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Abstract
Large language models (LLMs) tend to inade-
quately integrate input context during text gen-
eration, relying excessively on encoded prior
knowledge in model parameters, potentially re-
sulting in generated text with factual incon-
sistencies or contextually unfaithful content.
LLMs utilize two primary knowledge sources:
1) prior (parametric) knowledge from pretrain-
ing, and 2) contextual (non-parametric) knowl-
edge from input prompts. The study addresses
the open question of how LLMs effectively bal-
ance these knowledge sources during the gen-
eration process, specifically in the context of
open-domain question answering. To address
this issue, we introduce a novel approach inte-
grating contrastive decoding with adversarial
irrelevant passages as negative samples to en-
hance robust context grounding during genera-
tion. Notably, our method operates at inference
time without requiring further training. We
conduct comprehensive experiments to demon-
strate its applicability and effectiveness, provid-
ing empirical evidence showcasing its superior-
ity over existing methodologies.

1 Introduction

Improving large language models (LLMs) has been
a primary focus in natural language processing re-
search. Recent strides have incorporated retrieval
mechanisms to enhance LLMs (Lewis et al., 2020;
Guu et al., 2020; Izacard and Grave, 2021; Izac-
ard et al., 2023), augmenting their ability to pro-
duce contextually relevant and precise responses
(Min et al., 2023; Mallen et al., 2023). Retrieval-
augmented LLMs, which leverage both paramet-
ric knowledge acquired during training and non-
parametric knowledge retrieved during inference,
exhibit potential in addressing challenges such
as limited memorization (Kandpal et al., 2023),
knowledge conflicts (Longpre et al., 2021), and
outdated information (Kasai et al., 2022).

*Work done during an internship at Amazon.
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relocated its capital from Nanjing to Taipei.
A republic was formally established on 1
January 1912 ... From its founding until
1949 it was based on mainland China ...

Relevant Context c+

Irrelevant Context c-

E Sour El Ghozlane Entente de Sour El
Ghozlane, known as E Sour El Ghozlane
or simply ESG for short, is an Algerian
football club based in Sour El-Ghozlane
in Bouira Province. The club was ...

Query x

What is the capital of Republic of China 
1912-1949?

Query x

What is the capital of Republic of China 
1912-1949?

Query x

What is the capital of Republic of China 
1912-1949?

Figure 1: An illustration of our proposed decoding
method. Despite the relevant context suggesting the an-
swer as “Nanjing”, it contradicts the LLM’s prior knowl-
edge. After reconciling different knowledge sources,
the model correctly predicted the answer by boosting
Nanjing’s plausibility and reducing Taipei’s likelihood.
This decision was based on considering Nanjing to be
less likely given the irrelevant context, while Taipei is
deemed more probable.

An ongoing question pertains to how LLMs
ought to balance these two knowledge sources
during generation. Previous research suggests
that LLMs can falter in adequately attending to
newly introduced information within the contex-
tual knowledge. To tackle this issue, context-aware
decoding (CAD; Shi et al., 2023a) has been pro-
posed. By employing a contrastive output distribu-
tion, CAD highlights discrepancies in output prob-
abilities when the model operates with and without
context. Their experiments illustrate CAD’s ef-
fectiveness in overriding the model’s parametric
knowledge in cases of conflict with provided con-
text. However, while prior works often assert con-
text as inherently reliable, our perspective argues
that LLMs should possess the capacity to navigate
and reconcile both parametric and non-parametric
knowledge, ultimately refining their ability to strike
a judicious balance. This paper undertakes the de-
velopment and assessment of a novel decoding
strategy tailored for retrieval-augmented LLMs,
seeking equilibrium in utilizing parametric and
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non-parametric knowledge sources. The proposed
method involves a contrastive decoding approach
(Li et al., 2023), integrating both relevant and irrel-
evant contexts, wherein the irrelevant context can
be adversarially crafted retrieval or bottom-ranked
retrieved text. Notably, we emphasize the criticality
of leveraging irrelevant contexts, a distinguishing
feature of our approach, with the expectation that
the model will diverge from incorrect responses.

We conducted extensive experiments on diverse
datasets like Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), and PopQA
(Mallen et al., 2023). We employed a range of
vanilla LLMs, including OPT (Zhang et al., 2022),
Falcon (Almazrouei et al., 2023), LLaMA fami-
lies (Touvron et al., 2023a,b), and instruction-tuned
Flan-T5 (Chung et al., 2022). Through this compre-
hensive evaluation, we provide empirical evidence
supporting the superiority of incorporating irrele-
vant contexts in assisting LLMs to manage knowl-
edge conflicts and seamlessly integrate contexts for
generating responses in open-domain question an-
swering against conventional decoding approaches
without necessitating further fine-tuning. We also
explore the impact of different retrieval sources
on the decoding strategy, emphasizing the impor-
tance of refining retrieval mechanisms for further
enhancements in performance.

Additionally, the paper explores different facets
of the proposed decoding approach, including the
impact of various hyperparameters, the effect of
scaling model sizes, and the selection of irrelevant
contexts. This exploration provides deeper insights
into leveraging parametric and non-parametric
knowledge sources. We demonstrate that although
our approach outperforms regular decoding across
most model sizes, it particularly excels with larger
models. Moreover, we show our method’s effec-
tiveness even with simple fixed irrelevant contexts.
Additionally, our approach exhibits consistent per-
formance improvements in answering questions
with knowledge across varying levels of popularity.
Beyond benchmarking against existing methods,
this study also explores practical implications and
constraints of the proposed decoding strategy, de-
lineating pathways for future research in generative
tasks beyond question answering.

2 Related Works

Retrieval-augmented LLMs While LLMs re-
lying solely on their parameters can capture ex-

tensive world knowledge, they exhibit limited
memorization for less frequent entities (Kandpal
et al., 2023), susceptibility to hallucinations (Shus-
ter et al., 2021), and temporal degradation (Luu
et al., 2022; Jang et al., 2022). Furthermore, the
acquired parametric knowledge swiftly becomes
outdated (Kasai et al., 2022). Recent research
emphasizes the enhancement of LLMs with non-
parametric memories, referred to as retrieved text
chunks, enabling smaller models to match the per-
formance of larger counterparts (Izacard et al.,
2023). Studies exploring the integration of re-
trieved non-parametric memories within intermedi-
ate states or output spaces have shown effectiveness
in overcoming LLM limitations in memorization
and knowledge updating (Zhong et al., 2022; Min
et al., 2023). Mallen et al. (2023) extensively an-
alyze the circumstances favoring the benefits of
retrieval augmentation. They demonstrate its effi-
cacy in less frequent occurrences but caution about
potential misguidance for LLMs. Building upon
these insights, they introduce adaptive retrieval and
empirically showcase its promising effectiveness.

Knowledge Conflicts In cases of conflicting
knowledge in updated documents, language mod-
els are expected to generate responses based on
provided contexts rather than relying solely on out-
dated parametric knowledge. Retrieval-augmented
LLMs (Min et al., 2023; Shi et al., 2023b; Izacard
et al., 2023) particularly benefit from this scenario
by employing externally retrieved documents to
enrich their knowledge. However, the mere addi-
tion of documents doesn’t consistently influence
model predictions, as current LLMs often over-
look contexts and heavily rely on prior parametric
knowledge (Longpre et al., 2021; Chen et al., 2022).
Zhou et al. (2023) aim to improve a model’s fidelity
to context using prompting-based method, but
are constrained to large-scale instruction-finetuned
LLMs like OpenAI’s gpt-3.5-turbo-instruct. Zhang
et al. (2023) address how to combine retrieved and
parametric knowledge to get the best of both worlds
for open-domain QA, but their method requires fur-
ther training discriminators with silver labels. In
contrast, our work investigates a decoding strategy
applicable to any LLMs without any training.

Contrastive Decoding The exploration of con-
trastive decoding methods extensively addresses
text generation. MMI-based decoding (Li et al.,
2016) utilizes a contrastive formulation to enhance
output diversity in dialog generation. DExperts
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(Liu et al., 2021) dampens the output distribution of
an anti-expert (e.g., exposed to toxic language) to
guide generations away from undesired attributes.
Contrastive decoding (Li et al., 2023) demotes an
amateur model (e.g., models with minimal parame-
ters) to distill expert knowledge from larger, com-
petitive models. Pozzobon et al. (2023) introduce
an innovative toxicity mitigation approach that con-
trasts and ensembles the next token probabilities
obtained from a LLM using both toxic and non-
toxic retrievals. Context-aware decoding (Shi et al.,
2023a) emphasizes output probability differences
using a contrastive ensemble between model pre-
dictions with and without non-parametric knowl-
edge. It effectively overrides a model’s parametric
knowledge when it conflicts with the provided non-
parametric information. While our work builds
upon the concept of context-aware decoding, one
key distinction lies in the integration of irrelevant
context. Unlike Shi et al.’s approach, which fo-
cuses solely on relevant non-parametric knowledge,
our method incorporates potentially irrelevant non-
parametric knowledge into the inference process
with the expectation that the model will deviate
from incorrect responses.

3 Methodology

3.1 Problem Statement

We consider decoding approaches for open-domain
question answering, where the large language
model θ receives an input query x and aim to gener-
ate a faithful answer y. During the generation of yt

at each time step t, the language model computes
the logits zt ∈ R|V | for the t-th token, where V
represents the vocabulary. The probability distribu-
tion over the vocabulary is derived by normalizing
and exponentiating zt as follows:

pθ(yt|x,y<t) = softmax(zt).

Prompting the model for its parametric knowl-
edge involves sampling the response from the prob-
ability distribution conditioned on the query x and
the previously generated response y<t:

yt ∼ pθ(yt|x,y<t).

Similarly, when incorporating additional con-
text c, containing external knowledge beyond the
model’s parametric knowledge, our model θ gen-
erates a response y considering the query, context,
and the previously generated response:

yt ∼ pθ(yt|c,x,y<t).

We observe two sources of knowledge (para-
metric vs. non-parametric) contributing to model
responses, which may sometimes conflict (Long-
pre et al., 2021; Neeman et al., 2023). While some
argue for prioritizing non-parametric knowledge
over potentially outdated parametric knowledge
(Shi et al., 2023a), we propose the importance of
striking a balance between these sources as non-
parametric knowledge, derived from external re-
trievers, may also contain inaccuracies.

3.2 Multi-Input Contrastive Decoding

Context can be both beneficial and problematic.
Thus, we segregate context c into relevant c+ and
irrelevant c−. At each decoding time step t, our
approach combines the model’s prediction based
on its parametric knowledge (zt) with predictions
utilizing relevant (z+t ) and irrelevant (z−t ) contexts:

yt ∼ softmax(zt + α(z+t − z−t )),

where α is a hyperparameter that governs the ex-
tent of modification to the parametric answer (zt).
Equivalently,

yt ∼ p̃θ(yt|c+, c−,x,y<t)

∝ pθ(yt|x,y<t)

(
pθ(yt|c+,x,y<t)

pθ(yt|c−,x,y<t)

)α

.

In essence, a response will exhibit high proba-
bility only if it holds high likelihood under both
learned parametric knowledge and relevant non-
parametric knowledge, while demonstrating low
probability under irrelevant non-parametric knowl-
edge. The ratio pθ(yt|c+,x,y<t)

pθ(yt|c−,x,y<t)
functions as a scal-

ing factor used to modify the parametric answer for
the given input query. A larger α implies a greater
modification, with α = 0 resulting in no modi-
fication, indicating regular decoding using solely
parametric knowledge without additional context.

Fundamentally, our proposed decoding operates
as an ensemble involving the logits zt, z+t , and z−t .
A similar ensemble approach has been explored
in Liu et al. (2021) and Li et al. (2023) for con-
trollable and open-ended text generation, though
their ensembles are based on predictions from dif-
ferent models. Another similar work to ours is
CAD (Shi et al., 2023a), which examines scenarios
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where the model’s parametric knowledge contra-
dicts non-parametric knowledge. CAD essentially
constitutes a contrastive ensemble between zt and
z+t . In this study, we concentrate on the general
case of open-domain question answering, propos-
ing a dynamic adjustment of α, controlling the
degree of modification without treating it as a fixed
hyperparameter. We provide an illustration of our
method in Figure 1.

Dynamic α In prior logit adjustment methods
(Liu et al., 2021; Malkin et al., 2022; O’Neill et al.,
2023; Shi et al., 2023a; Pozzobon et al., 2023), α re-
mains a fixed hyperparameter, requiring exhaustive
search within the parameter space. Our innovation
lies in dynamically setting α at each time step t
without supervision, enabling fine-grained token-
level adjustments. We estimate LLM confidence
following Jiang et al. (2021) by computing the high-
est probability from the normalized predicted token
probabilities at each step:

C = max
y′∈V

Pθ(y
′|x,y<t).

Similarly, we estimate LLM confidence using
relevant non-parametric knowledge c+:

CR = max
y′∈V

Pθ(y
′|c+,x,y<t).

At each time step, the value of α is determined
as follows:

α =

{
1− C, if C > CR,

CR, otherwise.

Our rationale is that higher LLM confidence in
parametric knowledge warrants minor adjustments,
while greater confidence in relevant non-parametric
knowledge necessitates more substantial modifica-
tions to the parametric answer. Note that we use
1 − C instead of using C − CR to avoid the case
where both C and CR are low. In such case, a
larger modification is still desired.

Selection of c+ and c− Choosing relevant con-
text c+ is straightforward and we follow the
retrieval-augmented LLM literature where we use
the top retrieved texts from a retrieval module by
running our input query over an external knowl-
edge base. However, selecting irrelevant context
c− is not trivial. Potential methods include using
lower-ranked retrievals, random text, or even delib-
erately crafted adversarial text. The primary aim

of c− is to provide adversarial knowledge to elicit
incorrect predictions that can be disregarded from
the final token distribution. We explore various
strategies for selecting c− in Section 5.3.

4 Experimental Setup

The present study revolves around open-domain
question answering, which involves tasking models
to generate responses to factual questions in natural
language. Specifically, we concentrate on the open-
book QA setting (Roberts et al., 2020), where we
harness non-parametric knowledge by supplying
relevant contexts along with the question itself to
the model during inference. Consistent with prior
investigations, we utilize prompting techniques to
assess the models’ performance.

4.1 Datasets and Metrics

Datasets Our method undergoes evaluation us-
ing three popular QA benchmarks: TriviaQA (Joshi
et al., 2017), Natural Questions (NQ; Kwiatkowski
et al. 2019), and PopQA (Mallen et al., 2023). Triv-
iaQA comprises trivia questions sourced from the
Web, whereas NQ consists of questions derived
from actual Google search queries, with answer
spans located in Wikipedia articles identified by
annotators. PopQA is a novel entity-centric open-
domain QA dataset covering factual information
about entities across a spectrum of popularity, in-
cluding long-tail knowledge often overlooked in
other popular QA datasets.

Metrics In line with prior research, our primary
metric for evaluating performance is the exact
match (EM), which determines whether the pre-
dicted sequence matches precisely with one of the
correct answers provided within the dataset.

4.2 Baselines and Models

Baselines Baseline approaches include regular
decoding with greedy decoding, following prior
work (Izacard and Grave, 2021). We prompt the
model for an answer by providing contextual infor-
mation. While our primary focus remains on the
open-book QA setting, we also present a baseline
employing the closed-book QA setting, where the
prompt consists solely of questions. This explo-
ration aims to scrutinize the parametric knowledge
of LLM. Additionally, we compare our method to
CAD, which accentuates the difference in output
probabilities when employing a model with and
without context.
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Models Our decoding method undergoes eval-
uation across models varying in scale: Flan-T5
(XL-3B, XXL-11B; Chung et al. 2022), Falcon
(7B, 40B; Almazrouei et al. 2023), OPT (6.7B,
13B, 30B, 66B; Zhang et al. 2022), Llama (7B,
13B, 33B, 65B; Touvron et al. 2023a), and Llama
2 (7B, 13B, 70B; Touvron et al. 2023b), without
additional fine-tuning.

Instructions We employ a straightforward tem-
plate, i.e., “Answer the following question.
Question: <question> Answer:”, to for-
mat all questions for generative prediction
in the closed-book setting. For the open-
book setting, the template becomes “Answer
the question based on the context
below. Context: <context> Question:
<question> Answer:”. Although more so-
phisticated prompts were trialed in preliminary
experiments, their marginal improvement over
the simple template did not warrant their use,
especially considering the risk of overfitting the
model. In alignment with prior work (Chung et al.,
2022), we employ 5-shot prompting for all models.

Retrieval models As previously mentioned, we
explore a retrieval-augmented LLM approach in the
open-book setting. This involves running an off-
the-shelf retrieval system offline to obtain relevant
context from Wikipedia for each query1, which
is then concatenated with the original query. We
utilize two widely-used retrieval systems: BM25
(Robertson and Zaragoza, 2009) and Contriever
(Izacard et al., 2022). BM25 operates as a static
term-based retriever without training, while Con-
triever is pre-trained on extensive unlabeled cor-
pora. In this study, we leverage Contriever-MS
MARCO, a Contriever fine-tuned on MS MARCO
(Bajaj et al., 2018). Consistent with Mallen et al.
(2023), we utilize the top one retrieved paragraph.
Additionally, TriviaQA and NQ datasets provide
gold contexts, which we employ to measure the
theoretical upper bound of our proposed decoding
method. We also investigate the impact of using
different retrieval methods in Section 5.2.

Setting alpha Our approach introduces a hyper-
parameter α to govern the degree of modification
atop LLM’s parametric knowledge. For CAD, af-
ter a grid search using the validation set, we set
α = 0.5. In fixed alpha experiments for our

1We utilize the Wikipedia dump from 2018.

Model Decoding NQ TQA PopQA

Flan-T5 11B

Reg.-Cl. 14.82 40.5 13.98
Reg.-Op. 57.84 79.36 31.16
CAD 47.56 66.08 26.28
Ours-F 59.58 76.75 31.37
Ours-D 63.16 80.09 34.64

Falcon 40B

Reg.-Cl. 28.56 71.74 28.79
Reg.-Op. 53.32 72.05 39.16
CAD 49.36 20.72 35.31
Ours-F 53.77 79.56 39.87
Ours-D 50.53 80.73 38.28

OPT 66B

Reg.-Cl. 13.71 39.65 15.62
Reg.-Op. 48.73 62.38 34.77
CAD 45.93 24.51 33.45
Ours-F 51.97 68.11 34.83
Ours-D 44.41 63.89 33.44

Llama 65B

Reg.-Cl. 34.13 75.72 35.9
Reg.-Op. 55.32 74.76 40.31
CAD 48.03 24.51 31.97
Ours-F 57.01 76.61 39.9
Ours-D 52.35 80.28 40.58

Llama-2 70B

Reg.-Cl. 37.87 79.69 40.98
Reg.-Op. 56.07 76.07 42.7
CAD 47.53 31.36 33.05
Ours-F 58.86 78.38 42.59
Ours-D 55.24 81.7 44.3

Table 1: Results of models using gold retrieval (NQ,
TriviaQA), and Contriever retrieval (PopQA). Reg.-Cl.
refers to regular decoding with closed-book setting (i.e.
no retrieval). Reg.-Op. refers to regular decoding with
open-book setting (i.e. with retrieval). Ours-F refers
to our method utilizing a fixed alpha, while Ours-D
designates our method incorporating a dynamic alpha.

method, we set α = 1.0. In dynamic alpha ex-
periments, we do not have to set alpha values ex-
plicitly. We explore the effect of α on our method
in Section 5.4.

5 Results

We present the results of models featuring the
largest variants in Table 1. Notably, employing reg-
ular decoding within an open-book setting consis-
tently outperforms the closed-book setting across
most models. This inclination suggests that LLM
systems require non-parametric knowledge to excel
in tasks demanding substantial knowledge assim-
ilation. Interestingly, the performance of Llama
65B and Llama 2 70B in the closed-book setting
surpasses that in the open-book setting concern-
ing TriviaQA, indicating these models’ proficiency
in factual knowledge retention without resorting
to non-parametric knowledge. This finding possi-
bly implies that TriviaQA, being the oldest dataset
among the three, potentially overlaps with the train-
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Figure 2: Performance comparison of our method against regular decoding across various sizes of Llama 1 models.

ing data of these LLMs.
Crucially, our proposed decoding approach

demonstrates superior performance across all three
datasets compared to both regular decoding and
CAD.2 Noteworthy variations exist in the efficacy
of employing either the fixed alpha strategy or the
dynamic alpha strategy; while in certain instances
the fixed alpha approach exhibits better perfor-
mance, the dynamic alpha approach outperforms
in others. In subsequent references within this pa-
per, when mentioning our method, we refer to the
setting that delivers superior performance based on
Table 1, without explicitly specifying whether it
involves dynamic or fixed alpha.

5.1 Effect of Model Scaling

Thus far, our study has elucidated the efficacy of
our proposed decoding approach across diverse
model families. This segment aims to examine
the impact of scaling the model’s parameter count
on our methods. The results pertaining to Llama
variants–specifically, Llama 7B, 13B, 33B, and
65B–are illustrated in Figure 2. We provide the re-
sults of scaling for other models in Appendix A. An
observable trend emerges wherein, with an increase
in model size, the disparity between closed-book
and open-book performance diminishes, indicating
that larger models possess greater potential for as-
similating parametric knowledge. Furthermore, our
decoding method consistently outperforms regular
decoding across all model sizes, except for a few
instances in the case of PopQA with smaller model
variants. We posit this discrepancy to the absence
of gold context within the PopQA dataset, leading
to reliance on Contriever’s retrieval, which may

2The CAD results were based on our implementation, due
to the unavailability of the original CAD implementation at
the time of our study.

occasionally introduce inaccuracies.

5.2 Using Different Retrievals

As previously highlighted, our investigation centers
on retrieval-augmented LLMs, involving the imple-
mentation of retrieval modules over a knowledge
base concerning a user query. Subsequently, the
retrieved relevant passage supplements the prompt
to facilitate the generation of answers by the LLM.
In earlier experiments, we utilized the provided
gold context by NQ and TriviaQA to establish the
theoretical upper bound of our proposed decoding
method. This segment aims to examine whether
the utilization of off-the-shelf retrieval mechanisms
would influence the efficacy of our proposed meth-
ods. In Figure 3, we present a comparative analysis
between closed-book regular decoding and our de-
coding method, utilizing retrieval passages from
BM25, Contriever, or the provided gold context.

It is pertinent to note that the PopQA dataset
lacks gold context. The comparative analysis in-
dicates that results derived from Contriever ex-
hibit superiority over those derived from BM25.
Moreover, a substantial disparity exists between
outcomes obtained through retrieval and those de-
rived from leveraging gold context. It is essen-
tial to underscore that while these observations do
not negate the efficacy of our proposed decoding
method, they do suggest that enhancements to the
retrieval module could yield improved outcomes.

5.3 Selection of Irrelevant Context

An essential aspect of our decoding method in-
volves the incorporation of the c− irrelevant con-
text. Here, we investigate various strategies for
selecting c− and its impact on our methods. Ini-
tially, we propose employing a random selection
of c− from the complete pool of available contexts
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Figure 3: Performance comparison between regular decoding and our method using different sources of retrievals.

Irr. Passage NQ TQA PopQA

Random 56.74 81.28 43.23
Fixed 57.95 80.84 43.82
Fixed (rand. perm.) 57.17 80.68 42.98
Most distant 58.86 81.7 44.3

Table 2: Comparison of performance on Llama 2 70B
across various methods for selecting irrelevant c−: ran-
dom selection, fixed adversarially constructed contexts,
fixed context with random word permutation, and pas-
sages with the most distance from the relevant context.

(ensuring that the randomly selected c− differs
from c+). Subsequently, we manually construct
an adversarial c− devoid of meaningful or useful
information, details of which are provided in Ap-
pendix B. Additionally, we experiment with shuf-
fling the word order within this fixed c−. Another
approach for determining c− involves using lower-
ranked retrievals. However, increasing the retrieval
size arbitrarily is computationally inefficient, and
even within the top-100 retrievals, relevant infor-
mation can be present. Therefore, we approximate
the bottom-ranked retrieval by selecting the c− that
exhibits the most distance from c+, based on the
cosine distance of their embeddings in the retrieval
module. The comparison results using Llama 2
70B are presented in Table 2. It is evident that c−

with the most distance yields the best performance.
Throughout our experiments detailed in this study,
if not explicitly specified, we employ the most dis-
tant option for selecting c−. However, if computing
distance proves computationally expensive, the use
of a fixed adversarial c−, as demonstrated in our
results, remains a viable alternative.

5.4 Adjusting the Knowledge Modification

Our proposed decoding method introduces the hy-
perparameter α, regulating the degree of modifica-
tion applied to the parametric answer for a given
input query. A larger α signifies a more substantial
modification, while α = 0 denotes no alteration,
thereby reducing decoding to a regular decoding
scenario. Despite outlining a strategy to dynami-
cally set this alpha value, we remain interested in
assessing the impact of different alpha values on
the efficacy of our method. We conducted exper-
iments involving the adjustment of α levels and
present the outcomes obtained from Llama models
in Figure 4. Our analysis reveals that as the alpha
values increase, the effectiveness of the method di-
minishes substantially. The model achieves optimal
performance at α = 1.0 , outperforming all other
alpha settings. Furthermore, setting α = 1.0 yields
consistent improvements over regular decoding on
both the NQ and TriviaQA datasets. For PopQA,
while a fixed α value offered no improvement over
regular decoding, the dynamic setting we propose
led to significant gains, as shown in Table 1.

5.5 Answering across Knowledge Popularity

The utility of retrieval mechanisms becomes ev-
ident in addressing less prevalent factual knowl-
edge, an area where LLMs often exhibit limitations.
Therefore, we conducted an analysis to evaluate the
efficacy of our proposed decoding approach in fa-
cilitating LLMs to accurately respond to factual
questions across a spectrum of popularity. Follow-
ing Mallen et al. (2023), we utilized the popularity
of entities gauged by Wikipedia’s monthly page
views as an indicator of their frequency in web dis-
cussions. Our findings, presented in Figure 5, jux-
tapose the performance of models employing reg-
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Figure 5: Comparison of performance between regular
decoding (open-book) and our method on questions with
varying levels of knowledge popularity.

ular decoding within an open-book setting against
those employing our proposed method. The results
manifest a consistent trend wherein our proposed
method consistently outperforms regular decoding
under an open-book setting across varying levels of
popularity. This observation underscores the effi-
cacy of our decoding strategy in assisting LLMs to
generate more accurate responses to factual queries
across a diverse range of entity popularities.

5.6 Resolving Knowledge Conflicts

As previously highlighted in the manuscript, tasks
reliant on knowledge typically draw from two
knowledge sources: parametric knowledge, ac-
quired during training, and non-parametric knowl-
edge, accessed via retrieval modules during infer-
ence. The issue of knowledge conflicts, wherein
the contextual (non-parametric) information con-

Model Decoding NQ-SUB

Flan-T5 11B

Reg.-Cl. 0.19
Reg.-Op. 56.4
CAD 51.9
Ours 57.55

Falcon 40B

Reg.-Cl. 0.13
Reg.-Op. 46.78
CAD 45.79
Ours 48.34

Llama 65B

Reg.-Cl. 0.08
Reg.-Op. 59.25
CAD 60.41
Ours 61.65

Llama-2 70B

Reg.-Cl. 0.02
Reg.-Op. 57.63
CAD 53.23
Ours 58.34

Table 3: Comparison of decoding methods on the knowl-
edge conflict dataset. Reg.-Cl. and Reg.-Op. denote
regular decoding in closed-book and open-book settings.

tradicts learned knowledge, has been formally ad-
dressed by Longpre et al. (2021) to understand how
models utilize these dual sources of knowledge.

To generate question-answer pairs manifesting
knowledge conflicts, we followed the methodol-
ogy proposed by Longpre et al. (2021). Initially,
we identified questions in the NQ dataset that con-
tained named entity answers. Subsequently, we
obtained the relevant context for each question and
replaced the gold answer entity in the context with
a random entity. In this setup, an accurate LLM
should produce the substituted entity as the answer
when provided with the question and the modified
context, disregarding its pre-learned parametric an-
swer. This resulting dataset, termed NQ-SUB, was
created for assessing models in scenarios involving
knowledge conflicts. The performance results on
NQ-SUB are presented in Table 3. Remarkably, all

4232



models exhibited poor performance in the regular
closed-book setting, given that the task requires the
model to disregard its parametric knowledge. How-
ever, our proposed decoding method demonstrated
superior performance compared to both regular de-
coding and CAD on this knowledge conflict task.
The comparative results emphasize the effective-
ness of our proposed decoding approach in address-
ing knowledge conflicts, particularly in scenarios
where models encounter contradictions between
their learned and contextual knowledge.

6 Conclusion

This study introduces a novel decoding strategy,
employing contrastive decoding to incorporate rel-
evant and irrelevant context. Through diverse ex-
periments and analyses across datasets and model
scales, our approach consistently outperforms reg-
ular decoding methods. Notably, it excels in man-
aging knowledge conflicts, surpassing both regular
decoding and CAD. Moreover, our exploration of
retrieval sources underscores the need for refining
these modules to enhance efficacy. The demonstra-
tion of the method’s effectiveness in open-domain
question answering also sets the stage for future re-
search. The method’s versatility suggests potential
applications in various generative tasks, motivating
our future exploration in tasks like summarization.

Limitations

Our study acknowledges several limitations that
warrant consideration. First, we acknowledge
the restriction imposed by employing a singular
prompt template. The computational complexity
inherent in our method limited the scope of experi-
ments conducted within this framework. However,
this constraint was pivotal in maintaining consis-
tency across our comparisons, ensuring the reliabil-
ity and robustness of the obtained results despite
the limitation in the number of explored templates.

Secondly, while our decoding method was
specifically showcased in the context of Question
Answering (QA) using greedy decoding, another
limitation of this study is that we haven’t explored
its application to other generative tasks. It’s es-
sential to note that our approach is designed as
a general decoding framework applicable to vari-
ous generative tasks. Thus, expanding this work
to other domains such as summarization and miti-
gating language hallucination remains a promising
avenue for future exploration.

Furthermore, it’s imperative to recognize that
the scalability and generalizability of our method
across different problem domains and decoding
strategies might present further challenges and con-
siderations. Extending our investigation to encom-
pass a broader array of prompt templates and de-
coding strategies (such as nucleus sampling) could
potentially reveal nuanced insights into the adapt-
ability and effectiveness of our proposed method.

Additionally, it is crucial to note that the de-
coding time required for our method is longer than
regular decoding, approximately three times longer,
owing to decoding using three logits distributions
simultaneously. However, there exists potential for
mitigating the time complexity by distributing the
decoding of different distributions across multiple
GPU machines, thereby enabling parallelization
and potentially reducing the computational over-
head. This approach might alleviate the time con-
straints associated with our decoding method, ren-
dering it more feasible for applications requiring
low decoding latency.
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A Additional Results on Scaling
Experiments

We present additional scaling experiment results
for different model variants. Specifically, we illus-
trate the outcomes for Flan-T5 variants, 3B and
11B, in Figure 6. The results for Falcon variants,
particularly Falcon 7B and 40B, are depicted in
Figure 7. Moreover, we showcase the results for
OPT variants, encompassing OPT 6.7B, 13B, 30B,
and 66B, in Figure 8. Additionally, the findings
pertaining to Llama 2 variants, including Llama 2
7B, 13B, and 70B, are illustrated in Figure 9. We
can see that our proposed decoding method outper-
forms regular decoding with open-book setting in
most settings across different datasets and model
sizes.

B Additional Details on Irrelevant
Context

Here we provide the meticulously designed adver-
sarial c− irrelevant context that is used as the fixed
c− for every query:

“It was a pleasant weather day, with seasonally
average temperatures. The local legislative and
academic governing bodies held routine meetings
regarding budgets and policies. Students focused
on their studies while athletes practiced for upcom-
ing competitions. Residents tended to their jobs
and daily tasks around their neighborhood. Noth-
ing particularly eventful occurred in the community.
It was an ordinary midweek day. The weather was
typical for the time of year without any extreme
events. Overall it was an average day in the com-
munity with people pursuing their regular daily
activities.”

Here is the same fixed c− but with word order
permuted:

“an routine Overall was of community. average
focused for The around tended upcoming their was
policies. their budgets and Residents to eventful
held competitions. It particularly extreme with aca-
demic temperatures. was day. weather local The
their studies events. it meetings average pleasant
typical Nothing ordinary time seasonally legislative
people an the daily the Students in a neighborhood.
activities. community pursuing weather and while
in midweek regarding athletes occurred tasks the
daily jobs It governing year bodies regular with
their for day and practiced on day, was without
any”
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Figure 6: Performance comparison of our method against regular decoding across various sizes of Flan-T5 models.
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Figure 7: Performance comparison of our method against regular decoding across various sizes of Falcon models.
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Figure 8: Performance comparison of our method against regular decoding across various sizes of OPT models.
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Figure 9: Performance comparison of our method against regular decoding across various sizes of Llama 2 models.
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