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Abstract
Large multimodal models suffer from multi-
modal hallucination, where they provide in-
correct responses misaligned with the given
visual information. Recent works have con-
jectured that one of the reasons behind mul-
timodal hallucination is due to the vision en-
coder failing to ground on the image properly.
To mitigate this issue, we propose a novel ap-
proach that leverages self-feedback as visual
cues. Building on this approach, we intro-
duce VOLCANO, a multimodal self-feedback
guided revision model. VOLCANO generates
natural language feedback to its initial response
based on the provided visual information and
utilizes this feedback to self-revise its initial
response. VOLCANO effectively reduces multi-
modal hallucination and achieves state-of-the-
art on MMHal-Bench, POPE, and GAVIE. It
also improves on general multimodal abilities
and outperforms previous models on MM-Vet
and MMBench. Through qualitative analysis,
we show that VOLCANO’s feedback is properly
grounded on the image than the initial response.
This indicates that VOLCANO can provide itself
with richer visual information through feedback
generation, leading to self-correct hallucina-
tions. We publicly release our model, data, and
code at github.com/kaistAI/Volcano.

1 Introduction

Recent large multimodal models (LMMs) use
substantial image-text or video-text pairs to help
instruct-tuned large language models (LLMs) com-
prehend visual features produced by vision en-
coders (Alayrac et al., 2022; Liu et al., 2023b,c;
Chen et al., 2023; Peng et al., 2023; Dai et al.,
2023; Zhu et al., 2023; Ye et al., 2023a; Li et al.,
2023a; Zhang et al., 2023b; Su et al., 2023; Maaz
et al., 2023). With the introduction of fine-tuning
methods such as visual instruction tuning (Liu et al.,
2023b,c), LMMs are now evolving into assistants
capable of understanding the world through multi-
ple channels, akin to humans.

LATECA DE L'AVIA

Who is sitting on the bench?

A person is sitting on the bench.
C r i t i q u e

Generate the feedback given initial answer
referring to question and image.

This response is incorrect because there is no person
in the given image. Therefore, the answer should be modified

to say that no one is sitting on the bench in the image.

Rev ise

Adjust the initial response considering the feedback and image.

No one is sitting on the bench in the image.
Dec ide

Who is sitting on the bench?
A. A person is sitting on the bench.
B. No one is sitting on the bench in the image.
Answer with the option's letter from the given choices directly.

B.

No one is sitting on the bench in the image.

Figure 1: Overview of VOLCANO. This example il-
lustrates the process undertaken by VOLCANO for a
question in the MMHal-Bench dataset. Before giving
the response, VOLCANO goes through a critique-revise-
decide process. It critiques its initial response with nat-
ural language feedback, revises the response based on
the feedback, and decides whether to accept the revised
answer.

Despite the impressive performance observed on
various benchmark tasks and qualitative outcomes,
these models grapple with an issue called multi-
modal hallucination, where they produce responses
that do not align with the visual information given
in the question. Recent work (Zhai et al., 2023)
demonstrates that multimodal hallucinations can
occur when the vision encoder fails to ground im-
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ages accurately. In other words, LMMs tend to
rely more on their parametric knowledge than on
provided visual features, causing them to guess and
generate hallucinations. Wang et al. (2023b) em-
pirically shows that models attend to the previous
tokens more than image features as they generate
tokens misaligned with the given image.

In this paper, we propose a novel method that
utilizes natural language feedback to enable the
model to correct hallucinated responses by provid-
ing detailed visual information. Building on this
method, we introduce VOLCANO1, a multimodal
self-feedback guided revision model. VOLCANO is
trained to first generate an initial response based on
the given image and question, then sequentially re-
vises the response until it determines that no more
improvement is required. We collect our training
data for multimodal feedback and revision using
proprietary LLMs.

To verify the efficacy of VOLCANO in reducing
multimodal hallucination, we evaluate its perfor-
mance on multimodal hallucination benchmarks
(Sun et al., 2023; Li et al., 2023d; Liu et al., 2023a).
Results demonstrate consistent performance im-
provements across all benchmarks. Notably, when
compared to previous methods specialized in miti-
gating multimodal hallucination (Zhou et al., 2023;
Sun et al., 2023; Yin et al., 2023), VOLCANO show-
cases a 24.9% enhancement, underscoring its effec-
tiveness in addressing the challenge. Further, on
multimodal understanding benchmarks (Liu et al.,
2023e; Yu et al., 2023), it is also shown effective in
understanding and reasoning about visual concepts.

Through qualitative analysis, we find that the
generated feedback attends to the image with
higher intensity and higher coverage of features
in the image. These findings explain that feedback
carries fine-grained visual information. Even if
the vision encoder fails to properly ground, the
feedback can still guide the LLM to improve upon
the hallucinated response, supporting the role of
feedback in our proposed method.

Our contributions are summarized as follows:

1. We introduce VOLCANO, a self-feedback
guided revision model that effectively miti-
gates multimodal hallucination. It achieves
state-of-the-art performance on multimodal
hallucination benchmarks and multimodal un-
derstanding benchmarks.

1We call our model VOLCANO because it frequently erupts
LLaVA

2. Our qualitative analysis shows that VOL-
CANO’s feedback is rooted in the image, con-
veying rich visual details. This illustrates that
feedback can offer guidance to reduce mul-
timodal hallucination, even if the vision en-
coder imprecisely encodes the image and the
model misinterprets the image initially.

3. We open-source VOLCANO (7B & 13B), along
with data and code for training and inference.

2 Related work

2.1 Multimodal hallucination

Unlike language hallucination, where fabrication of
unverifiable information is common (Ji et al., 2023;
Zhang et al., 2023c; Li et al., 2023c), multimodal
hallucination typically involves verifiable informa-
tion misaligned with the input visual content. This
phenomenon has been predominantly explored in
the context of object hallucination, where gener-
ated content includes objects that are inconsistent
with or absent from the target image (Rohrbach
et al., 2018; Biten et al., 2022; Li et al., 2023d; Liu
et al., 2023a; Zhai et al., 2023). More complex
forms of multimodal hallucination, such as holistic
misrepresentations involving entire scenes or envi-
ronments, have only begun to be recognized and
documented in recent studies (Sun et al., 2023).

To uncover the cause of failure in grounding,
previous works analyze either the visual or lan-
guage side. Zhai et al. (2023) pinpoints the lack
of preciseness in visual features produced by the
vision encoder. Other studies (Li et al., 2023d; Liu
et al., 2023a; Wang et al., 2023b) focus on the ten-
dency of LLMs to generate words more in line with
common language patterns rather than the actual
visual content. The error may be further exacer-
bated by autoregressive text generation (Rohrbach
et al., 2018; Zhang et al., 2023a; Zhou et al., 2023).

2.2 Self-correcting from feedback

Learning from feedback can align LLMs to desired
outcomes, to better follow instructions via human
preference feedback (Ouyang et al., 2022), prefer-
ence feedback generated by AI itself (Lee et al.,
2023; Dubois et al., 2023), or even fine-grained
feedback (Wu et al., 2023; Lightman et al., 2023).
Compared to preference and fine-grained feedback
which provide scalar values as training signals, nat-
ural language feedback provides more information
(Scheurer et al., 2022; Ma et al., 2023) and has
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been effective for language models to correct out-
puts, especially for self-correction (Welleck et al.,
2022; Pan et al., 2023). Inspired by successful
iterative self-refining language models (Madaan
et al., 2023; Ye et al., 2023b; Shinn et al., 2023;
Gou et al., 2024), to the best of our knowledge, we
are the first to achieve improvement in multimodal
models through self-feedback guided refinement.

2.3 Mitigating multimodal hallucination

Previous methods for mitigating multimodal hal-
lucinations have varied in their focus, including
enhancing the quality of instruction tuning data,
model training methodologies, and implementing
post-hoc refinements. LRV-Instruction dataset (Liu
et al., 2023a) ensures the balance of both negative
and positive instructions and VIGC (Wang et al.,
2023a) iteratively generates and corrects instruc-
tions to reduce hallucinated samples in training
data. Adapting reinforcement learning from human
feedback (RLHF) to train a single reward model
as in LLaVA-RLHF (Sun et al., 2023) or training
multiple or even without no reward models as in
FDPO (Gunjal et al., 2023) has proven effective as
well. LURE (Zhou et al., 2023) trains a revision
model to detect and correct hallucinated objects in
the base model’s response. Woodpecker (Yin et al.,
2023) breaks down the revision process into multi-
ple subtasks where three pre-trained models apart
from the base LMM are employed for the subtasks.

Unlike models using reinforcement learning, our
approach does not require reward model train-
ing. Also, contrary to revision-only methods, our
method trains a model to self -revise, eliminating
the need for extra modules. Furthermore, we intro-
duce natural language feedback before the revision
process. This feedback serves a dual purpose: it
revisits the visual features for enhanced clarity and
specifically pinpoints the hallucinated elements that
require correction, thereby enriching the informa-
tion available for more effective revision.

3 VOLCANO

VOLCANO is a single LMM to generate initial re-
sponses, feedback, and revisions, as well as deci-
sions to accept revisions. It follows a sequential
procedure of an iterative critique-revision-decide
loop. In Section 3.1, we introduce the process by
which VOLCANO self-revises its responses itera-
tively. Section 3.2 describes the collection of mul-
timodal feedback and revision data used to train

Algorithm 1 Feedback guided self-revision

1: Input: model M , image I , question Q
2: Rinitial = M(I,Q)
3: Rbest = Rinitial

4: for up to 3 iterations do
5: F = M(I,Q,Rbest)
6: Rrevised = M(I,Q,Rbest, F )
7: Rdecided = M(I,Q,Rbest, Rrevised)
8: if Rdecided == Rbest then
9: break

10: else
11: Rbest = Rrevised

12: return Rbest

VOLCANO. Finally, Section 3.3 provides detailed
information about the models and data used in our
study. The overall process is explained in Algo-
rithm 1 and illustrated in Figure 2.

3.1 Iterative self-revision
VOLCANO is a single model that generates im-
proved responses through a sequential process of
four stages. First, similar to other LMMs, it gen-
erates an initial response Rinitial for the image I
and question Q and initializes the best response
Rbest with Rinitial. This stage is performed only
once in the process of creating the final response.
Second, it generates feedback F based on the Rbest

(stage 1). Using this feedback, it self-revises the
Rbest (stage 2). Since there is no guarantee that the
revised response Rrevised will be better than the
existing Rbest, there is a need to determine which
response is better for the given Q and I . At this
point, VOLCANO is given Q, I , and both responses,
and it goes through the process of deciding which
response is better (stage 3). The order of Rrevised

and Rbest in stage 3 is randomized to prevent the
positions from affecting the results (Wang et al.,
2023c). If the model decides that Rrevised is better
than Rbest, then Rbest is updated with Rrevised and
the procedure from stage 1 to stage 3 is repeated,
with the predetermined maximum number of iter-
ations. Otherwise, the loop is early-stopped, and
Rbest is selected as the final output. The prompts
for inference at each stage are in Appendix B.1.

3.2 Data collection
To train VOLCANO, we collect initial responses for
visual questions from an open-source LMM and
generate feedback and revisions using a proprietary
LLM as shown in Figure 3 (Akyürek et al., 2023;
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Question

What are the colors of the dogs
from right to left?

Iter 1

The colors of the dogs
from right to left are

brown, black, and brown.

• Critique
The response is imperfect

because it incorrectly
states that the colors of the
dogs from right to left are
brown, black, and brown.
(...) the correct colors of
the dogs from right to left

are brown and black.

• Revise
The colors of the dogs
from right to left are
brown and black.

Decide

Iter 2
. . . . . . . . . . . . . . . . . . . . . . . . . .→

The colors of the dogs
from right to left are
brown and black.

• Critique
The response is correct.
The colors of the dogs

from right to left are indeed
brown and black. Well

done!

• Revise
The colors of the dogs
from right to left are
brown and black.

Decide
≥

Figure 2: Overall process of VOLCANO. VOLCANO is a multimodal self-feedback guided revision model that takes
an image and a question and then generates an improved response based on the self-feedback.

Image

Question

Image information
Question

Reference answer

(Prediction
→

B a s e m o d e l

C h a t G P T

Prediction

Feedback

Figure 3: Data collection.

Madaan et al., 2023; Ye et al., 2023b; Wang et al.,
2023d; Kim et al., 2023).

Since current proprietary LLMs cannot process
images, we provide object details in text and im-
age captions as a proxy for images. For each data
instance, we feed the proprietary LLM image in-
formation consisting of object details and captions,
question, initial response, and gold answer as ref-
erence answer, allowing the model to evaluate the
given inputs and produce feedback.

The proprietary LLM might exploit the gold an-
swer to generate the feedback, which can cause
potential inaccuracies in feedback during inference
time when it is not provided. To avoid this, we
give the LLM clear prompts to focus on the text-
formatted image details when generating feedback.
When constructing the revision data, we set up
a system to predict the existing gold answer as
the output, using the feedback data, image, ques-
tion, and initial response obtained from the previ-
ous steps as input, without involving any separate
model generation process. The prompts for data
collection are in Appendix B.2.

3.3 Implementation details

Data To construct multimodal feedback and revi-
sion data, we utilize the LLaVA-SFT-127k dataset

(Sun et al., 2023). We only use the first turn of each
instance in the dataset. When fine-tuning VOL-
CANO, we use the llava-1.5-mix665k as the visual
instruction dataset (Liu et al., 2023b).

Model For the proprietary LLM, we employ Ope-
nAI’s gpt-3.5-turbo (OpenAI, 2022). We use the
LLaVA-SFT+ 7B model to generate the initial re-
sponse when creating feedback data and LLaVA-
1.5 7B and 13B as backbone models of VOLCANO

(Liu et al., 2023b,c). Details of computation and
hyperparameters used are in Appendix C and Ap-
pendix D, respectively.

4 Experiments

4.1 Benchmarks

Multimodal hallucination benchmarks We use
POPE (Li et al., 2023d), GAVIE (Liu et al., 2023a),
and MMHal-Bench (Sun et al., 2023) as our bench-
marks to test multimodal hallucination mitigation
performance. POPE and GAVIE are benchmarks
for assessing object-level hallucinations in images.
POPE comprises 9k questions asking if a specific
object is present or not in an image. GAVIE is com-
posed of 1k questions evaluating how accurately
the response describes the image (accuracy) and
how well the response follows instructions (rele-
vancy) using GPT-4. MMHal-Bench aims to evalu-
ate the overall hallucination of LMMs, consisting
of realistic open-ended questions. It comprises 96
image-question pairs across 8 question categories
and 12 object topics. The overall score is computed
by GPT-4, which compares the model’s response
to the correct answer based on the given object in-
formation. If the overall score is less than 3, the
response is considered to contain hallucinations.
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Model MMHal-Bench POPE GAVIE
Score ↑ Hal rate ↓ Acc ↑ F1 ↑ Acc score ↑ Rel score ↑ Avg score ↑

MiniGPT-4 7B - - 68.4 74.5 4.14 5.81 4.98
mPLUG-Owl 7B - - 51.3 67.2 4.84 6.35 5.6
InstructBLIP 7B 2.1 0.58 71.5 80.0 5.93 7.34 6.64
LLaVA-SFT+ 7B 1.76 0.67 81.6 82.7 5.95 8.16 7.06
LLaVA-RLHF 7B 2.05 0.68 81.8 81.5 6.01 8.11 7.06
LLaVA-SFT+ 13B 2.43 0.55 83.2 82.8 5.95 8.2 7.09
LLaVA-RLHF 13B 2.53 0.57 83.1 81.9 6.46 8.22 7.34

LLaVA-1.5 7B 2.42 0.55 86.1 85.1 6.42 8.2 7.31
LLaVA-1.5 13B 2.54 0.52 86.2 85.2 6.8 8.47 7.64
VOLCANO 7B 2.6 0.49 88.2 87.7 6.52 8.4 7.46
VOLCANO 13B 2.64 0.48 88.3 87.7 6.94 8.72 7.83

Table 1: Results on multimodal hallucination benchmarks. The MMHal-Bench score is measured on a 0-5 scale.
Hallucination rate (Hal rate) is measured as the proportion of scores less than 3. Additionally, GAVIE’s Acc score
(Accuracy score) and Rel score (Relevancy score) are measured on a 0-10 scale, with Avg score representing the
average of Acc and Rel scores. Detailed evaluation results for each benchmark by question type are in Table 6 and
Table 7.

Multimodal understanding benchmarks We
use MM-Vet (Yu et al., 2023) and MMBench (Liu
et al., 2023e) as benchmarks to measure the gen-
eral multimodal performance of LMMs. MM-Vet
is a benchmark consisting of 16 tasks and 218
instances designed to evaluate LMM’s ability in
complex multimodal tasks. The score is measured
by GPT-4, which compares the LMM’s response
to the gold answer. MMBench comprises 4,377
multiple-choice questions aimed at assessing vi-
sual perception and visual reasoning. We utilize
the development set of MMBench in this study.

4.2 Baselines

We use Openflamingo (Awadalla et al., 2023),
MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye
et al., 2023a), InstructBLIP (Dai et al., 2023), Otter
(Li et al., 2023a), LLaVA-SFT+ (Sun et al., 2023),
and LLaVA-RLHF (Sun et al., 2023) as baseline
models. As multimodal hallucination corrector
baselines, we employ LURE (Zhou et al., 2023)
and Woodpecker (Yin et al., 2023). LURE utilizes
MiniGPT-4 13B as its backbone model. Wood-
pecker uses gpt-3.5-turbo as its corrector, ground-
ing DINO (Liu et al., 2023d) as its object detector
and BLIP-2-FlanT5-XXL (Li et al., 2023b) for its
VQA model.

4.3 Main results

VOLCANO achieves the best performance in
multimodal hallucination benchmarks. As
shown in Table 1, VOLCANO consistently out-
performs the base model, LLaVA-1.5 and other
existing LMMs in the multimodal hallucination

Model MMHal-Bench
Score ↑ Hal rate ↓

LURE 1.9 0.58
Woodpecker 1.98 0.54
VOLCANO 7B 2.6 0.49

LLaVA-RLHF 7B 2.05 0.68
VOLCANO– 7B 2.19 0.59

Table 2: Performance comparison with recent methods
focusing on reducing multimodal hallucination. VOL-
CANO– 7B is a model fine-tuned with our multimodal
feedback and revision data on LLaVA-SFT+ 7B, which
is the backbone model of LLAVA-RLHF 7B.

benchmark. It shows strong performance in bench-
marks that measure scores using proprietary LLMs
(MMHal-Bench, GAVIE) and a benchmark using
conventional metrics like accuracy and F1 score
(POPE). Notably, results from GAVIE demonstrate
that VOLCANO not only provides accurate answers
for a given image but also enhances its ability to fol-
low instructions. Full results are in Appendix A.1.

Natural language self-feedback is effective in
revising responses. Table 2 shows VOLCANO’s
effectiveness by comparing it with previous models
designed to tackle multimodal hallucination. Com-
pared to LURE and Woodpecker, both of which
revise responses without feedback, VOLCANO re-
duces hallucination better. This suggests that pro-
viding specific feedback is crucial for correcting
multimodal hallucination. In addition, unlike the
two methods that require a separate model special-
ized for revision, VOLCANO efficiently gives better
responses using just one model. Another notable
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Model MMBench MM-Vet
Acc ↑ Acc ↑

Openflamingo 9B 6.6 24.8
MiniGPT-4 13B 24.3 24.4
InstructBLIP 14B 36.0 25.6
Otter 9B 51.4 24.7
LLaVA-SFT+ 7B 52.7 30.4
LLaVA-RLHF 7B 52.7 29.8
LLaVA-SFT+ 13B 59.6 36.1
LLaVA-RLHF 13B 59.6 36.4

LLaVA-1.5 7B 59.9 31.2
LLaVA-1.5 13B 67.7 36.1
VOLCANO 7B 62.3 32.0
VOLCANO 13B 69.4 38.0

Table 3: Results on multimodal understanding bench-
marks. The detailed evaluation results for each bench-
mark by question type are in Table 8 and Table 9.

observation is that Woodpecker’s improvement in
hallucination is less significant compared to VOL-
CANO, despite converting visual information into
text and feeding it to a proprietary LLM corrector.
From this, we find that for reducing multimodal
hallucination, conveying visual features directly to
the corrector model is critical.

Compared to LLaVA-RLHF, which reduces
LLM hallucination using RLHF, VOLCANO con-
sistently performs better as well. For a fair compar-
ison, we developed VOLCANO– 7B by fine-tuning
the base model of LLaVA-RLHF 7B, LLaVA-SFT+
7B, on our multimodal feedback and revision data.
The results indicate that providing feedback in
the form of natural language feedback, which the
model can directly interpret, is more effective than
providing feedback as scalar values.

VOLCANO showcases high general multimodal
understanding capabilities. As the tendency of
hallucination decreases, it is expected that the
LMM can answer user questions about images
more accurately. In this sense, we anticipate that
VOLCANO would score high in benchmarks mea-
suring general LMM’s performance. To demon-
strate this, we evaluate VOLCANO on benchmarks
assessing complicated visual reasoning and percep-
tion capabilities of LLMs (Table 3). VOLCANO

achieves superior performance compared to exist-
ing LMMs. Notably, as shown in Table 8, when
measuring the math score related to a model’s
arithmetic capability, VOLCANO 13B impressively
scored about twice as high as LLaVA-1.5 13B. Full
results are in Appendix A.2.

Model MMHal-Bench
Score ↑ Hal rate ↓

Only prediction 2.45 0.52
No decision 2.33 0.56
VOLCANO 7B 2.6 0.49

Table 4: Module ablation results. The "Only prediction"
is the result of performing only stage 1 for VOLCANO
7B. "No decision" is the outcome of completing stages
1 and 2.

Model MMHal-Bench
Score ↑ Hal rate ↓

Iter 1 2.54 0.51
Iter 2 2.58 0.5
Iter 3 (VOLCANO 7B) 2.6 0.49

Table 5: Iteration ablation results.

4.4 Ablation studies

Module ablation We test the influence of each
stage in the critique-revise-decide process (Sec-
tion 3.1) in reducing multimodal hallucination. As
shown in Table 4, when we only use the initial re-
sponse as the final response and skip iterative self-
revision, it scores lower than going through both
processes. Surprisingly, even after just complet-
ing stage 1 and without self-revision, it still scores
higher than the base model LLaVA-1.5 7B. This
shows that merely fine-tuning with multimodal
feedback and revision data can effectively reduce
the hallucination rate. We observe a decrease in
performance when the revised response is given
as the final output without executing stage 3, com-
pared to when a decision is made. This highlights
the role of stage 3 in decreasing hallucination as it
can prevent unnecessary revisions. This also sug-
gests that while it is hard for the model to produce
the right answer initially, distinguishing between
right and wrong answers is relatively easier.

Iteration ablation We test how changing the
maximum number of iterations affects VOLCANO’s
performance. As shown in Table 5, as the maxi-
mum iteration count increased, the hallucination
rate decreased. This indicates that answers are suc-
cessfully refined through multiple revisions. How-
ever, there also exists a trade-off: as the iteration
count goes up, the inference time also increases.

5 Qualitative analysis

We qualitatively analyze how feedback from VOL-
CANO is effective in reducing multimodal hallu-
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Ques t ion

What is the color of the pot?

Initial response
The color of the pot is red

Initial (all tokens)

F e e d b a c k

The response is incorrect. The color of the pot in the image is not red, but rather silver.
The image clearly shows a silver pot filled with red berries, and there is no indication of
a red pot in the image. Therefore, the correct color of the pot is silver, not red. The
response should be revised to reflect this.

Feedback (all tokens) Feedback ('rather silver.') Feedback ('red berries')

0.04

- 0 . 0 3

- 0.02

- 0 . 0 1

Figure 4: Coverage of image features attended during initial response and feedback generation on a single MMHal-
Bench instance. The image attention heatmaps depict how the model’s attention is distributed across image features,
considering either all tokens or a subset of tokens in the output. In the text attention heatmaps above, the intensity
of each token’s background indicates the attention weight magnitude to image features, with darker highlights
signifying higher weights. In the image attention heatmaps below, outliers at or above the 0.995th quantile are
shown with the highest color intensity.

Initial Feedback

0.002

0.004

0.006

0.008

0.010

Figure 5: Average amount of attention to image features
during the initial response (left) and feedback (right)
generation. Attention weights are averaged across in-
stances in MMHal-Bench where VOLCANO’s revision
enhances the initial response.

cination. In this section, we examine VOLCANO

7B results on MMHal-Bench in which the model’s
revised answer is chosen as the final answer. We
compare the visual information content between
the model’s initial response and feedback, focusing
on amount (5.1) and coverage (5.2).

5.1 Amount of visual information

Upon manual inspection of the instances, we ob-
serve that the initial response often correctly iden-
tifies object-level information but frequently mis-
interprets finer details such as object attributes or
relationships between objects. On the contrary, we
discover that the feedback text tends to describe the
image contents more comprehensively.

To explore this phenomenon, we take inspiration
from Wang et al. (2023b) and visualize how much

do output tokens attend to input image features2

while generating initial response and feedback to-
kens to the same image. For each instance, we
perform top-k mean pooling to aggregate attention
weights of initial response or feedback tokens on
each image feature.3 Specifically, we average top-
3 attention weights across hidden layers, average
top-3 weights across self-attention heads, and then
average top-l weights across output tokens, where
l is the length of the shorter output between initial
response and feedback.

The results averaged across all instances are
shown in Figure 5. Image features are more
strongly attended by feedback than by initial re-
sponse. Interestingly, even though attention to in-
put would be more dispersed when generating feed-
back as its input includes an initial response in
addition to the question, an increased concentra-
tion on wider areas of image features is visible.
This suggests that visual information is largely re-
flected in the feedback text, supporting our manual
inspection beforehand.

5.2 Coverage of visual information
We further empirically investigate how attention
from individual tokens contributes to the coverage
of critical visual information. Building upon the
visualization method described in Section 5.1, we

2For every image, the vision encoder of VOLCANO, CLIP
ViT-L/14 336px, processes it into 336px×336px size and
divides it into 14px×14px patches, creating an image feature
vector of size 576.

3We experimented with min, max, mean, and top-k mean
pooling. We chose the top-k mean configuration as it provided
the clearest visualization for our analysis.
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compare attention weights to image features from
all tokens in the output with those from a subset
of tokens in the output. For the latter procedure,
tokens that most intensely attend to image features
during generation are deemed salient and are se-
lected.

We provide attention heatmaps of a representa-
tive instance in Figure 4. The task in this example
is to identify the color of the pot in the image, and
the initial response incorrectly answers ("red") and
then the feedback corrects the answer ("silver").

Such a correction can be explained by the differ-
ence in the distribution of attention to image fea-
tures during the generation of each token. Based
on the heatmaps of all tokens attending to image
features, when VOLCANO generates the initial re-
sponse, it mostly focuses on features on the outer
edges, corresponding to the rim of the pot; when
generating feedback, it attends to the entire im-
age including outer regions corresponding to the
silver pot and inner regions with red berries in
it. Heatmaps of specific tokens attending to im-
age features show that in the process of improving
the initial response, VOLCANO indeed focuses on
the exact areas of the image corresponding to key
color descriptors "silver" and "red" when generat-
ing these words.

The findings suggest that during the feedback
generation phase, the model develops an enhanced
focus on an increased coverage of salient features,
leading to a more comprehensive understanding of
the image. This capability is beneficial for address-
ing the fundamental cause of multimodal halluci-
nation of LLMs, which is that a lack of clear visual
features leads LLMs to base their responses on
pre-existing knowledge (Zhai et al., 2023; Li et al.,
2023d; Liu et al., 2023a; Wang et al., 2023b). We
propose that VOLCANO, with its ability to extract
fine-grained visual information through feedback,
can effectively reduce multimodal hallucination.

6 Conclusion

In our work, we suggest a novel approach that uti-
lizes feedback as visual signals to direct the model
to refine responses that do not accurately reflect
the image. Building on this approach, we present
VOLCANO, a multimodal self-feedback guided re-
vision model. VOLCANO has not only achieved
state-of-the-art results on a multimodal hallucina-
tion benchmark but also demonstrated its effective-
ness by improving performance compared to base-

line models on multimodal understanding bench-
marks. Through qualitative analysis, we demon-
strate that the feedback produced by VOLCANO

is well-grounded on the image, and providing the
model with rich visual information helps reduce
multimodal hallucination. We hope our model and
data open new pathways for strategies to mitigate
multimodal hallucination and uncover the funda-
mental cause of the issue.

Limitations

In our study, we successfully demonstrated that
VOLCANO can mitigate multimodal hallucination,
as evidenced by our evaluations and analyses across
various benchmarks. However, one notable draw-
back is the increased execution time. VOLCANO

necessitates multiple calls to the model, making
it less time-efficient than directly generating a re-
sponse. On average, VOLCANO tends to be around
2 to 3 times slower than the base model, requir-
ing 5.8 seconds to generate a response for a given
image and instruction compared to 2.7 seconds by
LLaVA-1.5. A strategy we use to reduce the overall
execution time is to limit the number of iterations
to 3. We think future work could explore improving
the efficiency of the self-feedback-guided revision
process.
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A Full results on benchmarks

In this section, we describe the detailed results from
the benchmarks used in our work. The benchmarks
are designed to evaluate the performance of LMMs
from multiple perspectives, encompassing various
sub-tasks and types of questions.

A.1 Multimodal hallucination benchmarks
For MMHal-Bench, the questions are categorized
into 8 types: Attribute, Adversarial, Comparison,
Counting, Relation, Environment, Holistic, and
Other (Table 6). POPE evaluates three types of
questions: random, popular, and adversarial (Ta-
ble 7).

A.2 Multimodal understanding benchmarks
MM-Vet is composed of sub-tasks designed to mea-
sure 6 LMM capabilities: Recognition, OCR (Opti-
cal Character Recognition), Knowledge, Language
generation, Spatial awareness, and Math (Table 8).
MMBench is structured to evaluate across L-1, L-2,
and L-3 dimensions. We followed previous works
and conducted evaluations for the L-2 dimension.
The L-2 dimension tasks include Coarse Perception
(CP), Fine-grained Single-instance Perception (FP-
S), Fine-grained Cross-instance Perception (FP-
C), Attribute Reasoning (AR), Relation Reasoning
(RR), and Logic Reasoning (LR) (Table 9).

B Prompts

B.1 Prompts for inference at each stage
For all prompts, we did not explicitly provide an
image feature prompt. Instead, the image features
are concatenated with the question during the tok-
enization process before being input to the model.
Additionally, the prompt for the decision process
is based on the work of (Liu et al., 2023b).

B.2 Prompt for generating multimodal
feedback

We introduce the prompt used in generating our
multimodal feedback dataset. For an LLM that can-
not see images, we included the image contents in

the form of text within the prompt, allowing it to
provide feedback as if it had seen the image and
initial response. We utilized object information
and a gold caption as the image contents. In in-
stances where no objects are present in the dataset,
we didn’t use a separate object detector to prevent
the model’s errors from propagating into the feed-
back. Instead, only the gold caption is provided
in such cases. Additionally, to avoid erroneously
generating feedback that suggests the presence of
hallucination merely due to the use of different
expressions, even when the initial response aligns
sufficiently with the image information but uses
different terms from the gold answer, we crafted
the prompt to treat synonyms or paraphrases as
correct answers. Drawing inspiration from previ-
ous research (Kim et al., 2023), we structured the
prompt to ensure that it encapsulates these aspects
well.

C Computation

For this research, we used an NVIDIA A100-
SXM4-80GB GPU and an AMD EPYC 7513 32-
Core Processor running at 2.0778 GHz. Training
VOLCANO 7B required 8 GPUs and took a total
of 15 hours, while training VOLCANO 13B took
30 hours. While the time taken to evaluate each
dataset varies, VOLCANO takes about 2 to 3 times
longer to complete the entire process compared to
existing baselines that only generate responses.

D Hyperparameters

We used a batch size of 128, a learning rate of 2e-5,
and trained for 1 epoch. The maximum length is
set to 2048, with no weight decay. We employed a
cosine scheduler for learning rate adjustments, with
a warmup ratio of 0.03. Additionally, we incorpo-
rated gradient checkpointing and used DeepSpeed
zero stage 3. The maximum number of iterations
for self-revision is 3. When generating responses,
we utilized greedy decoding following LLaVA-1.5.
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Model Attribute ↑ Adversarial ↑ Comparison ↑ Counting ↑ Relation ↑ Environment ↑ Holistic ↑ Other ↑ Score ↑ Hal rate ↓

Kosmos-2 2 0.25 1.42 1.67 1.67 2.67 2.5 1.33 1.69 0.68
IDEFIC 9B 1.58 0.75 2.75 1.83 1.83 2.5 2.17 1.67 1.89 0.64
IDEFIC 80B 2.33 1.25 2 2.5 1.5 3.33 2.33 1.17 2.05 0.61
InstructBLIP 7B 3.42 2.08 1.33 1.92 2.17 3.67 1.17 1.08 2.1 0.58
InstructBLIP 13B 2.75 1.75 1.25 2.08 2.5 4.08 1.5 1.17 2.14 0.58
LLaVA-SFT+ 7B 2.75 2.08 1.42 1.83 2.17 2.17 1.17 0.5 1.76 0.67
LLaVA-RLHF 7B 2.92 1.83 2.42 1.92 2.25 2.25 1.75 1.08 2.05 0.68
LLaVA-SFT+ 13B 3.08 1.75 2 3.25 2.25 3.83 1.5 1.75 2.43 0.55
LLaVA-RLHF 13B 3.33 2.67 1.75 2.25 2.33 3.25 2.25 2.42 2.53 0.57

LLaVA-1.5 7B 3.17 1.25 3.17 2.5 2.33 3.17 1.5 2.25 2.42 0.55
LLaVA-1.5 13B 3.5 2 2.67 2.33 1.67 3.33 2.58 2.25 2.54 0.52
VOLCANO 7B 3.42 2.42 3.08 1.75 2.75 3.75 1.33 2.33 2.6 0.49
VOLCANO 13B 3 1.75 3.42 1.67 2.33 3.75 2.75 2.42 2.64 0.48

Table 6: Results on MMHal-Bench

Model Random Popular Adversarial Overall
Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑

Shikra 86.9 86.2 43.3 84 83.2 45.2 83.1 82.5 46.5 84.7 84.0
InstructBLIP 88.6 89.3 56.6 79.7 80.2 52.5 65.2 70.4 67.8 77.8 80.0
MiniGPT-4 79.7 80.2 52.5 69.7 73 62.2 65.2 70.4 67.8 71.5 74.5
mPLUG-Owl 54 68.4 95.6 50.9 66.9 98.6 50.7 66.8 98.7 51.9 67.2
LLaVA-SFT+ 7B 86.1 85.5 44.5 82.9 82.4 47.2 80.2 80.1 49.6 83.1 82.7
LLaVA-RLHF 7B 84.8 83.3 39.6 83.3 81.8 41.8 80.7 79.5 44 82.9 81.5
LLaVA-SFT+ 13B 86 84.8 40.5 84 82.6 41.6 82.3 81.1 43.5 84.1 82.8
LLaVA-RLHF 13B 85.2 83.5 38.4 83.9 81.8 38 82.3 80.5 40.5 83.8 81.9

LLaVA-1.5 7B 88.2 87.3 41.9 87.3 86.2 41.8 85.2 84.2 44 86.9 85.9
LLaVA-1.5 13B 88 87.1 41.7 87.4 86.2 41.3 85.5 84.5 43.3 87.0 85.9
VOLCANO 7B 89.9 89.4 43.9 88.5 87.9 45.1 86.2 85.7 46.6 88.2 87.7
VOLCANO 13B 90.2 89.7 44.3 88.1 87.4 44.5 86.6 86.1 46.7 88.3 87.7

Table 7: Results on Pope

Model rec ↑ ocr ↑ know ↑ gen ↑ spat ↑ math ↑ total ↑
Transformers Agent (GPT-4) 18.2 3.9 2.2 3.2 12.4 4 13.4
MiniGPT-4-8B 27.4 15 12.8 13.9 20.3 7.7 22.1
BLIP-2-12B 27.5 11.1 11.8 7 16.2 5.8 22.4
MiniGPT-4-14B 29.9 16.1 20.4 22.1 22.2 3.8 24.4
Otter-9B 27.3 17.8 14.2 13.8 24.4 3.8 24.7
OpenFlamingo-9B 28.7 16.7 16.4 13.1 21 7.7 24.8
InstructBLIP-14B 30.8 16 9.8 9 21.1 10.5 25.6
InstructBLIP-8B 32.4 14.6 16.5 18.2 18.6 7.7 26.2
LLaMA-Adapter v2-7B 3 8.5 20.3 31.4 33.4 22.9 3.8 31.4

LLaVA-1.5 7B 37 21 17.6 20.4 24.9 7.7 31.2
LLaVA-1.5 13B 40.6 28 23.5 24.4 34.7 7.7 36.1
VOLCANO 7B 36.7 23.5 18.2 22 27.6 3.8 32
VOLCANO 13B 42.9 30.4 24.5 29.2 32.7 15 38

Table 8: Results on MM-Vet
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Model LR ↑ AR ↑ RR ↑ FP-S ↑ FP-C ↑ CP ↑ Overall ↑
OpenFlamingo 6.7 8 0 6.7 2.8 2 4.6
OpenFlamingo v2 4.2 15.4 0.9 8.1 1.4 5 6.6
MMGPT 2.5 26.4 13 14.1 3.4 20.8 15.3
VisualGLM 10.8 44.3 35.7 43.8 23.4 47.3 38.1
LLaMA-Adapter 11.7 35.3 29.6 47.5 38.6 56.4 41.2
µ-G2PT 13.3 38.8 40.9 46.5 38.6 58.1 43.2
mPLUG-Owl 16.7 53.2 47.8 50.2 40.7 64.1 49.4
Otter 32.5 56.7 53.9 46.8 38.6 65.4 51.4
Shikra 25.8 56.7 58.3 57.2 57.9 75.8 58.8
Kosmos-2 46.7 55.7 43.5 64.3 49 72.5 59.2
PandaGPT 10 38.8 23.5 27.9 35.2 48.3 33.5
MiniGPT-4 20.8 50.7 30.4 49.5 26.2 50.7 42.3
InstructBLIP 19.1 54.2 34.8 47.8 24.8 56.4 44

LLaVA-1.5 7B 30.8 73.1 53.9 67 57.2 77.2 59.9
LLaVA-1.5 13B 41.7 69.7 63.5 70 59.3 80.2 67.7
VOLCANO 7B 30.8 65.2 59.1 67.7 54.5 72.8 62.3
VOLCANO 13B 38.3 70.6 67 72.4 62.8 82.2 69.4

Table 9: Results on MMBench

Figure 6: Prompt for generating multimodal feedback
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Figure 7: Prompts for inference at each stage
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