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Abstract

The improvement of LLMs’ instruction-
following capabilities relies heavily on the
availability of high-quality instruction-response
pairs. Unfortunately, the current methods used
to collect the pairs suffer from either unaf-
fordable labor costs or severe hallucinations
in the self-generation of LLM. To tackle these
challenges, this paper proposes a scalable so-
lution. It involves training LLMs to gener-
ate instruction-response pairs based on human-
written documents, rather than relying solely
on self-generation without context. Our pro-
posed method not only exploits the advantages
of human-written documents in reducing hallu-
cinations but also utilizes an LLM to wrap the
expression of documents, which enables us to
bridge the gap between various document styles
and the standard AI response. Experiments
demonstrate that our method outperforms ex-
isting typical methods on multiple benchmarks.
In particular, compared to the best-performing
baseline, the LLM trained using our generated
dataset exhibits a 10% relative improvement in
performance on AlpacaEval, despite utilizing
only 1/5 of its training data. Furthermore, a
comprehensive manual evaluation validates the
quality of the data we generated. Our trained
wrapper is publicly available1.

1 Introduction

Recent efforts in the NLP community have focused
on instruction-tuning (Sanh et al., 2022; Mishra
et al., 2022; Wei et al., 2022), i.e., improving large
language models’ (LLMs) capacity to understand
and follow instructions (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023a). Advanced
LLMs have been trained to be capable of generating
customized outputs when provided with specific

∗Corresponding Author
†Corresponding Author

1https://github.com/Bahuia/
Dog-Instruct

instructions (with inputs), enabling them to adapt
to new tasks without prior exposure.

As a crucial problem in improving LLMs’
instruction-following capability, how to collect
high-quality instruction-response pairs is gaining
popularity. The majority of existing methods either
rely on hiring professionals to write instructions
for various NLP tasks (Wang et al., 2022; Conover
et al., 2023) or promote the use of LLMs to auto-
matically generate instructions (Wang et al., 2023;
Taori et al., 2023; Yin et al., 2023). Unfortunately,
these methods have limitations either in terms of
scalability due to the labor-intensive nature of the
annotation process or in terms of data quality due
to the hallucination problem (Zhang et al., 2023;
Zheng et al., 2023) associated with LLMs.

Recent research (Köksal et al., 2023; Li et al.,
2023a) has provided a more potential idea: first
directly using human-written documents as typi-
cal responses and then utilizing LLMs to predict
the latent user instructions. This method, known
as instruction back-translation (Li et al., 2023a),
is based on the belief that human-written docu-
ments are inherently less prone to hallucinations
compared to responses generated solely by LLMs.

However, we argue that even if a document is
free of hallucinations, it is not always appropriate
to employ it directly as a typical response. This
is attributed to two main reasons: a) First, not all
parts of a document are valuable in constructing
a response. For example, the red part of the doc-
ument (A) in Figure 1 is completely useless for
back-translating the resulting instruction (the gold
box). Moreover, valuable parts of the document
often have fuzzy boundaries. For instance, the red
text of (B) aims to create a tense atmosphere, again
unsuitable to keep in response, but it also has some
relevance to the topic (alien research) and is there-
fore difficult to be filtered out by simple prepro-
cessing. b) Second, due to the different purposes of
writing, there are often gaps in expression between
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• Instruction：Describe the 
upcoming AMD Athlon 200GE 
processor.

• Response：

Earlier in the year, rumors were circulating 
that AMD was preparing the APU Athlon 
200GE … and a GPU Vega 3 with 192 stream 
processors … Previous article: Family 
exterminated in their sleep, stop the eldest 
daughter …

Human-Written Document

Commentary: A new study posits that little 
green men might not be well, green … A new 
study from the University of Oxford suggests 
that aliens might be subject to the same -- or 
similar -- evolutionary processes as we are …
After this research, whom can we trust?

• Instruction：Introduce the 
research from the University of 
Oxford on evolutionary 
transitions in alien life.

• Response：

I have been surfing the Internet for the past 
two weeks and have learned that the total 
number of civilian casualties during the 
Vietnam War, including those in North and 
South Vietnam, was approximately 2 million... 
Alas, the war was too tragic. Of course, this is 
only the result of my personal statistics, which 
may not be accurate.

• Instruction：What was the 
total number of civilian 
casualties during the Vietnam 
War?

• Response：

• Instruction：Can you describe the upcoming AMD 
Athlon 200GE processor for me ?

• Response： Sure! Earlier in the year, rumors were 
circulating that AMD was preparing the APU Athlon 
200GE … and a GPU Vega 3 with 192 stream 
processors. 

• Instruction：Introduce the research from the 
University of Oxford on evolutionary transitions in 
alien life.

• Response： A new study from the University of 
Oxford … evolutionary processes as we are … The 
study may have important implications for the 
origin of life.

• Instruction：What was the estimated total number 
of civilian casualties during the Vietnam War 
(including North and South Vietnam)?

• Response： The estimated total number ... This 
number includes both direct and indirect casualties, 
such as … Note that the exact number of civilian 
casualties is difficult to determine due to the nature 
of the conflict and the lack of reliable data.

Instruction Back-Translation Instruction Wrapping

Copy

Predict

Copy

Predict

Copy

Predict

Useless information

(B)

(C)

(A)

Fuzzy response boundary

Non-objective expression

Wrapping
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Figure 1: Differences between our proposed instruction wrapping with instruction back-translation (Köksal et al.,
2023; Li et al., 2023a). Red text is not appropriate for responses. Blue text indicates that the original text has been
added, deleted, or rewritten by LLM to align more closely with the desired standardized response.

the raw documents and the standard responses. As
an illustration, the red portion of (C) contains mul-
tiple subjective descriptions, which deviates from
the expected objectivity of an AI assistant.

In this paper, we propose a new paradigm for
constructing instruction-tuned data, called instruc-
tion wrapping. It aims to train an open-sourced
LLM to identify valuable parts from the original
document and further transform them into fluent
and objective instruction-response pairs.

Briefly, our proposed method consists of two
stages as shown in Figure 2. In stage a), a well-
aligned LLM is employed as the teacher to con-
struct a meta-training set Ω for instruction wrap-
ping. Each example in this set comprises a sam-
pled document and its corresponding instruction-
response pair, involving one of the following two
views. In the alignment view, we employ in-context
learning to guide the teacher LLM in generating
instruction-response pairs based on human-written
documents. It allows for the adaptation of the
teacher LLM to various real document styles. In
the diversity view, we begin with an existing di-
verse instruction set and prompt the teacher LLM
to reversely generate a pseudo-document for each
instruction-response pair. It ensures the training
examples maintain instruction diversity. Subse-
quently, we use the meta-training set to perform
supervised fine-tuning on a publicly released LLM,

which serves as our instruction wrapper. In stage
b), human-written documents from multiple do-
mains are fed into our trained wrapper to generate
instruction-response pairs. Then, a simple but effi-
cient post-processing strategy is adopted to filter in-
valid examples based on the literal similarity. Even-
tually, we name the resulting dataset DOcument-
Grounded Instructions ( DOG-INSTRUCT), con-
taining 12.4K instruction-response pairs.

The LLM trained using DOG-INSTRUCT

achieves a remarkable 4.8% improvement in per-
formance on AlpacaEval compared to the best-
performing baseline, while using only 1/5 of the
training data. Furthermore, it achieves state-of-the-
art results on the other three widely-used bench-
marks. Through further manual evaluation, we
illustrate that our DOG-INSTRUCT method effec-
tively mitigates the issue of hallucination while
aligning the raw document with the desired re-
sponse in terms of style. In summary, the con-
tributions of this paper include:

• We propose a novel paradigm that trains LLMs
to generate instruction-response pairs based on
human-written documents. It not only leverages
the document to reduce the hallucinations of re-
sponses, but also aligns the style of the raw doc-
ument with the ideal response using LLM.

• We release a well-trained LLAMA-based instruc-
tion wrapper capable of consistently generating
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Figure 2: Overview of DOG-INSTRUCT construction process. In stage a), a meta-training set Ω is constructed using
GPT-4 and utilized to train the instruction wrapper. In stage b), the wrapper generates instruction-response pairs for
each sampled document, and a post-processing strategy is employed to filter out invalid examples.

high-quality instruction-response pairs for docu-
ments across multiple domains.

• We conducted a comprehensive evaluation, both
automatic and manual, which demonstrates that
the LLM trained using our generated data out-
performs all the compared baselines.

2 Problem Formulation

Given a set of documents {D1,D2, ...,Dn}, where
each Di is a human-written document, our goal is to
construct a set of pairs {(X1,Y1), ..., (Xm,Ym)},
where m ≤ n, Xi and Yi denote the instruction and
response, respectively, and (Xi,Yi) := M(Dj).
Here M is an LLM-based instruction wrapper that
transforms Di into an instruction-response pair.

3 Collection of DoG-Instruct Data

Figure 2 shows the entire process of our method. a)
First, the instruction wrapper M is trained using
the meta-training set Ω, which is constructed by
the well-aligned GPT-4. b) Subsequently, M takes
sampled documents D as inputs to generate (X ,Y)
for constructing DOG-INSTRUCT.

3.1 Corpus & Document Sampling
To create a diverse set of documents, we utilize the
Pile (Gao et al., 2021) corpus, which is a multi-
domain collection of human-written documents.
From the Pile, we sample documents from six dif-
ferent domains: ArXiv, FreeLaw, StackExchange,
Wikipedia, Github. Following existing work (Li
et al., 2023a; Köksal et al., 2023), we also sam-
ple documents from Open Assistant1 and Wiki-
How2 to introduce some structured examples. We

1https://huggingface.co/datasets/
OpenAssistant/oasst1

2https://huggingface.co/datasets/
wikihow

randomly choose several consecutive paragraphs
from each original text in the corpus to serve as
our document. To ensure that each document con-
tains enough information to generate at least one
instruction-response pair, we only keep the docu-
ments that contain a range of 500 to 1000 tokens.

3.2 Instruction Wrapper Building

To empower a general LLM with the capability of
instruction wrapping, we need to construct suffi-
cient training examples mapping the document D
to the instruction-response pair (X ,Y). Inspired
by (Li et al., 2023a), we leave this job to the well-
aligned GPT-4 (OpenAI, 2023) to minimize the
cost of human annotations. We hypothesize that an
ideal meta-training set Ω should fulfill two essential
requirements: alignment and diversity. Alignment
guarantees that Ω encompasses a wide range of
real human-written documents, enabling the wrap-
per to comprehend different domains and writing
styles. Diversity, on the other hand, ensures that
Ω contains a variety of instructions, enabling the
wrapper to generate diverse instructions effectively
after training. Therefore, we collect examples of Ω
from the following two views.
Alignment-view Examples. In this section, the
examples are constructed by utilizing GPT-4 to di-
rectly generate instruction-response pairs for real
human-written documents. To accomplish this
goal, we harness the power of in-context learning
(ICL). In particular, for each domain, 30 examples
are first manually constructed as the seeds. Then,
for each D, the prompt fed to GPT-4 is denoted
by (X ∗,D1,P1, ...,Dk,Pk,D), where X ∗ is defi-
nition of mapping Dj to the instruction-response
pair Pj = (Xj ,Yj). See Appendix A.1 for the full
prompt. The resulting examples are denoted by Ωa.
Diversity-view Examples. Intuitively, it is diffi-
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cult to generate diverse instructions using just a
few dozen manual seeds. Therefore, we start from
the publicly released instructions, such as ALPACA,
and then inversely fuse their provided instructions
and responses to create pseudo-documents. Specif-
ically, for each instruction-response pair (X ,Y)
sampled in ALPACA, we write the prompt to em-
ploy GPT-4 to integrate X and Y into a new doc-
ument D̃. We enable D̃ to encompass all the con-
tent from X and Y , but we intentionally blur their
boundaries. This allows for the addition of new con-
tent as needed, while ensuring a smooth and coher-
ent flow of information. These pseudo-documents
D̃ and their corresponding (X ,Y) constitute the
remaining training examples, denoted by Ωd. Ap-
pendix A.2 gives the detail prompt.
Wrapper Training. we select LLAMA2 (Touvron
et al., 2023b), an advanced LLM publicly available
as our instruction wrapper M and perform
supervised fine-tuning (SFT) on M using the
constructed meta-training set Ω = Ωa ∪ Ωd. For
each document D and its instruction-response
pair P = (X ,Y) of Ω, we add a unified in-
struction U = "Convert the given text into

a task. Input is a text and Response

contains two fields: #instruction# and

#output#.". Then, the training loss is calculated
by a log-likelihood,

L(U ,D,P) = −
|P|∑

j=1

logP (tj |U ,D, t<j), (1)

where tj is the j-th token of T . It is crucial to
emphasize that although our meta-training set Ω
may include hallucinations, we hypothesize that
this does not affect the learning of the wrapper
M. This is because our primary objective for M
is to learn the stylistic transformation from docu-
ments to instruction-response pairs with semantic
consistency. During the inference phase, we exclu-
sively utilize real human-written documents with-
out pseudo-documents, which naturally reduces the
occurrence of hallucinations.

3.3 Data Generation via Instruction Wrapper
In this stage, we use the trained M to gener-
ate instruction-response pairs for 20,000 human-
written documents, which have been sampled us-
ing the method described in Section 3.1. To avoid
the hallucination that the wrapper generates too
much content unrelated to the original text, we pro-
pose a post-processing strategy for each generated

Table 1: Statistics of alignment-view examples Ωa,
diversity-view examples Ωd, the meta-training set Ω
and DOG-INSTRUCT. Here x± y denotes the average
x and standard deviation y.

Example # X Token # Y Token #

Ωa 306 16± 13 134± 126
Ωd 2998 43± 35 140± 76
Ω 3371 41± 34 139± 81
DOG-INSTRUCT 12426 32± 79 310± 152
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Figure 3: Instruction diversity of DOG-INSTRUCT data.
The inner circle shows common root verbs with the
corresponding common noun objects in the outer circle.

task Ti. Concretely, we devise a score σ(Ti) =
min(σ̃(Pi,Xi), σ̃(Pi,Yi)) to measure the similar-
ity between the text and the instruction-response
pair, where σ̃(Pi, s) = |t(Di)&t(s)|/|t(s)| and
t(s) denotes the token set of text s. All examples
(Pi, Ti) will be removed where σ(Ti) < θ.

4 DoG-Instruct Statistics

Data Statistics. Table 1 shows the statistics of
alignment-view examples Ωa, diversity-view ex-
amples Ωd, the meta-training set Ω, and DOG-
INSTRUCT dataset. Theoretically, as long as there
is a constant stream of text, our method has no up-
per limit on the amount of data. However, through
experimentation, we discovered that competitive
results can be achieved by using a mere 12k of
our DOG-INSTRUCT. DOG-INSTRUCT tends to
have longer responses compared to the examples in
Ω. In addition, DOG-INSTRUCT have larger stan-
dard deviations regarding the response field than Ω.
The top of Table 2 presents the statistical data for
different domains in DOG-INSTRUCT.
Diversity of Instructions. We performed a diver-
sity analysis on DOG-INSTRUCT using the method
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Table 2: Statistics of different domains in DOG-INSTRUCT. Instruction, input, and output lengths are given as the
number of tokens. BS denotes the Bert-Score(Zhang et al., 2019). OASST is short for Open Assistant.

Wikipedia FreeLaw ArXiv StackExchange Github OASST WikiHow

# of Examples 5371 427 450 475 690 946 4060
Length of X 15± 34 201± 207 119± 187 101± 104 54± 110 34± 51 11± 25
Length of Y 347± 123 476± 123 577± 205 328± 121 328± 132 326± 121 326± 104

σ̃(D,Y) 0.981 0.949 0.942 0.976 0.978 0.957 0.957
BS(D,Y) 0.981 0.963 0.942 0.911 0.967 0.946 0.930

Table 3: Performance of the methods on the AlpacaEval benchmark (win rate over text-davinci-003 evaluated by
GPT-4). The Text-Grounded field indicates whether the instruction generation is based on human-written text. The
Avg. Length denotes the average token number of the model responses. Our DOG-INSTRUCT achieves the highest
win rate (53.1%) with the least training examples (12.4K).

Data Generator Dataset Text-Grounded # of Examples Win Rate (%) Avg. Length

text-davinci-003 LONGFORM ✓ 23.7K 11.7 268

GPT-3.5-Turbo

SELF-INSTRUCT × 82K 14.2 284
ALPACA × 52K 15.3 271
DYNOSAUR × 800K 2.9 142
EVOL-INSTRUCT × 70K 48.3 669

GPT-4 ALPACA-GPT-4 × 52K 44.5 653

LLAMA2-7B
HUMPBACK† ✓ 18K 41.0 755

DOG-INSTRUCT ✓ 12.4K 53.1 1149

described by (Wang et al., 2023). Figure 3 illus-
trates the distribution of the verb-noun structure of
instructions, showcasing the diverse range.
Relevance to Raw Documents. Additionally, we
computed the relevance of the responses to the raw
documents. The average relevance scores are dis-
played at the bottom of Table 2, with σ̃ representing
the measure of literal relevance utilized in our post-
processing, and BS denoting Bert-Score (Zhang
et al., 2019) for evaluating the semantic relevance.
Both in terms of literal score and semantic score,
the responses exhibit a high level of relevance to
the raw documents. However, they are not 100%
aligned due to the appropriate rewriting carried out
by our instruction wrapper.

5 Experiments

5.1 Experimental Setup
Compared Datasets. We compared our DOG-
INSTRUCT with several typical instruction-tuning
datasets: SELF-INSTRUCT (Wang et al., 2023), and
ALPACA (Taori et al., 2023) are automatically gen-
erated by LLMs including GPT-3.5-Turbo and text-
davinci-003. DYNOSAUR (Yin et al., 2023) repack-
ages huggingface’s existing NLP dataset and re-

generates instructions for it using ChatGPT. LONG-
FORM (Köksal et al., 2023) and HUMPBACK (Li
et al., 2023a) are most similar to our work in that
they generate tasks by performing the instruction
back-translation. Unlike these methods, DOG-
INSTRUCT wraps the documents and carefully se-
lects the valuable parts to compose a comprehen-
sive instruction-response pair. Since HUMPBACK

hasn’t been released yet, we got an unofficial ver-
sion 3 from HuggingFace, denoted by †.

Implementation Details. All our experiments ran
on 8 Tesla V100 GPUs with FP16. We trained
M using LORA (Hu et al., 2022). The hyper-
parameters were set as follows: (1) The batch size
was set to 128. (2) The learning rate was set to
1 × 10−4. (3) The epoch number was 7. (4) The
cutoff token number was set to 2048. (5) The
temperature and beam size were 0 and 4, respec-
tively. (6) The LORA target modules consisted of
[qproj, kproj, vproj, oproj, upproj, downproj, gateproj,
embedtokens, lmhead].

3https://huggingface.co/datasets/
Spico/Humback

4129

https://huggingface.co/datasets/Spico/Humback
https://huggingface.co/datasets/Spico/Humback


Table 4: Rouge-L (R), Meteor (M), and Bert-Score (B) of different methods on the test sets of three benchmarks.
All methods follow zero-shot settings.

Data Generator Dataset # of Examples
ELI5 LF-Test Super-NI

R(%) M(%) R(%) M(%) B(%)

text-davinci-003 LONGFORM 23.7K 7.5 5.4 24.9 18.1 81.8

GPT-3.5-Turbo

SELF-INSTRUCT 82K 9.8 8.2 22.4 16.5 83.0
ALPACA 52K 10.1 8.8 23.1 17.3 82.9
DYNOSAUR 800K 3.1 1.5 15.6 11.0 86.0
EVOL-INSTRUCT 70K 18.9 18.4 25.2 21.8 85.6

GPT-4 ALPACA-GPT-4 52K 11.1 13.3 25.1 22.4 85.8

LLAMA2-7B
HUMPBACK† 18K 9.3 6.1 25.0 22.2 83.7

DOG-INSTRUCT 12.4K 19.0 19.7 25.9 23.6 86.1

Table 5: Experimental results of ablation studies for all benchmarks used.

Stage
Setting

AlpacaEval ELI5 LF-Test Super-NI

Win Rate(%) M(%) M(%) B(%)

DOG-INSTRUCT 53.1 19.7 23.6 86.1

Training
w/o alignment-view 46.7 18.5 20.2 85.2
w/o diversity-view 12.5 12.1 15.7 83.8
w instruction back-translation 5.9 9.3 16.6 81.7

Generation w/o post-processing 32.0 17.2 23.3 85.9

5.2 Automatic Evaluation

To begin with, we conducted an automatic evalu-
ation on multiple benchmarks. For each dataset
being compared, We independently fine-tuned an
identical baseline LLM using its respective training
examples and evaluated its performance in accu-
rately following the instructions.
Baseline LLM. We select LLAMA2-7B (Touvron
et al., 2023b) + LORA (Hu et al., 2022) as the
baseline LLM. For ease of presentation, we refer to
the baseline LLM trained on dataset x as x-model.
Benchmarks. We first used the GPT-4 evaluation
from AlpacaEval (Li et al., 2023b) to evaluate re-
sponse quality on 805 instructions from the Alpaca
Leaderboard. AlpacaEval compares the pairwise
win rate against the reference model text-davinci-
003. In addition, we conducted evaluations on
three other NLG benchmarks: Long-Form Ques-
tion Answering (ELI5) (Fan et al., 2019), Long-
Form test set (LF-Test) (Köksal et al., 2023), and
Super-NaturalInstructions (Super-NI) (Wang et al.,
2022). None of the methods incorporate data from
these benchmarks. i.e. zero-shot setting.
Automatic Evaluation Metrics. For AlpacaEval,
we ran its scripts directly, using GPT-4 for evalu-

ation. For ELI5 and LF-Test, we followed (Kök-
sal et al., 2023; Yin et al., 2023) to calculate the
Rouge-L (Lin, 2004) and Meteor (Banerjee and
Lavie, 2005) scores. These scores are computed
by comparing the model outputs with the provided
references in the respective datasets. For Super-
NI, we utilize Bert-Score (Zhang et al., 2019) for
evaluation instead of other long-text metrics like
Rouge. This choice is made due to the typically
short nature of the outputs in this dataset.

5.2.1 AlpacaEval Results.

The win rate and average length of model responses
for different methods on AlpacaEval are presented
in Table 3. It is worth highlighting that despite
utilizing the least amount of data, we achieved the
best performance while maintaining the same base-
line LLM premise at the 7B model scale. The
DYNOSAUR-model demonstrates the lowest perfor-
mance, potentially due to its output being exces-
sively standardized and concise rather than a de-
tailed reply. By surpassing all non-text-based meth-
ods, we demonstrate the effectiveness of human-
written text in mitigating LLM hallucinations. In
comparison to the text-grounded method Hump-
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back, we achieved a substantial improvement by
adapting our command wrapper to the AI response
style, resulting in significant advancements.

5.2.2 ELI5, LF-Test and Super-NI Results.
Table 4 shows the Rouge-L (R), Meteor (M), and
Bert-Score (B) of different models on ELI5, LF-
Test, and Super-NI. Our method outperforms all the
compared methods across all three benchmarks in
terms of Rouge-L, Meteor, and Bert-Score, achiev-
ing superior performance in all evaluation metrics.
This observation showcases that our dataset enables
better alignment between LLM outputs and human
annotations, indicating the efficacy of our method
in improving the performance of LLM models.
GPT-4 Evaluation. To mitigate any bias intro-
duced by conventional metrics such as Rouge,
we employed GPT-4 for evaluation on ELI5, LF-
Test, and Super-NI benchmarks. We calculated
the win/tie/lose rates by comparing the model re-
sponses with the reference responses provided by
the benchmarks. The results are shown in Figure 4.
Our DOG-INSTRUCT-model consistently achieves
the highest win rate across all benchmarks.

5.2.3 Ablation Study.
We compared the LLM performance using different
settings to construct DOG-INSTRUCT.
• w/o alignment-view: we reconstructed the meta-

training set Ω without any examples constructed
by real human-written texts;

• w/o diversity-view: we reconstructed Ω with-
out any examples fused by the instructions and
responses from ALPACA;

• w instruction back-translation: we replaced
our instruction wrapping with instruction back-
translation to reconstruct DOG-INSTRUCT while
keeping the input documents unchanged.

• w/o post-processing: we removed post-
processing when generating DOG-INSTRUCT.
Table 5 shows the experimental results. Our

DOG-INSTRUCT equipped with all components
performs best in terms of all metrics. Dramatic per-
formance degradation demonstrates that the adap-
tation of the PLM to the task format is critical to
the effectiveness of prompt tuning.

5.3 Human Evaluation

While the automatic evaluation in the previous sec-
tion provided an overall assessment of model per-
formance, we now aim to specifically evaluate the

Table 6: Human evaluation on dataset qualification. For
each dataset, we randomly sampled 50 examples. Here
↓ means the smaller the value, the better.

Dataset V (%) H (%) ↓ F (%)

ALPACA-GPT-4 94 22 92
EVOL-INSTRUCT 94 18 94
LONGFORM 76 14 84

HUMPBACK† 48 12 62

Ω 92 20 94
DOG-INSTRUCT 96 12 96

effectiveness of our DOG-INSTRUCT in reducing
hallucinations and aligning model responses with
human-like outputs.

5.3.1 Data Quality
We randomly select 50 examples from each dataset
and manually evaluate their quality. Since the gen-
erated tasks may involve knowledge from several
different domains, we require that the annotator
needs to retrieve the corresponding evidence us-
ing the search engines and compare them one by
one. The entire process of manual evaluation took
approximately 8 man-hours.
Human Evaluation Metrics. a) validation (V)
indicates the percentage of the example whose re-
sponse follows the instruction. b) hallucination
(H) measures the percentage of the example whose
response contains factual errors. c) fluency (F) in-
dicates the percentage of the example that has in-
structions and responses that are smooth and fluent.
Results. The results are shown in Figure 6. Both
ALPACA-GPT-4 and EVOL-INSTRUCT demon-
strate higher levels of hallucination due to their
complete reliance on using LLMs to generate
instruction-response pairs from scratch. By gener-
ating tasks from human-written documents, both
LONGFORM and HUMPBACK effectively mitigate
the hallucinations. Nevertheless, the inclusion of
noise in real text leads to lower fluency (F) com-
pared to datasets that are fully generated by LLMs.
In contrast, our method combines the use of human-
written text as factual support with style modifi-
cation through LLMs, leading to superior perfor-
mance across all three metrics.

5.3.2 Text-Grounded Generation Capability
For the same document, we compared the quality
of generated instruction-response pairs by employ-
ing two different methods: instruction wrapping
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Figure 4: GPT-4 automatic evaluation results on subsets of Eli5 (left), LF-Test (middle), Super-NI (right). To
account for the cost of GPT-4, each subset contains 200 examples that randomly sampled from the original test sets.
The win/tie/lose rates are computed by comparing the model responses with the given reference responses.
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Figure 5: Human evaluation comparing DOG-
INSTRUCT with various text-grounded methods. The
evaluation was carried out using the same set of human-
written documents as input for all methods.

and instruction back-translation. Specifically, we
randomly selected 100 documents from the cor-
pus used in LONGFORM and HUMPBACK to feed
our instruction wrapper M. The results, depicted
in Figure 5, demonstrate that our wrapper yields
instruction-response pairs of superior quality for
the same document. Furthermore, we randomly
sampled approximately 100 documents from our
and had GPT-4 to perform instruction wrapping.
Figure 5 illustrates that the instruction-response
pairs generated by our M exhibit competitive qual-
ity to those produced by GPT-4.

6 Related Work

Instruction Tuning Humans possess the ability to
effortlessly comprehend and execute tasks based
on verbal instructions (Touvron et al., 2023a; Ope-
nAI, 2023; Touvron et al., 2023b). Likewise, ad-
vancements in deep learning have enabled Lan-
guage Models (LLMs) (Brown et al., 2020; Ope-
nAI, 2023; Chowdhery et al., 2022; Touvron et al.,
2023a) to acquire the capability to understand and
follow instructions. Instruction tuning serves as

a promising method, involving the fine-tuning of
LLMs using training data and instructions from
a collection of upstream tasks(Sanh et al., 2022;
Mishra et al., 2022; Wei et al., 2022; Chung et al.,
2022; Longpre et al., 2023; Peng et al., 2023).
Instruction-Tuning Data Collection The collec-
tion of high-quality instruction-tuning data (Xu
et al., 2023; Yin et al., 2023; Honovich et al.,
2023) is a pressing issue in enhancing the capa-
bility of instruction-following. Previous meth-
ods can be broadly categorized into three main
groups. Firstly, methods like SUPER-NI (Wang
et al., 2022) and DOLLY (Conover et al., 2023)
rely on hiring professionals to create instructions
for diverse NLP tasks. Secondly, methods such
as SELF-INSTRUCT (Wang et al., 2023) and AL-
PACA (Taori et al., 2023) advocate for the use of
LLMs to automatically generate instruction-tuning
data, thus eliminating the need for manual labor.
Lastly, Dynosaur (Yin et al., 2023) employs LLMs
to convert existing NLP datasets from Huggingface
into instruction-tuning data at a reduced cost. The
work most related to this paper is (Köksal et al.,
2023; Li et al., 2023a). It uses a human-written doc-
ument as a natural response and leverages an LLM
to generate the corresponding instruction based on
the response. In contrast, our instruction wrapper
selects the valuable parts of the documents for con-
structing appropriate responses.

7 Conclusion & Limitation

This paper introduces a new method called instruc-
tion wrapping, which enables the automatic collec-
tion of high-quality instruction-tuning data from
human-written documents. Our trained instruction
wrapper not only utilizes documents to mitigate
response hallucinations but also modifies raw docu-
ments to align them with the standard response
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style. Through comprehensive evaluations, we
demonstrate that our method achieves remarkable
results on various widely used benchmarks while
utilizing the fewest training examples. The lim-
itations of our method are that it cannot handle
excessively long documents and can only generate
a single task for a document. In future work, we
will explore generating more complicated instruc-
tions that involve multiple longer documents.
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A Full Prompt to Construct the
Meta-Training Set

A.1 Prompt for Constructing Ωa

The full prompt for building the meta-training set
is as follows.

For the given text, design a task.

Each task contains three fields,

instruction, input, and output.

instruction defines a task in natural

language.

Instruction is a complete definition of

how an input text (e.g., a sentence or a

document) is expected to be mapped to an

output text.

Requiring instruction, input, and output

are derived from text wherever possible.

Input can be empty to indicate that the

task has no input.

Instruction must be in imperative

sentences formal.

Here are demonstrations where your

response should be as different from

theirs as possible.

{}

#text#: "{}"

A.2 Prompt for Constructing Ωd

The full prompt for building the meta-training set
is as follows.

Combine the following instruction and

output into a single coherent text.

You can add, delete, or modify some

content as appropriate to make the

combined text logically sound.

#instruction#: "{}"

#output#: "{}"
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