@inproceedings{agrawal-etal-2024-knowledge,
title = "Can Knowledge Graphs Reduce Hallucinations in {LLM}s? : A Survey",
author = "Agrawal, Garima and
Kumarage, Tharindu and
Alghamdi, Zeyad and
Liu, Huan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.219",
doi = "10.18653/v1/2024.naacl-long.219",
pages = "3947--3960",
abstract = "The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agrawal-etal-2024-knowledge">
<titleInfo>
<title>Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garima</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Kumarage</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyad</namePart>
<namePart type="family">Alghamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.</abstract>
<identifier type="citekey">agrawal-etal-2024-knowledge</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.219</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.219</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>3947</start>
<end>3960</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
%A Agrawal, Garima
%A Kumarage, Tharindu
%A Alghamdi, Zeyad
%A Liu, Huan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F agrawal-etal-2024-knowledge
%X The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.
%R 10.18653/v1/2024.naacl-long.219
%U https://aclanthology.org/2024.naacl-long.219
%U https://doi.org/10.18653/v1/2024.naacl-long.219
%P 3947-3960
Markdown (Informal)
[Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey](https://aclanthology.org/2024.naacl-long.219) (Agrawal et al., NAACL 2024)
ACL
- Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, and Huan Liu. 2024. Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 3947–3960, Mexico City, Mexico. Association for Computational Linguistics.