
Instead of automatically searching the trade-off be-
tween the the flow optimization and representation
construction, we manually set a constant λ in Eqn
(7) as 0.1, 1.0, 2.0. ❶ Table 5 shows that the con-
strained optimization of our method brings clear
benefits. ❷ We find that without CO, ‘− CO’ with
different manually tuned λ value shows an trade-
off between the BLEU, ROUGE, and BERTScore
across all λ values, indicating that manually tuned
λ value can not bring the optimized flow and rep-
resentation together. It demonstrates the necessity
and effectiveness of the constrained optimization
for the switchable candidate set in LF structure. We
also study the impact of jointly training VAE and
Unet vs. separately training them. More results are
included in the Appendix A.

Infill
BLEU ↑ ROUGE-L ↑ BERTScore ↑

DLM 7.1 28.3 89.0
Ours 8.2 32.7 92.1
- CO, λ = 0.1 7.5 29.8 90.5
- CO, λ = 1.0 6.5 28.8 88.3
- CO, λ = 2.0 7.8 30.6 90.8

Table 5: Comparison of different λ values for the manu-
ally tuned trade-off between the flow and the represen-
tation vs. Ours. ‘CO’ denotes constrained optimization.

Ablations on the components of language rec-
tified flow. Our language rectified flow focuses
on latent diffusion. The latent space is constructed
by VAE. Thereforce, the purpose of the latent flow
is to learn the transport from the Gaussian distri-
bution to the Gaussian distribution. Under this
setting, UNet (Ho et al., 2020) and transformer

(Vaswani et al., 2017) are two eligible consider-
ations. Following the diffusion language model
hyperparameter and code base (Liu et al., 2022a),
we obtain the below result (Table 6) for the VAE
+ UNet (V+U) vs. VAE + transformer (V+T) on
the infill task for our language rectified flow. It
is clear that our LF can effectively utilizes VAE +
UNet or VAE + transformer to achieve comparable
performance. It indicates our method is insensi-
tive to different learning structures. This confirms
our discussion in Section 2 that LF can serve as an
efficient probability flow for language generations.

Model BLEU ↑ ROUGE-L ↑ BERTScore ↑
V+T 7.9 32.9 92.0
V+U 8.2 32.7 92.1

Table 6: Results of the impact of the latent flow with
different model structures on the infill task.

Studies on the role of latent LF. We conduct
the ablation study to exam the role of latent LF
in the latent space. With the designed flow trans-
port, LF targets the fine-grained text generation.
We compare LF with and w/o latent LF settings.
W/o latent LF here represents mapping the sen-
tence in one domain to the latent space and directly
mapping this latent code into a sentence in another
domain without transporting by LF. As shown in
Table 7, the w/o latent LF strategy can not generate
the high quality text while LF yields better results
with a clear margin. It demonstrates the necessity
and effectiveness of incorporating the flow with
the domain transfer and faster sampling for text
generation in LF structure, and a possible reason is
that it is too hard to optimize the discrete space.

Model BLEU ↑ ROUGE-L ↑ BERTScore ↑
W/o Latent Flow 2.1 20.5 45.8
Ours (w. latent Flow) 8.2 32.7 92.1

Table 7: Ablation of the impact of without the latent
flow on the infilling controllable text generation.

More evidence for faster simulations with dif-
ferent generation steps. As discussed in Section
2.3, the propose language flow demonstrate the
faster sampling with very few generation steps. In
Section 3.3, we consolidate the generation steps
as ten by default. We select multiple generation
steps and study LF’s abilities in text generation
with different schedule. We follow the same train-
ing settings in Section 3 and present the results in
Figure 2. We notice that for our case the differ-
ence between different generation steps is small.
Our method already converges well with just ten
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steps. The sample quality is further improved with
additional update steps.

Figure 2: Results of the study on different generation
steps for ours on the infill text generation.

Qualitative Analysis. We provide some gener-
ated examples in Table 8 to raise a more direct
comparison. More examples are included in Ap-
pendix. Consistent with the quantitative results, it
is difficult for FUDGE to control all the desired
length while generate the the semantic informative
sentence successfully. For example, the sentence’s
length of FUDGE is 13. Although Diffusion LM
generate the informative sentence, it does not come
with the perfect length as our target is 12 and the
length of the generated sentence is 11. However,
ours is inclined to generate the informative and
meaningful sentences with the perfect the length.
In conclusion, there seem be a trade-off informa-
tive and the length. It can be handled well by ours,
but for the baselines, they either lose informative
or the accurate length.

Model Length: 12
FUDGE The Phoenix is an average Japanese restaurant that is in the City Centre. (13)
Diffusion LM The Twenty Two serves Chinese food and is not family friendly. (11)
LF The sky glowed with a vibrant sunset, painting nature’s masterpiece across the horizon. (12)

Table 8: Qualitative output of the length control tasks,
where all the generated texts tried to match the target
length exactly. We mark the length at the end of the
sentences.

6 Related Work

Probabilistic Generative Models for Text Prob-
abilistic models for text have shown promising
performance improvements. Previous methods
(Mueller et al., 2017; Liu et al., 2020; Fan et al.,
2020, 2021) utilize the probabilistic variational
auto encoders to encode the input sequence into
the latent space and use networks for the jointly
training. Mai et al. (2020) proposes to train an ad-
ditional MLP in the latent space of an auto-encoder.
Because of the recent success of diffusion mod-
els, Diffusion LM (Li et al., 2022) and LDEBM
(Yu et al., 2022) utilize the diffusion process in the
latent space for text generation. For controllable
text generation, Yang and Klein (2021) learns an

attribute predictor operating on a partial sequence.
and (Xue et al., 2023) uses parameter-efficient tun-
ing (e.g., prompting tuning and low-rank adapta-
tion) to optimize control tokens for LLLM such
as GPT and then fine-tune models for controllable
generations. Our language rectified flow focuses
on the domain transfer by utilizing the ordinary
differential equation (ODE) for the faster sampling,
and we regard combining multiple constraints as a
promising future direction. Our approach is built
on the reformulation of the probabilistic flow. Sim-
ilar to Mai et al. (2020), we build up a flow in the
latent space constructed by an auto-encoder, and
further transports the text input from the source
distribution to the target distribution for the fine-
grained and high-quality text generation.

Comparisons of Diffusion Flow and Flow-based
Models. Existing flow-based text generation
models are normalizing flow-based methods (Ma
et al., 2019; Ding and Gimpel, 2021; Tang et al.,
2021). Normalizing flows often require explicit,
invertible transformations, often resulting in trian-
gular or diagonal Jacobian matrices to ensure effi-
cient computation of determinants. Thus, it needs
careful design to ensure invertibility and tractable
Jacobians making it hard to train. It requires de-
signing an invertible layer in the neural network.
Our language flow is also an ODE / SDE probabil-
ity flow (Song et al., 2021; Lipman et al., 2022).
It has more flexibility to choose the model struc-
tures, such as the latest Unet or Transformer in our
work. It is usually easy to train as we model the
trajectory from the source distribution to the target
distribution. Therefore our language flow has no
constraints on both architecture and invertibility. In
addition, LF and diffusion models can be viewed
as members of the probability flow family.

7 Conclusion

Our work demonstrates the benefits of introduc-
ing the language rectified flow. The proposed flow
can learn the neural ordinary differential equation
model to transport between the source distribution
and the target distribution, providing the unified
and effective solution to generative modeling and
domain transfer. Our LF produces the fine-grained
and high quality controllable text with fast sim-
ulation. The proposed strategy shows noticeable
gains in performance across controllable text gen-
eration (parts-of speech, length and infill) and text
editing (Yelp and Amazon). We further conduct
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the detailed study with the LF in different settings,
e.g., comparing between constrained optimization
vs. manually tuning coefficient, providing more
evidence for faster simulation with different gen-
eration steps, and verifying the impact of different
components. To summarize, the flow method is
effective and general, with the potential to be in-
corporated into existing models for various NLP
tasks.
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2013. How to construct
deep recurrent neural networks. arXiv preprint
arXiv:1312.6026.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. arXiv
preprint arXiv:2010.05906.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and
Yejin Choi. 2022. Cold decoding: Energy-based
constrained text generation with langevin dynamics.
arXiv preprint arXiv:2202.11705.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10684–10695.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, pages
234–241. Springer.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. Advances in neural information
processing systems, 30.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon.
2021. Solving inverse problems in medical imaging
with score-based generative models. arXiv preprint
arXiv:2111.08005.

3902



Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole.
2020. Score-based generative modeling through
stochastic differential equations. arXiv preprint
arXiv:2011.13456.

Zineng Tang, Shiyue Zhang, Hyounghun Kim, and Mo-
hit Bansal. 2021. Continuous language generative
flow. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4609–4622.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He. 2018. Non-local neural networks. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7794–7803.

Tianci Xue, Ziqi Wang, and Heng Ji. 2023. Parameter-
efficient tuning helps language model alignment.
arXiv preprint arXiv:2310.00819.

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. arXiv
preprint arXiv:2104.05218.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia,
Bo Pang, Ruigi Gao, Yixin Zhu, Song-Chun Zhu,
and Ying Nian Wu. 2022. Latent diffusion energy-
based model for interpretable text modeling. arXiv
preprint arXiv:2206.05895.

Shujian Zhang, Chengyue Gong, and Eunsol Choi.
2021a. Knowing more about questions can help:
Improving calibration in question answering. arXiv
preprint arXiv:2106.01494.

Shujian Zhang, Chengyue Gong, and Eunsol Choi.
2021b. Learning with different amounts of anno-
tation: From zero to many labels. arXiv preprint
arXiv:2109.04408.

Shujian Zhang, Chengyue Gong, and Xingchao Liu.
2022a. Passage-mask: A learnable regularization
strategy for retriever-reader models. arXiv preprint
arXiv:2211.00915.

Shujian Zhang, Chengyue Gong, Xingchao Liu,
Pengcheng He, Weizhu Chen, and Mingyuan Zhou.
2022b. Allsh: Active learning guided by lo-
cal sensitivity and hardness. arXiv preprint
arXiv:2205.04980.

Shujian Zhang, Chengyue Gong, Lemeng Wu,
Xingchao Liu, and Mingyuan Zhou. 2023. Automl-
gpt: Automatic machine learning with gpt. arXiv
preprint arXiv:2305.02499.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022c. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

3903



A Experimental details

A.1 Full Results With Error Bar

We report the full results of our method with the
error bar for control tasks and text editing tasks in
Table 9 and 10, respectively.

Model
Parts of Speech Length

SR ↑ PPL ↓ SR ↑ PPL ↓
FUDGE 27.0 7.96 46.9 3.11
FT 89.5 4.72 98.1 3.84
DLM 90.0 5.16 99.9 2.16
Ours 94.2±0.4 4.65±0.1 99.3±0.2 1.74±0.2

Infill
BLEU ↑ ROUGE-L ↑ BERTScore ↑

DELOREAN 1.6 19.1 41.7
COLD 1.8 19.5 42.7
DLM 7.1 28.3 89.0
Ours 8.2±0.3 32.7±0.4 92.1±0.2

Table 9: Comparison to models on Parts of Speech,
Length, and Infill. ‘SR’ and ‘ PPL’ refer to the success
metric and the fluency of the generated text, in Section
3.1.

Model BLEU ↑ Accuracy ↑ PPL ↓
STrans (Dai et al., 2019) 25.6 0.89 41.4
FUDGE (Yang and Klein, 2021) 17.2 0.36 38.9
LatentOps (Liu et al., 2022a) 24.1 0.93 26.1
Ours 25.8±0.2 0.95±0.1 24.2±0.3
FUDGE (Yang and Klein, 2021) 35.3 0.25 50.2
LatentOps (Liu et al., 2022a) 28.7 0.77 44.8
Ours 39.9±0.5 0.86±0.05 40.1±0.3

Table 10: Comparison to models on Yelp (top) and Ama-
zon (bottom) dataset. Automatic evaluations (BLEU, ac-
curacy, and PPL) are reported for each model. ‘STrans’
represents style transformer.

A.2 Experimental Datasets

For parts-of-speech and length in control tasks, we
rely on the E2E dataset (Novikova et al., 2017).
The infill task is based on Abductive NLG dataset
(Bhagavatula et al., 2019). For text editing tasks,
we utilize the Yelp review (Shen et al., 2017)
and Amazon comment corpus (He and McAuley,
2016).

E2E dataset (Novikova et al., 2017) was assem-
bled using the CrowdFlower platform and under-
went quality control according to Novikova et al.
(2017). This dataset contains information about
restaurants and comprises over 50k combinations
of dialogue-act-based MRs with an average of 8.1
references each. The dataset is divided into train-
ing, validation, and testing sets (at a 76.5-8.5-15
ratio), maintaining a similar distribution of MR
and reference text lengths, and ensuring that MRs

in different sets are unique. Each MR features 3-
8 attributes (slots), such as name, food, or area,
along with their corresponding values. In line with
Novikova et al. (2017), the E2E data was collected
using images as stimuli, which were found to pro-
duce significantly more natural, informative, and
well-phrased human references than textual MRs.
Abductive NLG (aNLG) is a task focused on gen-
erating natural language explanations for given ob-
servations. It is built on the ART dataset (Bhaga-
vatula et al., 2019), which contains more than 20k
commonsense narrative contexts and 200k explana-
tions. The training set comprises both plausible and
implausible hypotheses gathered through crowd-
sourcing. In contrast, the development and test sets
include hypotheses chosen using the Adversarial
Filtering algorithm. Yelp review dataset is sourced
from the 2018 Yelp Challenge, which focuses on lo-
cal businesses such as restaurants and bars, treating
them as items. To maintain data quality, the same
10-core setting is employed. The preprocessed Yelp
review data utilized in this study is provided by Li
et al. (2018). The Amazon dataset shares similari-
ties with Yelp. Each example consists of a sentence
from an Amazon product review and is labeled
as expressing either positive or negative sentiment
(He and McAuley, 2016).

A.3 Experimental Settings

We use a U-Net (Ho et al., 2020) backbone sim-
ilar to an unmasked PixelCNN++ (Ronneberger
et al., 2015). We set gradient clipping to 1.0. For
control tasks, the fine-tune GPT-2 (Radford et al.,
2019; Zhang et al., 2022b) on (control, text) pair.
We report the sampling (with temperature 1.0) of
the fine-tuned models denoted as FT. For FUDGE
(Yang and Klein, 2021), it incorporates a discrim-
inator that examines a prefix sequence and antici-
pates whether the generated sequence will comply
with the conditions. It can steer text generation
by adjusting the probabilities of the pretrained lan-
guage model based on the discriminator’s output.
Following Li et al. (2022), we adopt FUDGE’s
architecture, training a discriminator for each at-
tribute. A three-layer LSTM followed by a Lin-
ear layer is served as the discriminator. For the
latent space encoder and decoder, we employ an
RNN encoder–decoder setup, as suggested by Cho
et al. (2014); Bahdanau et al. (2014). The RNN
Encoder–Decoder used in our experiment contains
1K hidden units, featuring the proposed gates in
both the encoder and decoder.
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The encoder of the our latent construction com-
prises forward and backward RNNs, each with 1K
hidden units. The decoder also contains 1K hidden
units. In both instances, we utilize a multilayer
network with a single maxout hidden layer, as per
Goodfellow et al. (2013), to calculate the condi-
tional probability of each target word, following
the method outlined by Pascanu et al. (2013). We
have implemented the GRU as the activation func-
tion, as suggested by Dey and Salem (2017). At-
tention is integrated into the decoder, allowing it to
determine the sections of the source sentence that
should be focused on, in accordance with Bahdanau
et al. (2014). We maintain the same optimizer and
learning rate in this setup. The language rectified
flow experiments are carried out in an end-to-end
fashion, as described by Rombach et al. (2022).

For the latent space encoder and decoder,
we train an RNN encoder–decoder (Cho et al.,
2014; Bahdanau et al., 2014). The RNN En-
coder–Decoder used in the experiment had 1K hid-
den units with the proposed gates at the encoder
and at the decoder. The encoder of the RNN con-
sists of forward and backward recurrent neural net-
works (RNN) each having 1K hidden units. Its
decoder has 1K hidden units. In both cases, we use
a multilayer network with a single maxout (Good-
fellow et al., 2013) hidden layer to compute the
conditional probability of each target word (Pas-
canu et al., 2013). The GRU (Dey and Salem, 2017)
is implemented as the activation function. The at-
tention is incorporated in the decoder. The decoder
decides parts of the source sentence to pay attention
to (Bahdanau et al., 2014). We use the same opti-
mizer and learning rate here. The language flow
experiments are conducted in an end-to-end man-
ner (Zhang et al., 2021a,b; Rombach et al., 2022).
More detailed experimental settings are included
in Appendix A.

A.4 Jointly Train vs. Separately Train.

Training the language rectified flow and VAE sep-
arately requires more training time. In Table 11,
We obtain the below result for the infill task. It is
clear that our LF effectively utilizes constrained
optimization to achieve slightly better performance
while still maintaining the lower training cost (train-
ing iterations). From experimental results, we can
successfully train them together, and we hypoth-
esize that our VAE is easier to train under these
settings.

Model BLEU ↑ ROUGE-L ↑ BERTScore ↑ Number of Training iterations ↓
Separately 7.9 32.5 92.2 VAE: 10K + LF 20K
Ours 8.2 32.7 92.1 20K

Table 11: Reported results of Training LF and VAE.

A.5 More Qualitative Examples
We provide some generated examples in Table 12 to
raise a more direct comparison. Aligned with prior
quantitative findings, there appears to be a trade-off
between informativeness and sentence length. Our
model manages this well, but the baseline models
tend to sacrifice either informativeness or precise
length.

Model Length: 6
FUDGE Climate change affects global weather patterns. (6)
FUDGE Recent virtual reality technology is advancing rapidly. (7)
FUDGE Blockchain is revolutionizing financial systems. (5)
Diffusion LM Artificial intelligence transforms modern healthcare. (5)
Diffusion LM Plant-based diets gain popularity worldwide. (6)
Diffusion LM Remote work reshapes traditional office culture. (6)
LF Technology enhances learning experiences in schools. (6)
LF The global economy navigates unprecedented challenges. (6)
LF Sustainability remains crucial in modern architecture. (6)

Table 12: More qualitative output of the length control
tasks, where all the generated texts try to match the
target length exactly. We mark the length at the end of
the sentences.
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