@inproceedings{hou-etal-2024-semstamp,
title = "{S}em{S}tamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation",
author = "Hou, Abe and
Zhang, Jingyu and
He, Tianxing and
Wang, Yichen and
Chuang, Yung-Sung and
Wang, Hongwei and
Shen, Lingfeng and
Van Durme, Benjamin and
Khashabi, Daniel and
Tsvetkov, Yulia",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.226",
doi = "10.18653/v1/2024.naacl-long.226",
pages = "4067--4082",
abstract = "Existing watermarked generation algorithms employ token-level designs and therefore, are vulnerable to paraphrase attacks. To address this issue, we introduce watermarking on the semantic representation of sentences. We propose SemStamp, a robust sentence-level semantic watermarking algorithm that uses locality-sensitive hashing (LSH) to partition the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by a language model, and conducts rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. To test the paraphrastic robustness of watermarking algorithms, we propose a {``}bigram paraphrase{''} attack that produces paraphrases with small bigram overlap with the original sentence. This attack is shown to be effective against existing token-level watermark algorithms, while posing only minor degradations to SemStamp. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on various paraphrasers and domains, but also better at preserving the quality of generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hou-etal-2024-semstamp">
<titleInfo>
<title>SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abe</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianxing</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yung-Sung</namePart>
<namePart type="family">Chuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongwei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingfeng</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Khashabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing watermarked generation algorithms employ token-level designs and therefore, are vulnerable to paraphrase attacks. To address this issue, we introduce watermarking on the semantic representation of sentences. We propose SemStamp, a robust sentence-level semantic watermarking algorithm that uses locality-sensitive hashing (LSH) to partition the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by a language model, and conducts rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. To test the paraphrastic robustness of watermarking algorithms, we propose a “bigram paraphrase” attack that produces paraphrases with small bigram overlap with the original sentence. This attack is shown to be effective against existing token-level watermark algorithms, while posing only minor degradations to SemStamp. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on various paraphrasers and domains, but also better at preserving the quality of generation.</abstract>
<identifier type="citekey">hou-etal-2024-semstamp</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.226</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.226</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4067</start>
<end>4082</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation
%A Hou, Abe
%A Zhang, Jingyu
%A He, Tianxing
%A Wang, Yichen
%A Chuang, Yung-Sung
%A Wang, Hongwei
%A Shen, Lingfeng
%A Van Durme, Benjamin
%A Khashabi, Daniel
%A Tsvetkov, Yulia
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F hou-etal-2024-semstamp
%X Existing watermarked generation algorithms employ token-level designs and therefore, are vulnerable to paraphrase attacks. To address this issue, we introduce watermarking on the semantic representation of sentences. We propose SemStamp, a robust sentence-level semantic watermarking algorithm that uses locality-sensitive hashing (LSH) to partition the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by a language model, and conducts rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. To test the paraphrastic robustness of watermarking algorithms, we propose a “bigram paraphrase” attack that produces paraphrases with small bigram overlap with the original sentence. This attack is shown to be effective against existing token-level watermark algorithms, while posing only minor degradations to SemStamp. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on various paraphrasers and domains, but also better at preserving the quality of generation.
%R 10.18653/v1/2024.naacl-long.226
%U https://aclanthology.org/2024.naacl-long.226
%U https://doi.org/10.18653/v1/2024.naacl-long.226
%P 4067-4082
Markdown (Informal)
[SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation](https://aclanthology.org/2024.naacl-long.226) (Hou et al., NAACL 2024)
ACL
- Abe Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang, Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. 2024. SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 4067–4082, Mexico City, Mexico. Association for Computational Linguistics.