@inproceedings{chen-etal-2024-htccn,
title = "{HTCCN}: Temporal Causal Convolutional Networks with {H}awkes Process for Extrapolation Reasoning in Temporal Knowledge Graphs",
author = "Chen, Tingxuan and
Long, Jun and
Yang, Liu and
Wang, Zidong and
Wang, Yongheng and
Jin, Xiongnan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.225",
doi = "10.18653/v1/2024.naacl-long.225",
pages = "4056--4066",
abstract = "Temporal knowledge graphs (TKGs) serve as powerful tools for storing and modeling dynamic facts, holding immense potential in anticipating future facts. Since future facts are inherently unknowable, effectively modeling the intricate temporal structure of historical facts becomes paramount for accurate prediction. However, current models often rely heavily on fact recurrence or periodicity, leading to information loss due to prolonged evolutionary processes. Notably, the occurrence of one fact always influences the likelihood of another. To this end, we propose HTCCN, a novel Hawkes process-based temporal causal convolutional network designed for temporal reasoning under extrapolation settings. HTCCN employs a temporal causal convolutional network to model the historical interdependence of facts and leverages Hawkes to model link formation processes inductively in TKGs. Importantly, HTCCN introduces dual-level dynamics to comprehensively capture the temporal evolution of facts. Rigorous experimentation on four real-world datasets underscores the superior performance of HTCCN.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-htccn">
<titleInfo>
<title>HTCCN: Temporal Causal Convolutional Networks with Hawkes Process for Extrapolation Reasoning in Temporal Knowledge Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tingxuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zidong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiongnan</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Temporal knowledge graphs (TKGs) serve as powerful tools for storing and modeling dynamic facts, holding immense potential in anticipating future facts. Since future facts are inherently unknowable, effectively modeling the intricate temporal structure of historical facts becomes paramount for accurate prediction. However, current models often rely heavily on fact recurrence or periodicity, leading to information loss due to prolonged evolutionary processes. Notably, the occurrence of one fact always influences the likelihood of another. To this end, we propose HTCCN, a novel Hawkes process-based temporal causal convolutional network designed for temporal reasoning under extrapolation settings. HTCCN employs a temporal causal convolutional network to model the historical interdependence of facts and leverages Hawkes to model link formation processes inductively in TKGs. Importantly, HTCCN introduces dual-level dynamics to comprehensively capture the temporal evolution of facts. Rigorous experimentation on four real-world datasets underscores the superior performance of HTCCN.</abstract>
<identifier type="citekey">chen-etal-2024-htccn</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.225</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.225</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4056</start>
<end>4066</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HTCCN: Temporal Causal Convolutional Networks with Hawkes Process for Extrapolation Reasoning in Temporal Knowledge Graphs
%A Chen, Tingxuan
%A Long, Jun
%A Yang, Liu
%A Wang, Zidong
%A Wang, Yongheng
%A Jin, Xiongnan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F chen-etal-2024-htccn
%X Temporal knowledge graphs (TKGs) serve as powerful tools for storing and modeling dynamic facts, holding immense potential in anticipating future facts. Since future facts are inherently unknowable, effectively modeling the intricate temporal structure of historical facts becomes paramount for accurate prediction. However, current models often rely heavily on fact recurrence or periodicity, leading to information loss due to prolonged evolutionary processes. Notably, the occurrence of one fact always influences the likelihood of another. To this end, we propose HTCCN, a novel Hawkes process-based temporal causal convolutional network designed for temporal reasoning under extrapolation settings. HTCCN employs a temporal causal convolutional network to model the historical interdependence of facts and leverages Hawkes to model link formation processes inductively in TKGs. Importantly, HTCCN introduces dual-level dynamics to comprehensively capture the temporal evolution of facts. Rigorous experimentation on four real-world datasets underscores the superior performance of HTCCN.
%R 10.18653/v1/2024.naacl-long.225
%U https://aclanthology.org/2024.naacl-long.225
%U https://doi.org/10.18653/v1/2024.naacl-long.225
%P 4056-4066
Markdown (Informal)
[HTCCN: Temporal Causal Convolutional Networks with Hawkes Process for Extrapolation Reasoning in Temporal Knowledge Graphs](https://aclanthology.org/2024.naacl-long.225) (Chen et al., NAACL 2024)
ACL