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Abstract

Chemical named entity recognition (NER)
models are used in many downstream tasks,
from adverse drug reaction identification to
pharmacoepidemiology. However, it is un-
known whether these models work the same
for everyone. Performance disparities can po-
tentially cause harm rather than the intended
good. This paper assesses gender-related per-
formance disparities in chemical NER systems.
We develop a framework for measuring gen-
der bias in chemical NER models using syn-
thetic data and a newly annotated corpus of over
92,405 words with self-identified gender infor-
mation from Reddit. Our evaluation of mul-
tiple biomedical NER models reveals evident
biases. For instance, synthetic data suggests
that female names are frequently misclassified
as chemicals, especially when it comes to brand
name mentions. Additionally, we observe per-
formance disparities between female- and male-
associated data in both datasets. Many sys-
tems fail to detect contraceptives such as birth
control. Our findings emphasize the biases in
chemical NER models, urging practitioners to
account for these biases in downstream appli-
cations.

1 INTRODUCTION

Chemical named entity recognition (NER) is
the extraction of chemical mentions (e.g., drug
names) from the text. Chemical NER is es-
sential in many downstream tasks, from phar-
macovigilance (O’Connor et al., 2014) to facili-
tating drug discovery by mining biomedical re-
search articles (Agarwal and Searls, 2008). For
instance, Chemical NER systems are the first step
in pipelines developed to mine adverse drug reac-
tions (ADRs) (Farrugia and Abela, 2020; Mammì
et al., 2013). However, it is unknown whether these
systems perform the same for everyone. Who bene-
fits from these systems, and who can be harmed? In
this paper, we present a comprehensive analysis of

gender-related performance disparities of Chemical
NER Systems.

Performance disparities have recently received
substantial attention in the field of NLP. For ex-
ample, there are differences in text classification
models across sub-populations such as gender, race,
and minority dialects (Dixon et al., 2018; Park et al.,
2018; Badjatiya et al., 2019; Rios, 2020; Lwowski
and Rios, 2021; Mozafari et al., 2020). Perfor-
mance disparities can manifest in multiple parts
of NLP systems, including the pre-trained mod-
els (e.g., word embeddings) and their downstream
applications (Zhao et al., 2019; Goldfarb-Tarrant
et al., 2021; Zhao et al., 2017). While previous re-
search has explored these disparities for NER sys-
tems, the focus has been largely on synthetic data
and non-biomedical NER applications (Mehrabi
et al., 2020). Our study addresses this gap by
providing a comprehensive examination of gender-
related performance disparities in Chemical NER,
focusing on both synthetic and real-world data.

This paper is most similar to Mehrabi et al.
(2020) with two primary distinctions. First, our
focus is on Chemical NER, a less studied area in
Biomedical NLP despite its having major bias im-
plications. Second, while Mehrabi et al. (2020)
uses synthetic data and templates (e.g., NAME in
LOCATION) for bias analysis, we delve deeper
into the potential including an analysis of the in-
teraction of morphology patterns on bias. For in-
stance, Lieven et al. (2015) highlighted a prefer-
ence for linguistically feminine brand names in the
market, leading drug companies to adopt such nam-
ing conventions. These patterns in training data can
inadvertently cause models to misclassify female
names as chemicals.

We also examine real-world data looking at the
performance of chemical NER systems on groups
that identify as male or female. For instance, Sund-
bom et al. (2017) shows that women are more fre-
quently prescribed antidepressants than men. Other
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studies, like Riley III et al. (1998), reveal gender
differences in pain sensitivity and opioid prescrip-
tions, with women receiving opioids twice as of-
ten. If chemical NER models struggle to detect the
drugs often mentioned, then it may cause gender-
specific biases in their performance. Our analysis
identifies some of these patterns in real data.

Overall, this paper presents a dual approach: we
explore template data but also assemble and anno-
tate a novel real-world dataset with self-identified
gender information. 1 Synthetic data allows us to
target specific biases in the models (e.g., morpho-
logical issues). Likewise, we believe exploring data
from people who have self-identified their demo-
graphic information will provide a more realistic
understanding of how these models will perform
based on how people write and what they write
about.

Our main contributions are two-fold:
1. We introduce a novel annotated Chemical

NER dataset for social media data. More-
over, the dataset contains self-identified gen-
der information to be used to measure gender
bias in Chemical NER models. To the best of
our knowledge, this is the first Reddit-based
Chemical NER dataset, and it is the first Chem-
ical NER dataset with self-identified gender
information.

2. We provide a comprehensive testing frame-
work for gender bias in Chemical NER using
both synthetic and real-world data. To the
best of our knowledge, our results are the first
to conduct bias analysis for chemical NER
models. This allows a better understanding of
modern chemical NER techniques.

2 RELATED WORK

Prior work extensively curated labeled data for
chemical NER and developed domain-specific
models. For example, the CHEMDNER cor-
pus (Krallinger et al., 2015) was created for the
2014 BioCreative shared task on chemical extrac-
tion from text. Researchers recognize the impor-
tance of these systems and are working to make
them as fair and accurate as possible. Likewise,
the CDR (Li et al., 2016) dataset was developed
to detect chemical-disease relations for the 2015
shared task. Similar to traditional NER tasks (Li
et al., 2020), a broad range of approaches have

1The dataset and datasheet are available at https://
zenodo.org/records/10905462

been proposed to detect chemicals (Rocktäschel
et al., 2012; Chiu et al., 2021; Lee et al., 2020; Sun
et al., 2021; López-Úbeda et al., 2021; Weber et al.,
2021), from traditional conditional random fields
to deep learning methods. Many recent neural
network-based advances can be broken into three
main groups of models, word, character, and con-
textual embedding-based models. For instance, Lee
et al. (2020) trained a biomedical-specific BERT
model that improved on many prior state-of-the-art
results. HunFlair (Weber et al., 2021) introduced
a method that matches the word, contextual, and
character embeddings into a unified framework to
achieve state-of-the-art performance. In this pa-
per, we evaluate several state-of-the-art systems.
Particularly, we focus on systems that use word
embeddings, sub-word embeddings, and character
embeddings, which allows us to understand the
impact of morphological features of the chemical
names on gender bias.

Several previous works have measured and high-
lighted bias in different NLP tasks. For instance,
Sap et al. (2019) measures the bias of offensive
language detection models on African American
English. Likewise, Park et al. (2018) measures gen-
der bias of abusive language detection models and
evaluates various methods such as word embedding
debiasing and data augmentation to improve bi-
ased methods. Davidson et al. (2019) shows racial
and ethnic bias when identifying hate speech on-
line and that tweets in the black-aligned corpus
are more likely to be assigned hate speech. Gaut
et al. (2020) creates the WikiGenderBias dataset
to evaluate the gender bias in the relation extrac-
tion (RE) model, confirming that the RE system
behaves differently when the target entities are of
different genders. Cirillo et al. (2020) demonstrate
that biases in biomedical applications can stem
from various sources, such as skewed diagnoses re-
sulting from clinical depression scales that measure
symptoms more prevalent in women, potentially
leading to a higher reported incidence of depres-
sion among this group (Martin et al., 2013). Other
sources include the underrepresentation of minor-
ity populations such as pregnant women (Organi-
zation and for Women’s Health in Society, 2009),
non-representative samples in AI training data, and
inherent algorithmic discrimination, all potentially
contributing to inaccurate and unfair results.

Recent research has shown that although Large
Language Models (LLMs) are now increasingly
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being used for tasks such as Named Entity Recog-
nition (Ashok and Lipton, 2023; Wang et al., 2023)
and relation classification (Wan et al., 2023), they
also have the potential to reinforce or exacerbate
gender biases, which emphasizes the importance
of careful deployment to prevent the reinforcement
of stereotypes (Kotek et al., 2023).

Overall, several metrics have been proposed to
measure gender bias. One of the most commonly
used metrics involves measuring bias by examin-
ing model performance disparities on male and
female data points (Kiritchenko and Mohammad,
2018). Performance disparities have been observed
across a wide array of NLP tasks such as detect-
ing virus-related text (Lwowski and Rios, 2021),
language generation (Sheng et al., 2019), corefer-
ence resolution (Zhao et al., 2018), named entity
recognition (Mehrabi et al., 2020), and machine
translation (Font and Costa-jussà, 2019). Most
related to this study, researchers have shown that
traditional NER systems (i.e., to detect people, loca-
tions, and organizations) are biased concerning gen-
der (Mehrabi et al., 2020). Specifically, Mehrabi
et al. (2020) demonstrates that female names are
more likely to be misidentified as a location than
male names. This stream of research underscores
the importance of our investigation into perfor-
mance disparities in NLP.

Finally, while not directly studied in prior NER
experiments, it is important to discuss some back-
ground about morphological elements of chemical
names. Morphological elements often represent-
ing masculinity or femininity are frequently used
in chemical naming conventions. According to
Lieven et al. (2015), consumers perceive linguisti-
cally feminine brand names as warmer and more
likable. For instance, adding a diminutive suffix to
the masculine form of the name usually feminizes
it. The masculine names such as Robert, Julius,
Antonio, and Carolus (more commonly Charles to-
day) are feminized by adding the suffixes “a”, “ia”,
“ina”, or “ine” to generate Roberta, Julia, Antonia,
and Caroline, respectively. The suffixes “ia” and
“a” is commonly used for inorganic oxides such
as magnesia, zirconia, silica, and titania (Hepler-
Smith, 2015). Likewise, “ine” is used as the suffix
in many organic bases and base substances such
as quinine, morphine, guanidine, xanthine, pyrim-
idine, and pyridine. Hence, while these practices
were not originally “biased” in their original usage,
they can potentially impact model performance

# of Chems. # Sentences # Words

CDR 4,409 14,306 346,001
CHEMDNER 84,355 87,125 2,431,247
CHEBI 24,121 12,913 423,577

AskDoc MALE 1,501 2,862 52,221
AskDoc FEMALE 1,774 2,151 40,184
AskDoc ALL 3,275 5,013 92,405

Synthetic MALE 2,800,000 2,800,000 25,760,000
Synthetic FEMALE 2,800,000 2,800,000 25,760,000
Synthetic ALL 5,600,000 5,600,000 51,520,000

Table 1: Dataset statistics.

(e.g., feminine names can be detected as chem-
icals). Therefore, the patterns can cause biased
models. As part of our approach to investigate this
potential source of bias, we propose using synthetic
data to quantify this phenomenon.

3 DATASETS

We use five main datasets used in our experi-
ments: three are publicly-released datasets based
on PubMed (CDR (Li et al., 2016), CHEMD-
NER (Krallinger et al., 2015), and CHEBI (Shard-
low et al., 2018)) and two are newly curated
datasets, one using social media data and another
based on templates. Table 1 provides their statis-
tics. We selected the PubMed datasets for their
prominence in chemical NER research. At the
same time, the r/AskDocs subreddit was chosen
for its large community, diverse health discussions,
and consistent gender identification format, such
as “I [25 M]”. We provide complete descriptions of
the publicly-released datasets in the Appendix. In
this section, focus on the description of the newly
collected and annotated data.

Synthetic (Template) Data We designed a new
synthetic dataset to quantify the gender bias in the
Chemical NER models. Intuitively, the purpose
of the synthetic dataset is to measure two items.
First, do gender-related names and pronouns get
incorrectly classified as chemicals (i.e., cause false
positives)? Second, does the appearance of gender-
related names/pronouns impact the prediction of
other words (i.e., cause false negatives)? Specifi-
cally, we create templates such as “[NAME] said
they have been taking [CHEMICAL] for an illness.”
In the “[NAME]” column, we filled in the names
associated with the male and female genders based
on the 200 most popular baby names provided by
the Social Security Administration 2. Hence, we

2https://www.ssa.gov/oact/babynames/
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Templates

[NAME] said they have been taking [CHEMICAL] for an illness.

Did you hear that [NAME] has been using [CHEMICAL].

[CHEMICAL] has really been harming [NAME], I hope they stop.

I think [NAME] is addicted to [CHEMICAL].

[NAME], please stop taking [CHEMICAL], it is bad for you.

Table 2: Templates used to create the synthetic dataset.

refer to these “gender-related” names in this paper.
We recognize that gender is not binary and that
names do not equal gender. We also recognize that
the names do not accurately capture immigrants.
This is a similar framework used by Mishra et al.
(2020) and other gender bias papers (Kiritchenko
and Mohammad, 2018). The “[CHEMICAL]” field
is filled with the chemicals listed in the Unified
Medical Language System (UMLS) (Bodenreider,
2004). For example, completed templates include
“John said they have been taking citalopram for
illness.” and “Karen said they have been taking
citalopram for illness.” We created examples using
five templates, 200 chemicals, and 200 names for
each gender for each decade from 1880 to 2010,
generating a total of 200,000 templates for each
of the 14 decades. A list of additional templates
is shown in Table 2. This dataset is only used for
evaluation.

AskDocs We develop a new corpus using data
from the Reddit community r/AskDocs. r/AskDocs
provides a platform for peer-to-peer and patient-
provider interactions on social media to ask
medical-related questions. The providers are gener-
ally verified medical professionals. We collected all
the posts from the community with self-identified
gender mentions. To identify self-identified gen-
der, we use a simple regular expression that looks
for mentions of “I” or “My” followed by gender,
and optionally age, e.g., “I [F34]”, “My (23F)”,
“I [M]”. Next, following general annotation rec-
ommendations for NLP (Pustejovsky and Stubbs,
2012), the annotation process was completed in
two stages to increase the reliability of the labels.
First, two graduate students annotated chemicals
in the dataset resulting in an inter-annotator agree-
ment of .874, achieving a similar agreement score
as CDR and CHEMDNER. Second, a graduate
student manually reviewed all disagreeing items
to adjudicate the label and generate the gold stan-
dard. All students followed the same annotation
guidelines developed for the CHEMDNER corpus.

Contrary to the synthetic dataset, the actual data
will allow users to measure biases arising from
text content differences across posts with different
self-identified gender mentions.

4 Methods

The goal of NER is to classify words into a se-
quence of labels. Formally, given an input sequence
X = [x1, x2, . . . , xN ] with N tokens, the goal of
NER is to output the corresponding label sequence
Y = [y1, y2, . . . , yN ] with the same length, thus
modeling the probabilities over a sequence p(Y|X ).
For this task, we conducted an experiment evaluat-
ing out-of-domain models on the AskDoc corpus.
Specifically, models were trained and optimized
on the CHEMDNER and CDR datasets and then
applied to the AskDoc dataset. All models are
evaluated using precision, recall, and F1. To mea-
sure bias, we use precision, recall, and F1 differ-
ences (Czarnowska et al., 2021). Specifically, let
m be Males’ performance metric (e.g., F1), and f
represent the Female metric. The bias is measured
using the difference f −m.

4.1 MODELS

We evaluate three distinct models: Word Embed-
ding models (Mikolov et al., 2013b), Flair embed-
ding models (Akbik et al., 2018), and BERT-based
models (Devlin et al., 2019a). While the embed-
dings for each model type vary, the sequence pro-
cessing component is the same for each method.
Specifically, following best practices for state-of-
the-art NER models (Akbik et al., 2019a), we use a
Bidirectional long short-term memory network (Bi-
LSTM) (Hochreiter and Schmidhuber, 1997) due to
its sequential characteristics and capability to cap-
ture long-term dependencies. Recent research has
shown that Bi-LSTM models can produce state-of-
the-art performance when combined with contex-
tual embeddings and Conditional Random Fields
(CRFs) (Mueller et al., 2020; Veyseh et al., 2022).
Hence, in this paper, we use the Bi-LSTM+CRF
implementation in the Flair NLP framework (Ak-
bik et al., 2019a). The Bi-LSTM+CRF model is
flexible because it can accept arbitrary embeddings
as input. It is not constrained to traditional word
embeddings (e.g., Word2Vec).

4.2 EMBEDDINGS

We explore three sets of embeddings: Word2Vec,
Flair, and BERT. For all embeddings, we ex-
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periment with domain-specific (e.g., trained on
PubMed) and general embeddings (e.g., Google
News corpus). We chose these three embedding
types because they cover word, subword, and
character-level embedding methods. Social media
texts are brief and informal. Drugs and chemicals
are typically described in descriptive, nontechni-
cal language with spelling errors. These issues are
challenging for chemical NER models trained on
social media data. Moreover, some medications,
like “all-trans-retinoic acid”, contain morphologi-
cally difficult parts. Yet, similar-structured phrases
still generally represent similar things (Zhang et al.,
2021). How we represent words can directly impact
performance and bias. We describe each embed-
ding we use below:

Word2Vec. We use Word2Vec domain-specific
embeddings pre-trained on PubMed and PubMed
Central (Pyysalo et al., 2013) and general embed-
dings trained on the Google News corpus (Mikolov
et al., 2013a). The embeddings are publicly re-
leased as part of the FLAIR package. It is impor-
tant to state that word embeddings have a major
limitation. Word embeddings use a distinct vec-
tor to represent each word and ignore words’ in-
ternal structure (morphology). This can result in
models not particularly good at learning rare or
out-of-vocabulary (OOV) words in the data. The
growing number of emerging chemicals/drugs with
diverse morphological forms makes recognizing
chemical entities on social media platforms partic-
ularly challenging. Another challenge posed by
user-generated content is its unique characteristics
and use of informal language, typically short con-
text, noisy, sparse, and ambiguous content. Hence,
we hypothesize that word embeddings would per-
form worse than other methods. However, it is
unclear how these differences can impact bias.

Flair/HunFlair. Weber et al. (2021) and Akbik
et al. (2019b) recently proposed a Flair contex-
tual string embeddings (a character-level language
model). Specifically, we use two versions of the
embeddings in the HunFlair extension of the Flair
package (Weber et al., 2021). The domain-specific
embeddings are pre-trained on a corpus of three
million full-text articles from the Pubmed Cen-
tral BioC text mining collection (Comeau et al.,
2019) and about twenty-five million abstracts from
PubMed. The general embeddings are trained on a
one billion word news corpus (Akbik et al., 2019b).

Unlike word embeddings mentioned above, Flair
embeddings are a contextualized character-level
representation. Flair embeddings are obtained from
the hidden states of a bi-directional recurrent neural
network (BiRNN). They are trained without any
explicit notion of a word. Instead, Flair models a
word as sequences of characters. Moreover, these
embeddings are determined by the text surrounding
them, i.e., the same word will have different embed-
dings depending on its contextual usage. The vari-
ant of the Flair embedding used in this study is the
Pooled Flair embedding (Weber et al., 2021; Akbik
et al., 2018). Furthermore, we use the forward and
backward representations of Flair embeddings re-
turned from the BiRNN. Intuitively, character-level
embeddings can potentially help improve model
predictions with better OOV handling.

(Bio)BERT. We also evaluate two transformer-
based embeddings: BERT and BioBERT. Specif-
ically, we use the BERT variant “bert-base-
uncased” available Flair and HuggingFace (Wolf
et al., 2020). BERT was pre-trained using
the BooksCorpus (800M words) and English
Wikipedia (2,500M words) (Devlin et al., 2019b).
Likewise, BioBERT embeddings further fine-tuned
BERT on PubMed (Lee et al., 2020).

BERT embeddings are based on subword tok-
enization, so BERT can potentially handle OOV
better than word embeddings alone. Intuitively,
it fits somewhere between Flair (generating word
embeddings from character representations) and
Word2Vec (which independently learns embed-
dings for each word). Likewise, each word rep-
resentation is context-dependent. Hence, BERT
is better at handling word polysemy by capturing
word semantics in context.

5 RESULTS

CDR, CHEMDNER, and CHEBI Results. Ta-
ble 3 reports the recall, precision, and F1 scores for
each embedding type for the CDR, CHEMDNER,
and CHEBI datasets. The reported scores are for
the best models-hyperparameter combinations on
their original validation datasets. Overall, we find
that the Flair and BERT-based methods outperform
word embeddings. The BERT embeddings result in
the best performance for the CDR dataset. While in
the CHEMDNER corpus, the PubMed Flair embed-
dings outperform the BERT embeddings (.9018 vs.
.8938). For CHEMBI, the BioBERT embeddings
work the best (.7720 vs. .7322 and .6372).
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Prec. Rec. F1

CDR + PubMed Word .8962 .8797 .8615
CDR + PubMed Flair .9090 .8984 .8920
CDR + BioBERT .9030 .8913 .8971

CDR + General Word .8046 .8006 .8026
CDR + General Flair .8794 .8580 .8686
CDR + BERT .9181 .9174 .9100

CHEMDNER + PubMed Word .8963 .8887 .8846
CHEMDNER + PubMed Flair .9133 .9112 .9018
CHEMDNER + BioBERT .9112 .8861 .8985

CHEMDNER + General Word .8267 .7570 .7903
CHEMDNER + General Flair .8985 .8696 .8838
CHEMDNER + BERT .9122 .8840 .8938

CHEBI + PubMed Word .7384 .7123 .7251
CHEBI + PubMed Flair .8051 .7384 .7703
CHEBI + BioBERT .7858 .7703 .7780

CHEBI + General Word .5999 .6793 .6372
CHEBI + General Flair .7454 .7196 .7322
CHEBI + BERT .7740 .7700 .7720

Table 3: CDR, CHEMDNER, and CHEBI Results.

Synthetic (Template) Results. We evaluated sev-
eral Named Entity Recognition (NER) models
across multiple datasets and embeddings to assess
gender bias, as summarized in Table 4. Specifi-
cally, the aggregate measures in the bottom sec-
tion of Table 4 highlight the overall trends in bias
across embedding training data sources (PubMed
vs. General) and embedding types (Word, Flair,
and BERT). The bias analysis reveals that mod-
els generally perform differently on male versus
female templates. Particularly, PubMed-trained (in-
cluding BioBERT) embeddings across all datasets
show an average precision bias of .0242 against
female names. The General embeddings exhibit
substantially more bias, especially in precision with
an average difference of .0407. Moreover, while
the average scores for Word and (Bio)BERT em-
beddings show less bias, the General and Flair em-
beddings indicate more significant bias in precision
and F1 scores. These aggregate measures under-
score the pervasive nature of gender bias in NER
systems and the importance of addressing it in fu-
ture work.

Overall, the major source of bias is that female
names are being classified as chemicals. Intuitively,
the word embeddings are less biased than Flair
and (Bio)BERT-based embeddings because gender-
related names are treated independently using word
embeddings, or better, do not appear in the em-
beddings at all. This is particularly evident in the
differences in performance between general word

embeddings and the PubMed-based word embed-
dings. The PubMed embeddings do not generally
have any direct mentions of named (e.g., John or
Jane), hence they are generally less biased than the
general domain.

This finding that female names are classified as
chemicals is consistent with prior research on nam-
ing conventions for brands being gendered (Lieven
et al., 2015). To further investigate this, we
randomly sampled 100 chemicals from all three
datasets and measured the number of brand name
mentions. Overall, we found one brand name in
the CHEMDNER dataset, 19 in the CDR dataset,
and 32 in the ASKDOC dataset, which generally
matches the bias performance differences in Ta-
ble 4 (i.e., biases are generally worse in CDR and
ASKDOC datasets than the CHEMDNER dataset).

AskDoc Results. The AskDoc results, as shown
in Table 5, highlight various biases in chemi-
cal NER systems on real-world data. This ta-
ble presents results from models trained on CDR,
CHEMDNER, and CHEBI datasets, using different
embeddings such as Word, Flair, and (Bio)BERT.
Again, the embeddings are both trained on general
and domain-specific corpora (e.g., PubMed).

For the fine-grained results, we note that bias and
performance can vary depending on unique combi-
nations of the dataset and embedding types. How-
ever, for the aggregate results, we have two major
findings. First, we find that general domain embed-
dings are more biased when applied to the chemical
NER task (e.g., .0056 vs. .0330 precision). This
further emphasizes the results from the synthetic
data study. Second, we find that word embeddings
are generally less fair than Flair BERT/BioBERT
embeddings for precision (.0071 vs. .0156 and
.0352) and F1 (.0158 vs. .0242 and .0245).

What does this mean in real-world terms? Con-
sidering a sample of 1,000,000 chemical mentions
across male and female posts (a relatively small
number in social media), a 4% recall difference
results in an additional 40,000 false negatives for
the female group. For example, there are well-
known health disparities between men and women
for depression, with absolute differences of less
than 3% (Salk et al., 2017). Hence, a 4% recall dif-
ference can substantially impact findings if applied
researchers or practitioners use out-of-domain mod-
els to understand medications for this disease. Such
a considerable gap can markedly affect the utility
and trustworthiness of these predictive outcomes
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Male Female Difference

Dataset + Embeddings Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CDR + PubMed Word 1 .8230 .9029 1 .8230 .9029 .0000 .0000 .0000
CDR + PubMed Flair .9711 .9486 .9597 .9344 .9494 .9418 .0367 -.0008 .0179
CDR + BioBERT .8446 .9044 .8733 .7764 .9036 .8352 .0682 .0007 .0381

CDR + General Word .9536 .6756 .7907 .8530 .6756 .7539 .1006 .0000 .0368
CDR + General Flair .8325 .9400 .8827 .7610 .9397 .8408 .0715 .0003 .0419
CDR + BERT .9867 .8493 .9128 .9728 .8444 .9041 .0138 .0048 .0087

CHEMDNER + PubMed Word .9990 .8625 .9257 .9968 .8622 .9246 .0021 .0003 .0011
CHEMDNER + PubMed Flair .9982 .8836 .9374 .9885 .8852 .9340 .0097 -.007 .0034
CHEMDNER + BioBERT .8847 .8968 .8907 .8625 .8963 .8790 .0222 .0005 .0116

CHEMDNER + General Word .9614 .1966 .3264 .9311 .1957 .3233 .0302 .0009 .0030
CHEMDNER + General Flair .9559 .8437 .8963 .9105 .8433 .8755 .0454 .0004 .0208
CHEMDNER + BERT .9913 .8768 .9306 .9680 .8762 .9198 .0233 -.0006 .0107

ASKDOC + PubMed Word .9739 .9330 .9530 .9739 .9330 .9530 .0000 .0000 .0000
ASKDOC + PubMed Flair .8833 .9523 .9164 .8278 .9519 .8852 .0555 .0005 .0312
ASKDOC + BioBERT .8026 .9444 .8677 .7703 .9443 .8483 .0323 .0001 .0194

ASKDOC + General Word .9681 .6607 .7854 .9711 .6604 .7862 -.0030 .0003 -.0008
ASKDOC + General Flair .8707 .9491 .9079 .8166 .9468 .8765 .0542 .0023 .0315
ASKDOC + BERT .9394 .9288 .9340 .8967 .9282 .9121 .0427 .0006 .0220

CHEBI + PubMed Word .9999 .8758 .9337 .9979 .8715 .9305 .0019 .0042 .0033
CHEBI + PubMed Flair .9689 .9016 .9340 .9545 .9031 .9281 .0144 -.0015 .0060
CHEBI + PubMed BERT .9170 .8673 .8914 .8690 .8689 .8690 .0480 -.0016 .0225

CHEBI + General Word .9538 .5073 .6620 .9147 .4956 .6424 .0391 .0118 .0196
CHEBI + General Flair .9832 .8720 .9242 .9677 .8701 .9163 .0155 .0019 .0079
CHEBI + BERT .9779 .8892 .9314 .9223 .8882 .9048 .0556 .0011 .0266

Aggregate Measures

AVERAGE PubMed/BioBERT .9370 .8994 .9155 .9126 .8994 .9026 .0242 .0002 .0129
AVERAGE General .9479 .7658 .8238 .9071 .7637 .8047 .0407 .0020 .0191

AVERAGE Word .9763 .6919 .7850 .9548 .6897 .7771 .0214 .0022 .0079
AVERAGE Flair .9329 .9114 .9199 .8951 .9112 .8998 .0378 -.0002 .0201
AVERAGE (Bio)BERT .9181 .8946 .9040 .8797 .8938 .8840 .0382 .0011 .0199

Table 4: Synthetic (Template) Data Results. We bold the more biased aggregate measures and all differences greater
than .01 to easily read the main findings.

in practical scenarios.

AskDoc Error Analysis. Our experiments show
that Chemical NER systems are biased. However,
what specifically is causing the errors? For the
synthetic data, the answer is gender-related names.
To understand the errors in the AskDoc data, we
analyzed the errors made by the best NER models
trained on the out-of-domain corpus (CHEMDNER
and CDR) and tested the male and female splits of
the AskDocs corpus. In Figure 1, we report the
ratio of false negatives for different categories of
drugs/chemicals. For every false negative made by
the top models of each dataset-model combination,
we manually categorized them into a general chem-
ical class (e.g., Contraceptives, Analgesics/Pain
Killers, and Stimulants). Formally, let FNk

m repre-
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+RUPRQHV
$QDOJHVLFV
$QWLELRWLFV
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) 0

Figure 1: Ratio of false negatives for various drug cat-
egories. The ratio is represented next to each bar. For
female-leaning errors, the female false negative count
(FNk

f ) is in the numerator. For male-leaning errors, the
male false negative count (FNk

m) is in the numerator.
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Male Female Difference

Dataset + Embeddings Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CDR + PubMed Word .8375 .6023 .7007 .8206 .6249 .7095 -.0169 .0226 .0088
CDR + PubMed Flair .8614 .6160 .7183 .8778 .6702 .7601 .0164 .0542 .0418
CDR + BioBERT .8303 .6352 .7198 .8042 .6693 .7306 -.0261 .0341 .0108

CDR + General Word .7538 .6724 .7108 .7489 .6986 .7229 -.0049 .0262 .0121
CDR + General Flair .8479 .6501 .7359 .8542 .6707 .7514 .0063 .0206 .0155
CDR + BERT .8742 .6453 .7425 .8638 .6589 .7475 -.0104 .0136 .0050

CHEMDNER + PubMed Word .8057 .5966 .6855 .8158 .6049 .6947 .0101 .0083 .0092
CHEMDNER + PubMed Flair .8891 .6155 .7274 .8871 .6282 .7356 -.0020 .0127 .0082
CHEMDNER + BioBERT .8537 .6238 .7208 .8735 .6434 .7410 .0198 .0196 .0202

CHEMDNER + General Word .7490 .5546 .6373 .7975 .5842 .6743 .0485 .0296 .0370
CHEMDNER + General Flair .8159 .5678 .6696 .8821 .6021 .7157 .0662 .0343 .0461
CHEMDNER + BERT .7165 .6315 .6713 .8309 .6349 .7198 .1144 .0034 .0485

CHEBI + PubMed Word .7574 .5998 .6694 .7548 .6287 .6860 -.0026 .0289 .0166
CHEBI + PubMed Flair .7540 .6415 .6932 .7571 .6740 .7131 .0031 .0325 .0199
CHEBI + BioBERT .6896 .5969 .6399 .7380 .6148 .6708 .0484 .0179 .0309

CHEBI + General Word .6047 .6541 .6284 .6132 .6687 .6397 .0085 .0146 .0113
CHEBI + General Flair .6066 .5775 .5917 .6103 .6001 .6052 .0037 .0226 .0135
CHEBI + BERT .6274 .6478 .6374 .6923 .6467 .6687 .0649 -.0011 .0313

Aggregate Measures

AVERAGE PubMed/BioBERT .8087 .6142 .6972 .8143 .6398 .7157 .0056 .0256 .0185
AVERAGE General .7329 .6223 .6694 .7659 .6405 .6939 .0330 .0182 .0245

AVERAGE Word .7514 .6133 .6720 .7585 .6350 .6879 .0071 .0217 .0158
AVERAGE Flair .7958 .6114 .6894 .8114 .6409 .7135 .0156 .0295 .0242
AVERAGE (Bio)BERT .7653 .6301 .6886 .8005 .6447 .7131 .0352 .0146 .0245

Table 5: AskDoc Results. We bold the more biased aggregate measures and all differences greater than .01 to easily
read the main findings.

sent the total number of false negatives for chemi-
cal types k and male data m. Let FNk

f represent
the female false negatives. If FNk

m is larger than
FNk

f , we define the ratio as −(1− FNk
m/FNk

f ).
Likewise, if FNk

f is greater than FNm, then we
define the ratio as 1− (FNk

f /FNk
m). Hence, when

male ratios are higher, the score is negative; other-
wise, it is positive.

Overall, we make several important findings.
First, we find that the models make slightly more
false negatives on the chemicals categories Contra-
ceptives (e.g., birth control and Plan B One-Step),
Hormones (e.g., Megace used to treat the symp-
toms of loss of appetite and wasting syndrome in
people with illnesses such as breast cancer), Anal-
gesics (i.e., Pain Killers such as Tylenol) and An-
tibiotics on the female dataset. In contrast, the
models make slightly more errors in the chemical
categories Anxiolytics (e.g., drugs used to treat
anxiety), Antipsychotics (e.g., chemicals used to
manage psychosis, principally in schizophrenia),
and sexual function drugs (e.g., Viagra). Further-

more, while the ratio for the most male- and female-
related errors (Contraceptives and Sexual Function)
are similar, the absolute magnitudes are substan-
tially different. For instance, there are 397 Con-
traceptive FNs in the female dataset, but only 75
Sexual Function FNs appear in the male dataset.
This provides an explanation for the large differ-
ences in recall on the AskDoc corpus between the
male and female datasets.

6 LIMITATION

There were several limitations to our study. First,
the adjudication of disagreeing items was depen-
dent on the judgment of a single graduate student,
potentially introducing human error and bias com-
pared to a multi-adjudicator approach. Second, the
vast volume of data from the active r/AskDoc sub-
reddit community makes the feasibility of one per-
son’s comprehensive review debatable. Although
our annotation method is in line with standard
practices, a more multi-faceted approach involv-
ing numerous annotators and adjudicators might

4367



offer improved accuracy and consistency in future
datasets. Third, our study focuses on binary repre-
sentations of gender (ignoring non-binary people).
Moreover, the Social Security’s Most Popular Baby
Names (SSN) names may not adequately mention
immigrant-related names. Hence, the results may
be European-specific.

7 ETHICAL CONSIDERATIONS

In this study, we consider binary gender biases.
While binary gender is a common area of study
in NLP literature (Mehrabi et al., 2020), and we
follow best practices of using self-identified gen-
der (Larson, 2017), it leaves a large portion of indi-
viduals out of the study (i.e., not counted). More-
over, we also follow prior (Mehrabi et al., 2020) by
relating names to gender. Nevertheless, names are
not directly related to gender identity. Hence, in
future work, we intend to explore data collection
methods beyond binary gender. Specifically, we
plan to collect data from other groups for detailed
studies of model performance.

Additionally, using data from platforms like Red-
dit’s r/AskDocs, where individuals share personal
health experiences, raises ethical concerns about
the potential exposure of personally identifiable
information (PII) and sensitive personal health in-
formation (PHI). While our research aims to assess
gender bias without examining personal details, the
potential for identifiable information necessitates
careful handling to protect privacy and confiden-
tiality, following established ethical guidelines for
internet research (Fiesler et al., 2024).

8 CONCLUSION

In this paper, we evaluate the gender bias of Chem-
ical NER systems. Moreover, we compare bias
measurements from synthetic data with real-world
self-identified data. We make two major findings.
First, Chemical NER systems are biased with re-
gard to gender for synthetic data. Specifically, our
study found that female name-like patterns fea-
ture prominently in chemical naming conven-
tions. This characteristic leads to a notable bias
in NER systems, where female names are dispro-
portionately identified as chemicals, inadvertently
escalating the gender bias in these systems. Sec-
ond, we explored the performance of these mod-
els in real-world scenarios and found that most
models perform better on male-related data than
female-related data. A striking revelation was

the system’s poor performance when identify-
ing chemicals frequently found in female-related
data, such as mentions of contraceptives.

In conclusion, the results of our study empha-
size the urgent need for deliberate bias mitigation
strategies in Chemical NER systems. Our findings
spotlight the necessity for incorporating both syn-
thetic and real-world data considerations to develop
models that are both fair and reliable. There are two
major paths for future research. First, while large
language models are still behind in terms of perfor-
mance for NER systems (Wang et al., 2023), they
are becoming more common. Future work should
explore biases in prompting-based NER solutions.
Second, we plan to explore how the chemical NER
biases impact downstream tasks such as relation-
ship classification and question answering.
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A Appendix

A.1 Datasets
CDR (Li et al., 2016) We use the BioCreative V
CDR shared task corpus. The CDR corpus com-
prises 1,500 PubMed articles with 4,409 annotated
chemicals, 5,818 diseases, and 3,116 chemical dis-
ease interactions. This corpus is designed to ad-
dress two distinct tasks: Relation classification and
NER. For this study, we focus on the NER for
chemical entities. The annotator agreement for this
corpus was .87. Finally, we used the same train,
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Data Embedding Fine-tuning hidden_size dropout lr

CDR

general word TRUE 128 0.4 0.1
general flair TRUE 256 0.3 0.1
BERT TRUE 256 0.2 0.05
Pubmed word FALSE 128 0.2 0.1
pubmed flair FALSE 128 0.4 0.1
BioBERT TRUE 1024 0.5 0.05

CHEMD

general word TRUE 1024 0.2 0.1
general flair TRUE 512 0.5 0.1
BERT TRUE 1024 0.3 0.025
Pubmed word TRUE 256 0.3 0.1
pubmed flair FALSE 128 0.2 0.05
BioBERT TRUE 1024 0.2 0.025

Askdoc

general word TRUE 1024 0.2 0.1
general flair TRUE 512 0.5 0.1
bert TRUE 1024 0.3 0.025
Pubmed word TRUE 256 0.3 0.1
pubmed flair FALSE 128 0.2 0.05
biobert TRUE 128 0.2 0.01

CHEBI

general word TRUE 128 0.4 0.1
General Flair TRUE 128 0.3 0.1
BERT TRUE 1024 0.5 0.05
Pubmed word TRUE 128 0.4 0.1
Pubmed flair FALSE 512 0.3 0.1
BioBERT TRUE 256 0.4 0.05

Table 6: Comprehensive List of Hyperparameters Investigated in the Search for the Optimal Model

validation, and test splits from the shared task for
our experiments.

CHEMDNER (Krallinger et al., 2015) The
CHEMDNER corpus includes abstracts from
10000 chemistry-related journals published in 2013
on PubMed. Each abstract was manually annotated
for chemical mentions. These mentions were cat-
egorized into seven subtypes: abbreviation, fam-
ily, formula, identifier, multiple, systematic, and
trial. The BioCreative organizers divided the cor-
pus into training (3500 abstracts), development
(3500 abstracts), and test (3000 abstracts) sets.
The BioCreative IV CHEMDNER corpus com-
prises 84,355 chemical mention annotations across
10,000 abstracts, with an inter-annotator agreement
of .91 (Krallinger et al., 2015). For this study, we
only use the major Chemical annotations and ig-
nore the subtypes for consistency across corpora.
Finally, we use the same train, validation, and test
splits used in the shared task for our experiments.

CHEBI (Shardlow et al., 2018). We also use
the ChEBI corpus, an extensive dataset consist-
ing of 199 annotated abstracts and 100 full papers.
This corpus contains over 15,000 named entity
annotations and more than 6,000 inter-entity re-
lations, specifically aligned with the needs of the
ChEBI database curators. The dataset has anno-
tated chemicals, proteins, species, biological ac-
tivities, and spectral data. Moreover, it has a high
inter-annotator agreement of 0.80-0.89 (F1 score,
strict-matching). It also categorizes relationships
into several types such as Isolated From, Associ-
ated With, Binds With, and Metabolite Of, offering
a detailed view of the interactions between metabo-
lites and other entities. This corpus is not only a
rich source for exploring lexical characteristics of
metabolites and associated entities but also serves
as a critical resource for training machine learning
algorithms in the recognition of these entities and
their relations in the biochemical context.
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Total Male FNR Male Total Female FNR Female

Contraceptives 33 1.0000 408 .9730
Hormones 170 .0882 230 .1565
Analgesics 571 .1489 952 .2048
Antibiotics 326 .2454 347 .4438
Antihistamines 270 .5593 295 .6780
Stimulants 522 .3065 390 .5051
Antidepressants 781 .4110 1043 .3365
Minerals 605 .3983 785 .3312
Opioids 43 .5814 95 .2316
Organic Chemical 441 .3764 346 .3902
Illicit drug 353 .5666 311 .5048
Vaccine 108 1.0000 78 1.0000
Stomach Drug 55 .5455 44 .4545
Antipsychotics 47 .6170 95 .1368
Anxiolytics 126 .5603 100 .2300
Sexual Function Drug 78 .9615 8 1.0000

PCC between Total and FNR -.58 -.26

Table 7: False negative rate (FNR) for female and male-related AskDoc datasets. The pearson correlation coefficient
(PCC) between the frequency of each chemical type and the FNR for teach group is marked in the last row.

A.2 Hyper-Parameter Settings

In this section, we report the best hyperparameter
for each model, shown in Table 6. Similar to ran-
dom hyperparameter search (Bergstra and Bengio,
2012), we generate 100 samples using different pa-
rameters for each dataset-model combination (e.g.,
we generate 100 versions of BERT for the CDR
dataset). For the specific hyper-parameters, we
used sample dropout from .1 to .9, hidden layer
sizes from {128, 256, 512, 1024}, learning rates se-
lected from 1e-4 to 1e-1 at random, and the option
of whether to fine-tune the embedding layers (i.e.,
True vs. False). In addition, we trained all mod-
els for 25 epochs with a mini-batch size set to 32,
where only the best model on the validation dataset
is saved after each epoch. Finally, all experiments
were run on four NVidia GeForce GTX 1080 Ti
GPUs.

A.3 Error Analysis and Discussion

Interestingly, we find that the prevalence of chemi-
cals across gender-related posts matches the preva-
lence found in traditional biomedical studies. Pre-
vious research report that women have been pre-
scribed analgesics (e.g., pain killers such as opi-
oids) twice as often as men (Chilet-Rosell, 2014;
Serdarevic et al., 2017). While there is still lim-
ited understanding about whether men are under-

FNR wFNR

Male .3948 .6875
Female .4064 .8088

Gap .0116 .1213
Ratio 1.0294 1.1764

Table 8: FNR and weighted FNR (wFNR) results.

prescribed or women are over-prescribed, the dis-
parities in prescriptions are evident. Thus, the find-
ing in Figure 1 that we receive twice as many anal-
gesics FNs for female data is important. Depend-
ing on the downstream application of the Chemical
NER system, these performance disparities may
potentially increase harm to women. For exam-
ple, if more varieties of drugs are prescribed to
women, but our system does not detect them, then
an ADR detection system will not be able to detect
important harms.

We also find differences in Antibiotic FNs in
Figure 1. There have also been medical studies
showing gender differences in Antibiotic prescrip-
tions. For example, a recent meta-analysis of pri-
mary care found that women received more an-
tibiotics than men, especially women aged 16–54,
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receiving 36%–40% more than males of the same
age (Smith et al., 2018). Again, if we do not de-
tect many of the antibiotics prescribed to women,
this can cause potential health disparities in down-
stream ADR (and other) systems.

Next, in Table 7, we report the false negative
rate (FNR) for each category along with the gen-
eral frequency of each category. Using the Pearson
correlation coefficient, we relate the frequency of
each category with the false negative rate for the
male and female groups, respectively. Intuitively,
we would expect the false negative rate to go down
as the frequency increases, which matches our find-
ings. However, we find that the correlation is much
stronger for the male group than the female group.

In Table 8, we report the FNR for the female
and male groups, respectively. We also introduce a
new metric, weighted FNR, which assigns impor-
tance scores for each of the FNRs shown to create
a macro-averaged metric. Intuitively, the distribu-
tion of categories is different for both the male and
female groups. So, we want to test whether the
FNR scores are distributed uniformly across all cat-
egories, irrespective of, whether the errors are more
concentrated for gender-specific categories. More
errors in gender-specific categories can adversely
impact a group that is not captured with the global
FNR metric. Formally, we define wFNR for the

female group as

wFNRf =

N∑

i

wf
i FNRf

i

where FNRf
i represents the female false negative

rate for category i. Likewise, wf
i is defined as

wf
i =

1
∑

iw
f
i

· Nf
i /N

f

Nm
i /Nm

where Nf
i and Nm

f represent the total number of
times a category i appears for the female and male
groups, respectively. Intuitively, we are dividing
the ratio of each category for female and male
groups. So, if a category appears more often for
females than males, proportionally, then the score
will be higher. We normalize these scores for each
group so they sum to one. Overall, we find an abso-
lute gap of more than 1% (3% relative difference)
between the FNR for male and female groups. But,
even worse, there is a much larger gap (.1213 vs
.0116) when using wFNR. This result suggests that
many of the false negatives are concentrated for
gender-specific categories (e.g., contraceptives) for
the female group more than the male group.
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