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Abstract

Scientific jargon can confuse researchers when
they read materials from other domains. Iden-
tifying and translating jargon for individual
researchers could speed up research, but cur-
rent methods of jargon identification mainly
use corpus-level familiarity indicators rather
than modeling researcher-specific needs, which
can vary greatly based on each researcher’s
background. We collect a dataset of over 10K
term familiarity annotations from 11 computer
science researchers for terms drawn from 100
paper abstracts. Analysis of this data reveals
that jargon familiarity and information needs
vary widely across annotators, even within the
same sub-domain (e.g., NLP). We investigate
features representing domain, subdomain, and
individual knowledge to predict individual jar-
gon familiarity. We compare supervised and
prompt-based approaches, finding that prompt-
based methods using information about the in-
dividual researcher (e.g., personal publications,
self-defined subfield of research) yield the high-
est accuracy, though the task remains difficult
and supervised approaches have lower false
positive rates. This research offers insights into
features and methods for the novel task of in-
tegrating personal data into scientific jargon
identification.1

1 Introduction

An important challenge to communicating knowl-
edge across scientific domains is aligning on a
shared vocabulary (Strober, 2006). Each scientific
domain has unique terminology that optimizes com-
munication within the field but can pose a barrier
to researchers in other domains (Lucy et al., 2022;
Choi and Pak, 2007). As science becomes more
specialized, so too does its terminology (Barnett
and Doubleday, 2020; Plaven-Sigray et al., 2017),

*Work performed during internship at AI2.
1The code and anonymized version of our dataset are avail-

able at: https://github.com/talaugust/PersonalizedJargon.

Somewhat Not at all

Example Background Defini:on

Abstract: 
Ionic liquid was systema:cally inves:gated based on 
alchemical free energy calcula:ons from molecular dynamics 
simula/ons. The simulated solubili:es and trend in terms …

Choose any addi/onal informa/on that you would want about 
the highlighted term to beGer read and understand the abstract:

How familiar were you with the highlighted term?

Extremely

Figure 1: An annotated term from our dataset, with
annotations by computer science researchers. Despite
sharing a common domain, these researchers exhibit
variation in their familiarity and additional information
needs about the term within the abstract. Abstract from
Liu et al. (2014).

raising the barrier of learning and collaborating
across disciplines. We envision systems that can
identify whether specialized terminology will be
unfamiliar to an individual scholar, so that other
systems can then translate this terminology.

NLP techniques have been developed to identify
and simplify scholarly jargon (Gardner and Davies,
2013; Tanaka-Ishii and Terada, 2011; Guo et al.,
2022, 2021), a first step in our envisioned setting.
The majority of these techniques use a corpus of
documents as a proxy for what a reader knows (e.g.,
Wikipedia is assumed to contain words known to
a general audience). However, an individual’s spe-
cific background knowledge also plays a role in
determining their familiarity with a word (Good-
ing and Tragut, 2022). For example, a theoretical
computer science (CS) researcher might struggle
more with jargon in a chemistry paper than in a
mathematics paper, but the opposite may be true
for a computational biologist. Information on a re-
searcher’s background should help determine what
they already know and what they need explained.

In this paper, we introduce the task of personal-
ized scholarly jargon identification. We ground our
investigation in the real-world setting of interdisci-
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plinary reading: researchers reading papers in less
familiar domains. We first validate our setting with
an initial study on interdisciplinary reading. The
results reveal a clear preference for supplementary
information beyond what is provided in a paper ab-
stract, especially in less familiar domains. Building
on initial findings, we propose the task of predict-
ing the familiarity and any associated information
needs of a term for an individual researcher.

To study this problem, we collect a dataset of
over 10K individual familiarity ratings and infor-
mation needs from 11 CS researchers about terms
drawn from 100 out-of-domain abstracts (example
in Figure 1). We enumerate features representing
an individual’s background knowledge based on
papers they have written and read. Using these fea-
tures and our dataset, we investigate baselines for
estimating term familiarity, including regression
models and prompt-based approaches using large
language models (LLMs). Our analysis reveals
that incorporating individual-level information im-
proves the accuracy of predicting term familiar-
ity, though the task is difficult and no one model
performs best for all annotators. Our project con-
tributes the following:

• We define the novel task of predicting personal-
ized jargon familiarity. We motivate our task
based on initial experiments with interdisci-
plinary computer science researchers.

• We collect a dataset of over 10K term familiarity
ratings and individual information needs.

• We enumerate features representing an individual
researcher’s knowledge and investigate integrat-
ing these features into supervised and prompt-
based methods.

2 Related Work

Interdisciplinary communication Interdisci-
plinary research integrates knowledge from multi-
ple disciplines to address a shared question (Daniel
et al., 2022). Choi and Pak (2007) surveyed in-
terdisciplinary researchers in the health sciences,
finding that a mismatch in terminology compli-
cates efforts in communicating between disciplines.
Lucy et al. (2022) found that papers that used more
discipline-specific terminology (i.e., jargon) had
fewer citations across disciplines, and Martínez
and Mammola (2021) found that papers that use
more jargon are generally cited less.

Scientific text simplification Detecting scholarly
jargon is commonly done using corpus-based ap-
proaches (Tanaka-Ishii and Terada, 2011). For ex-
ample, Gardner and Davies (2013) identified schol-
arly jargon in English by studying the frequency of
words within scientific papers compared to a back-
ground corpus of general English writing. Similar
methods have identified jargon in specific fields of
science, including medical studies (August et al.,
2022), and computer science papers (Salatino et al.,
2018). Gooding and Tragut (2022) found that train-
ing models at the individual level improves general
English complex word identification, and Lin et al.
(2012) found that using social media posts written
by an individual can help predict word familiarity.
Murthy et al. (2021) generated alternate definitions
of scientific terms to better align with a scientist’s
knowledge. Work has also explored interactive
systems to augment scientific abstracts (Fok et al.,
2023) and provide term definitions (Head et al.,
2020; August et al., 2022).

In contrast to prior work, we focus on predicting
familiarity of scholarly jargon. Our focus on scien-
tists provides unique opportunities to model indi-
vidual knowledge. Scientists develop deep knowl-
edge of their field by reading and writing scientific
papers. Models that can achieve accurate, indi-
vidualized predictions for scientists could greatly
improve interactive systems by focusing aids (e.g.,
definitions, additional information) on only the un-
familiar words for an individual reader (Ridder,
2002; Head et al., 2020).

3 Task Description

We conduct an initial study with 10 computer sci-
ence researchers to (i) validate our intuition that
term familiarity is important for interdisciplinary
reading, and (ii) identify what information needs
researchers have for unfamiliar terms when reading
across domains.

We recruited participants from two subdomains
of computer science: from Natural Language Pro-
cessing (NLP) and from Human-Computer Inter-
action (HCI). Participants were asked to read two
paper abstracts, one from a closer domain (Linguis-
tics or Psychology) and one from a more distant
domain (Medicine). For each paper, we provided
two abstract variants: the original author-written
abstract and a generated abstract personalized to
the participant’s background. To personalize the
abstracts, we prompted GPT-3 (text-davinci-003)
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to rewrite the provided abstract as an abstract per-
sonalized to an author. The model was given the au-
thor’s paper abstracts and a sampled list of citation
sentences from the author’s papers (details can be
found in App. Table 7). After reading each abstract
pair, participants identified what modifications they
liked/disliked in the personalized abstract, and pro-
vided a free-text response on whether they pre-
ferred the generated abstract and why. The study
was considered exempt by University of Washing-
ton’s IRB.

3.1 Initial Findings

We collected a total of 20 responses from 10 re-
searchers (7 from NLP and 3 from HCI). Partici-
pants generally preferred the personalized abstract
over the original, with 9 preferring the personalized
abstract for the medical paper (90%) and 5 prefer-
ring the personalized abstract for the linguistics
or psychology paper (50%). There was a general
preference for modifying the abstract by adding
information (82% of additions preferred) over re-
moving it (9% of removals preferred). Full results
in App. Figure 7.

We categorize participants’ preferred modifica-
tions as satisfying the following information needs:
• Definition: key information about the term inde-

pendent of any context. A definition answers the
question, “What is/are [term]?”

• Background: information that is important for
understanding the term in the context of the ab-
stract, e.g., how the term relates to the overall
problem, significance, and motivation.

• Example: specific instances that help illustrate
the usage of the term within the abstract.

• Method/Result Details: details on the method-
ology and results of the paper.

• Relevant Downstream Connections: insights
about how the current paper’s findings relate to
the reader’s own research.
The first three information needs pertain to ad-

ditional information for specific terms, while the
latter two require further contextualization of the
information in the abstract. Participants in our
study generally requested additional term-specific
information when they were less familiar with
the term and domain, and requested contextual-
izing information when they were more familiar
with the domain. Given the more clear associa-
tion between the need for term-specific informa-

tion and term/domain unfamiliarity, we focus on
the first three needs—definitions, background, and
examples—in the remainder of this work. We also
note that while participants generally reacted pos-
itively to relevant downstream connections in all
cases, these texts were usually hallucinated by the
model, so we avoid targeting these as well. Exam-
ples of modifications that the models made to the
abstracts when personalizing are provided in App.
Table 6.

3.2 Task Definition

Based on these initial findings, we identify the tasks
of individual term familiarity prediction and infor-
mation need prediction as important steps for assist-
ing interdisciplinary reading of scientific abstracts.
We formalize the first task as: given an individual
researcher defined by their authored publications
R = {r1, r2, ...rm} and an abstract to personalize
A, which includes a set of terms T = {t1, t2, ...tn},
our goal is to predict the subset of terms unfamiliar
to R. In addition, we aim to predict R’s indicated
information need from among {definition, back-
ground, example} for each term, as defined above.

4 Dataset

As no pre-existing datasets exist for personalized
scientific jargon identification, we construct a new
dataset of terms from abstracts with human anno-
tations of familiarity and additional information
needs. We direct our focus to abstracts that are out-
side the individual’s domain, with CS researchers
as the annotators.

4.1 Data Source

To ensure that the out-of-domain abstracts could
realistically be read by our annotators, we compile
a corpus of non-CS papers often viewed by CS re-
searchers, published after 2010, using the Semantic
Scholar API (Kinney et al., 2023). We define CS
researchers as anyone who has (co-)authored a pa-
per categorized as ‘Computer Science’ as classified
in the API. From the top 500 viewed papers not
categorized as CS, we take a stratified sample of
100 abstracts covering the 22 domains found in the
top 500 papers (paper counts are in App. Figure 8).

For each abstract, the top-10 significant terms
are identified using the OpenAI model text-davinci-
003 (details and prompt in App. Table 7). We
manually review 10 abstracts and confirm that their
top 10 terms align with our notion of salient terms
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in each abstract—we define salient terms as terms
that could be provided as keywords of the paper.

4.2 Annotation

Annotators were asked to annotate each term with
the following information:
• Familiarity on a scale of 1 (not at all familiar)

to 5 (extremely familiar). Not at all familiar
was defined as “you have never heard of this
term.” Extremely familiar was defined as “you
have a deep, comprehensive understanding of
this term.”

• Additional information needs that could help
annotators understand the abstract. These in-
cluded definitions, background, and examples
for each term (defined in §3.1). Annotators could
select more than one information need per term.

We recruited 11 annotators from UpWork with a
Master’s (N=4) or Doctorate (N=7) degree in CS
who had published at least one paper (see Table 1).
We paid each annotator $20-30 hourly based on
their degree. Each annotator reviewed all sampled
abstracts and answered all questions, providing a
total of 10,571 familiarity ratings for 956 terms.2

Familiarity data check To ensure that annotator
familiarity ratings were consistent, we conducted
a data check for all annotators. We selected 10
entities from each annotator, 5 rated as familiar and
5 rated as unfamiliar. For each entity, we asked
annotators to provide a definition of the entity with-
out looking up any information. If they could not
define the term, we instructed them to write ‘N/A’.
Annotators were generally consistent with their ini-
tial scores, with 81% of responses matching initial
ratings (i.e., if they were familiar, they wrote a cor-
rect definition). When initial scores did not align
with the data check, annotators generally wrote def-
initions based on the term’s context in the abstract.

4.3 Outcomes

We define a binary term familiarity outcome mea-
sure by grouping the collected 5-point familiarity
ratings into the binary classes of “familiar” (ratings
≥ 3) and “unfamiliar” (ratings ≤ 2). We treat the
need for additional definitions, background, and ex-
amples as separate binary classification tasks (cov-
ered by RQ5 in §6) .

2GPT 3.5 identified <10 terms from some abstracts. Upon
inspecting these abstracts, the authors agreed that there were
fewer than 10 salient terms to list.

ID Degree # of Papapers Self-Defined Subfield

1 Master 20 Computer Vision
2 PhD 10 Networking
3 Master 1 NLP
4 PhD 20 NLP
5 PhD 30 Cyber Security
6 PhD 4 General CS theory
7 PhD 3 Neural Networks
8 PhD 60 NLP
9 PhD 15 Complex Networks
10 Master 2 Computer Vision
11 Master 2 Computer Vision

Table 1: Annotators’ characteristics

Figure 2: Mean familiarity and additional information
needs (definition, background, and example) across ab-
stract domains. The ratio of terms shows how many
terms in the abstract domain are familiar, and require
definitions, background, and examples.

4.4 Analysis

Below we describe characteristics of our dataset,
focusing on how familiarity ratings and information
needs exhibit variation across abstract domain and
annotator background.

Domain-specific variation Figure 2 illustrates
the differences in familiarity and additional infor-
mation needs across abstract domains. Annotators
were most often familiar with terms from Art, while
Chemistry received the lowest familiarity ratings.
This is in line with prior work, which has suggested
that the technical sciences often develop more spe-
cialized vocabulary within a domain, while the so-
cial sciences and humanities share more terminol-
ogy between domains (Lucy et al., 2022; Vilhena
et al., 2014). Mathematics, which in prior work has
been found to contain a large amount of discipline-
specific terminology (Lucy et al., 2022), was one of
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Figure 3: The number of terms rated as unfamiliar by
annotators, broken down by the number of annotators.
Generally there is a uniform number of ratings for each
level of agreement.

the most familiar outside the social sciences. One
possible reason was that annotators were generally
from CS sub-domains that share overlap with Math-
ematics (e.g., ML, Computer Vision). Examples of
terms and annotations are in App. Table 12.

The same trend we observed for familiarity rat-
ings held for definition and background informa-
tion requests. However, annotators preferred a
roughly constant rate of examples regardless of
domain. Looking at common terms that annota-
tors requested examples for, we see that generally
these terms refer to a category rather than a sin-
gle concept. For example, annotators requested
examples for terms in the humanities like “mental
operations” (5/11 annotators) and “mass communi-
cation technologies” (6/11 annotators) even when
most annotators rated these terms as familiar (10/11
and 9/11, respectively).

Individual-specific variation There is substan-
tial variation in term familiarity across annotators.
As Figure 3 shows, terms vary widely in how many
annotators rated them as familiar, with a slightly
greater number of terms being rated as familiar by
all annotators. For 15% of the terms, half the an-
notators disagreed (i.e., 5 or 6 deemed it familiar
while the rest did not). The field most commonly
found in this split was Mathematics (12% of terms).

Annotator backgrounds were associated with
what terms they found familiar. Taking Mathe-
matics again as an example, two annotators self-
identifying as working in CS Theory and Neural
Networks rated Mathematics terms as more famil-
iar (mean=72%, std=4%) compared to other an-
notators (mean=44%, std=22%). There is simi-
lar variation for Linguistics. The three annotators
identifying as NLP researchers rated an average
of 64% of terms from Linguistics abstracts as fa-
miliar with little variation between them (std=6%).
The remaining annotators rate an average of 57%

Linguistics terms as familiar, with much greater
variation (std=20%).

5 Prediction

Given our dataset and annotator backgrounds, we
investigate the effectiveness of a set of features and
methods for predicting individual term familiarity
and additional information needs.

5.1 Features
Past work has explored using readability measures,
frequency statistics, and embeddings to predict
term familiarity at the population-level (e.g., for all
lay readers) (Rakedzon et al., 2017; August et al.,
2022; Lucy et al., 2022). We adapt the following
features for predicting individual-level familiarity:
• Frequency: The number of times a term appears

in a researcher’s publications R = {r1, r2, ...}.

• Specificity: The term’s uniqueness to a corpus
(Zhang et al., 2017), computed as the log proba-
bility ratio:

Sc(t) = log
Pc(t)

PC(t)

In our case, c corresponds to the target abstract
A and C to the researcher’s publications R.

• Embedding similarity: The minimum Eu-
clidean distance between the target abstract A’s
embedding and any of the author’s publications
R = {r1, r2, ...}’s embeddings. We use embed-
dings from SPECTER 2.0 (Singh et al., 2022),
a citation-based transformer model encoding se-
mantic document similarity.

For each feature, we start by defining different gran-
ularities of a researcher’s publications R, represent-
ing domain, subdomain, and individual-level infor-
mation. The following data is extracted from the
Semantic Scholar API (Kinney et al., 2023):
• Domain: 10K randomly sampled CS papers

from 2015-2022.

• Subdomain: 10K randomly sampled papers
from each annotator’s self-defined CS subdo-
main from 2015-2022. Subdomains are defined
manually based on venues associated with a
given subdomain.

• Individual: All an individual’s publications. If
the individual’s number of publications is less
than the necessary number for training in §5.2,
the remaining quantity is supplemented by a ran-
dom selection from the cited references within
those publications.

4539



In addition to these granular features, we include
the following general-purpose measures of read-
ability and metadata:
• Readability: We use the Flesch-Kincaid (F-K)

(Flesch, 2007) readability score and the GPT-2
perplexity score (Martinc et al., 2021). F-K score
is computed at the passage level; all terms from
an abstract are assigned the same F-K score.

• Metadata: We include the target paper domain,
the year of the annotator’s first published paper,
total number of published papers, and the annota-
tors average citation count for published papers.

5.2 Models

We explore two modeling approaches: supervised
and prompt-based.

Lasso regression We adopt a logistic regression
model with L1-regularization to integrate features
across various levels of granularity and determine
feature importance. A binary label determination
is made using a threshold value of 0.5. We train
one model per annotator. There were two training
settings:
• Individual model: the model is trained using data

from one annotator to predict ratings from the
same annotator.

• Mixed model: the model is trained on rat-
ings from all other annotators (i.e., leave-one-
annotator-out testing). To maintain the same
sample size of training data as the individual
Lasso models, we randomly select the same num-
ber of training data points as was used to train an
annotator’s individual model.

Prompt-based LLMs We design prompts to pre-
dict binary term familiarity using the GPT-4 model
from OpenAI in September 2023. To explore dif-
ferent strategies, we use:
• Baseline: providing only the term and abstract

containing the term. This is essentially a zero-
shot setting with no personalization information.

• Metadata: providing annotator metadata along
with the baseline prompt.

• Context-enhanced learning: providing publica-
tions at either the annotator’s domain, subdo-
main, or individual level.

• Few-shot learning: providing examples of term-
abstract-rating tuples from our labeled dataset.
Ratings are drawn from the three levels of gran-
ularity: ratings from other annotators with no
overlap in subdomain (domain), from other an-

Model F1 Recall Precision

Majority Baseline 62.9±1.4 100.0±0.0 45.9±1.5

Oracle
Majority 71.5±1.7 69.6±2.1 73.4±2.2

Nearest-neighbor 71.9±1.7 76.0±2.1 68.2±2.1

Lasso
Mixed 56.9±1.9 59.5±2.3 54.6±2.3

Individual 60.6±2.0 55.3±2.3 67.2±2.3

GPT
Baseline 63.1±1.5 100.0±0.0 46.1±1.6

Metadata 64.0±1.5 94.4±1.0 48.4±1.6

Context-enhanced 64.2±1.5 98.7±0.5 47.6±1.6

Few-shot 62.8±1.5 99.6±0.3 45.8±1.6

Table 2: Mean model performance (±std) on term fa-
miliarity prediction in the test set. Standard deviation is
estimated by bootstrapping with 1,000 resamples, each
made up of 1,000 labels. Context-enhanced and few-
shot learning are prompted with individual-level data.
Metadata model are prompted with all metadata.

notators in the same subdomain (subdomain),
and from the annotator (individual).

For context-enhanced learning and few-shot learn-
ing, we experiment with 1, 5, and 10 examples.

Oracle settings We also include two oracle clas-
sifiers based on social recommendations and col-
laborative filtering (Kang et al., 2022; Guy et al.,
2009; Goldberg et al., 1992):
• Majority oracle: the majority rating from all

other annotators.
• Nearest-neighbor oracle: the annotator’s rating

who has the most similar ratings to the current
annotator (i.e., having the highest agreement in
ratings). Similarity of ratings is based on the
training set. Nearest-neighbor pairings are listed
in App. Table 11.

5.3 Evaluation
We split the entities randomly into an 80/20
train/test set split for each annotator, with the test
set containing 2200 ratings across 200 entities. All
models are evaluated on the same test set per an-
notator, reporting F1 score, recall, and precision
to measure classification performance. To identify
critical features in a Lasso model, we count the
features with non-zero value coefficients. A higher
frequency denotes greater and more consistent in-
fluence of the feature on prediction.

6 Results

RQ1. How do supervised and prompt-based
methods perform? In Table 2, we present a com-
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Figure 4: Frequency of non-zero coefficients in individ-
ual Lasso models across researchers. The Lasso penalty
minimizes less critical coefficients to zero. Features
with higher frequencies of non-zero values in individual
models are consistently identified as important.

parison of precision, recall and F1 scores across
the highest performing predictive models. Both or-
acles outperform all other methods, pointing to the
benefit of using ratings from similar annotators for
predicting term familiarity. The nearest-neighbor
oracle achieves roughly the same performance as
the majority oracle while using one tenth the data
(i.e., one annotator rather than 10), suggesting that
collaborative-filtering approaches could be effec-
tive for personalized familiarity prediction without
collecting data from many annotators.

While other models slightly outperform the ma-
jority baseline, we generally see that the task of per-
sonalized jargon prediction is difficult. Among the
models, the individual Lasso model shows superior
performance compared to the mixed Lasso. De-
spite being provided less data, GPT-4 approaches
slightly outperform the individual Lasso model.

Notably, the Lasso models achieve substantially
higher precision (Table 2) than either GPT-4 or the
majority baseline. Explaining terms a reader al-
ready knows (i.e., a false positive) distracted read-
ers in our formative study (§3.1), making Lasso
models that minimize false positives a promising
alternative to prompt-based methods.

RQ2. What features and granularity level in-
fluence performance? Figure 4 reveals the non-
zero coefficients of the individual Lasso models.
The domain of the target abstract is consistently
identified as a significant feature by all models.
Word specificity and embedding similarity at the
domain level also underscore the relevance of a
researcher’s domain in their familiarity with jargon,
aligning with previous population-level familiar-
ity research (Li et al., 2020). However, the impor-

Model F1 Recall Precision

Metadata
Self-defined Subdom. 65.2±1.5 95.3±1.0 49.6±1.7

# of Papers 60.0±1.7 77.5±1.9 48.9±1.9

Reference Count 60.5±1.6 79.5±1.8 48.8±1.7

Year of First Paper 63.5±1.5 95.9±0.9 47.5±1.6

Abstract Domain 62.9±1.5 99.7±0.3 46.0±1.6

All Metadata 64.0±1.5 94.4±1.0 48.4±1.6

Granularity
Domain 63.0±1.5 99.5±0.3 46.1±1.6

Subdomain 63.4±1.5 99.3±0.4 46.6±1.6

Individual 64.2±1.5 98.7±0.5 47.6±1.6

Example Number
n=1 63.6±1.5 99.1±0.4 46.9±1.6

n=5 64.2±1.5 98.7±0.5 47.6±1.6

n=10 64.0±1.5 98.7±0.5 47.4±1.6

Table 3: Mean GPT-4 model performance (±std) on
term familiarity prediction in the test set. Context-
enhanced learning with individual level data is used for
granularity and example number. Underlined models
are reported in Table 2.

1 2 3 4 5 6 7 8 9 1011
Annotator

Majority Baseline
Majority Oracle
Nearest Oracle

Mixed Lasso
Individual Lasso

GPT Baseline
GPT Self-Defined Subd.

GPT Few-shot Dom.
GPT Few-shot Subd.

GPT Few-shot Ind.
GPT Context-enh. Dom.
GPT Context-enh. Subd.

GPT Context-enh. Ind.

40

60

80

Figure 5: F1 score of models in familiarity prediction
across annotators.

tance of individual-level features such as frequency,
specificity, and embedding similarity also emerge,
highlighting the dual influence of both domain-
specific and individual-specific factors.

Table 3 details GPT-4 performance when includ-
ing different metadata and publication granularities.
Prompting with researcher self-defined subdomain
seems to be the most effective strategy, suggesting
that subdomain information (e.g., that a researcher
is in NLP) is more useful than a researcher’s broad
field (e.g., CS).

RQ3. How do models perform across annota-
tors? Model performance varies substantially for
different annotators. Table 4 reports standard de-
viation of model performance calculated across
annotators among top performing models and Fig-
ure 5 plots the F1 scores across annotators. We
see ranges above 15 F1 points, well beyond the
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Model F1 Recall Precision

Oracle
Majority ±9.4 ±13.2 ±18.2
Nearest-neighbor ±10.4 ±9.4 ±16.8

Lasso
Individual ±18.7 ±25.8 ±10.4

GPT
Metadata - all ±15.6 ±4.1 ±17.5
Metadata - subdomain ±15.8 ±4.1 ±17.5
Context-enhanced ±16.4 ±1.8 ±16.8

Table 4: Standard deviation of the highest performing
models’ scores across annotators.

Figure 6: Error counts for two best performing model
variants; entities are binned by their total count of un-
familiarity ratings summed over annotators. Generally,
the GPT-based method over-predicts unfamiliarity.

differences in performance we see across models.
The high levels of variation measured across anno-
tators indicate that models work much better for
certain annotators over others. Looking at Figure
5, we also see that the best performing model is
different for different annotators. For example, for
Annotator 8, the context-enhanced GPT-4 at the
individual level performed best, while individual
lasso performed better for Annotator 9.

RQ4. What errors do the models make? Fig-
ure 6 plots the rate of correct predictions for the
two best performing model variants: GPT with
subdomain metadata and the individual Lasso re-
gression models. We see that the GPT method
over-predicts unfamiliarity: incorrect predictions
are usually for terms that most annotators were fa-

Model Def. Bg. Ex.

Majority Baseline 44.4±1.8 37.2±1.7 31.5±1.8

Oracle
Majority 50.7±2.8 0.0±0.0 0.0±0.0

Nearest-neighbor 54.3±2.4 0.0±0.0 0.0±0.0

Lasso
Mixed 13.7±3.6 15.0±5.1 0.0±0.0

Individual 56.4±2.8 48.1±3.3 28.7±3.9

GPT
Baseline 47.7±1.8 40.0±1.9 31.9±1.8

Self-defined Subfield 48.4±1.9 39.3±1.9 32.4±1.8

Context-enhanced 47.5±1.8 38.6±1.9 32.5±1.8

Table 5: Mean F1 score (±std) on additional infor-
mation needs (definition, background, and example)
prediction in the test set. Recall and precision are in
App. Table 8, 9, and 10.

miliar with. Looking at these entities, most have
common meanings that a reader could guess given
context (e.g., “coffee production” or “food sup-
ply chains”). In contrast, the Lasso model gener-
ally performs better for highly familiar terms, but
suffers for terms that are highly unfamiliar. Sup-
porting this difference, we generally see that the
individual lasso models perform better for annota-
tors who were familiar with more entities, while
the prompt-based methods performed better for an-
notators who rated more entities as unfamiliar.

RQ5. How does individual information con-
tribute to additional information prediction?
We investigate models that performed well on the
familiarity prediction task to predict users’ addi-
tional information needs. Results in Table 5 demon-
strate that incorporating individual features into
Lasso or prompt-based models do not substantially
improve performance on this challenging predic-
tion task. Predicting granular user information
needs remains difficult without more tailored mod-
eling and data to detect individual variations.

7 Discussion

This paper introduces the novel task of person-
alized scholarly jargon detection. We collect a
dataset of over 10K term familiarity and informa-
tion need annotations from 11 CS researchers. Our
dataset reveals significant variation in term familiar-
ity based on annotators’ background (§4.4). When
predicting familiarity, subdomain information and
sampled paper abstracts written by the author can
improve prediction. This is particularly evident
in prompt-based methodologies, where the use of
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paper abstracts was more beneficial than term fa-
miliarity labels from that researcher. This might
be because researcher abstracts/metadata provide
more generalizable information about the annotator
than individual-specific term familiarity labels.

The high levels of variation, of both familiarity
labels (§4.4) and model performance (§6) across
annotators, indicate that certain models work much
better for certain annotators than others. Person-
alized scientific jargon identification is a difficult
task, with no clear best modeling strategy, and per-
formance is dependent on the individual researcher
being modeled. This opens up new research ques-
tions and avenues for future work. For example, we
see that collaborative oracles saw noticeable perfor-
mance boosts, suggesting that taking ratings from
similar researchers might improve over general-
purpose jargon identification methods. Subdomain
information was also helpful for prediction, sug-
gesting that modeling familiarity at the subdomain
level can bring benefits beyond current general jar-
gon identification techniques. Furthermore, for
researchers with a small publication history (and
therefore a small amount of unlabeled individual-
level data), subdomain data can provide valuable
information for predicting jargon familiarity.

Our methods provide an exciting first step to sup-
port researchers in reading and communicating out-
side their domain (Wudarczyk et al., 2021). Com-
bined with text simplification techniques (Srikanth
and Li, 2020), models that can predict an individual
researcher’s familiarity could assist researchers by
rewriting an abstract tuned to particular research
audiences, a capability that our formative study
findings highlighted as a need for researchers (§3).

8 Conclusion

This paper introduces the novel task of scientific
jargon detection for the individual researcher. We
collect and release a dataset of over 10K term fa-
miliarity annotations from computer science re-
searchers and investigate supervised and prompt-
based methods to predict term familiarity. We find
that leveraging a researcher’s publication history,
self-reported subdomain, and general domain in-
formation can improve term familiarity prediction.
Our results provide insight on integrating an indi-
vidual’s knowledge into scientific jargon detection.

Limitations

We focus on CS researchers for selecting annota-
tors and abstracts in other fields. This might limit
our ability to generalize to other domains or re-
searchers. Publication venues (e.g., journals or
conferences) and norms vary widely across fields,
which might complicate how research publications
can be used to model term familiarity. Because
of the cost of collecting annotations, our dataset
is also relatively small, which might further limit
its generalizability. 11 CS researchers is not rep-
resentative of all of CS nor does it adequately
cover each subfield (e.g., only one annotator self-
identified as a CS theory researcher). Our goal
with the dataset and analysis is to show the po-
tential of modeling individual term familiairty and
information needs. We are excited about future
work expanding this goal into new domains. There-
fore, we published the procedures and question-
naire used in our data collection to encourage future
research on personalized jargon detection for scien-
tists in additional domains. Details can be found at:
https://github.com/talaugust/PersonalizedJargon.

Ethics Statement

Some of the methods in the paper include personal
data (e.g., publication record, labeled terms), which
might pose a privacy risk for some researchers. Sys-
tems identifying term familiarity and information
needs must keep any personal data stored locally
and allow researchers to remove or view their data
at any time. Focusing on CS researchers as a first
step for predicting term familiarity might also al-
low CS researchers to more effectively read out-
side their discipline, but not researchers in other
domains reading within CS. While encouraging in-
terdisciplinary reading can improve two-way com-
munication, it is also important to consider the
voices of researchers in other domains.
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a.

b.

Figure 7: Formative study results: domain-specific atti-
tudes towards (a) personalized abstracts and (b) trans-
formations of personalized abstracts. Medical abstracts
are distant from the annotators’ background, whereas
linguistic or psychology abstracts are closer. Legend is
shared for both plots.

Appendix

A Initial Task Definition

For our initial study, we focus on reading full sci-
entific abstracts because we wanted to understand
if term familiarity was an important part of our
broader envisioned setting of researchers reading
abstracts outside of their domain. Further, our goal
in providing a naive personalized abstract was to
probe what transformations are feasible with cur-
rent models that researchers respond positively to.

One abstract was from the medical domain, a do-
main not within any participant’s dominant exper-
tise, and one abstract was from a domain related to
but distinct from a participant’s specialization (i.e.,
psychology or linguistics). Personalized abstracts
were generated using text-davinci-003 model from
OpenAI (OpenAI, 2023; Brown et al., 2020).

B GPT Prompts

All prompts used for GPT-4 experiments are shown
in Table 7.
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Figure 8: Number of papers categorized by domain in
the annotation dataset.
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Modification Original abstract sentence Personalized abstract sentence Human annotation

Add Back-
ground/Motivation

Undiagnosed chronic kidney
disease (CKD) is a common and
usually asymptomatic disorder that
causes a high burden of morbidity
and early mortality worldwide.

Early detection of CKD is crucial
for avoiding renal replacement
therapy, with an estimated 4.6%
of total mortality worldwide

Like. I didn’t realize how
big the problem was, now I
do.

Add Defini-
tion/Explanation

Distributional semantics provides
multidimensional, graded,
empirically induced word
representations that successfully
capture many aspects of meaning in
natural languages, as shown by a
large body of research in
computational linguistics; yet, its
impact in theoretical linguistics has
so far been limited.

Distributional semantics is based on
the Distributional Hypothesis,
which states that similarity in
meaning results in similarity of
linguistic distribution.

Like. Good to introduce
what distributional
semantics is.

Add
Result/Method

We developed a deep learning
model for CKD screening from
routinely acquired ECGs.

We also used Local Interpretable
Model-agnostic Explanations
(LIME) to identify which ECG
segments were particularly used in
the identification of CKD, which
focused mostly on QRS complexes
and PR intervals.

Marking as neutral because
this isn’t in the abstract so
I’m unsure if this is right.
But if it is, I really like that
it’s highlighting more of the
CS methodological stuff.

Rephrasing

Undiagnosed chronic kidney
disease (CKD) is a common and
usually asymptomatic disorder that
causes a high burden of morbidity
and early mortality worldwide.

Chronic kidney disease (CKD) is a
major global health burden. Like. simpler language.

Reordering

Distributional semantics provides
multidimensional, graded,
empirically induced word
representations that successfully
capture many aspects of meaning in
natural languages, as shown by a
large body of research in
computational linguistics; yet, its
impact in theoretical linguistics has
so far been limited.

This survey provides an overview of
the literature on distributional
semantics, with a focus on methods
and results that are of relevance for
theoretical linguistics.
Distributional semantics is based on
the Distributional Hypothesis,
which states that similarity in
meaning results in similarity of
linguistic distribution.

Like. Not new but
re-ordered; I like having
this sentence at the start, as
the first sentence in the
original abstract is long
and complicated.

Add
Downstream
Connection

-

The paper also discusses how
distributed representations can be
used to generate dictionary
definitions of words, and how they
can be augmented with simple
mathematical or logical
expressions.

Like. These additional
details help make the study
more concrete, and I
understand them because
this is my area. Also this
connects to work I
especially know because
I’ve done some myself
(generating dictionary
definitions).

Table 6: Example sentence pair for the original abstract and personalized abstract. Human annotation results for
their attitudes and reasons towards the modifications. The personalized abstract was generated using the abstract
personalization prompt in Table 7.
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Task Prompt Model Max
length Temp.

Abstract
personal-
ization

You are tasked with the role as a scientific writer to generate an
personalized abstract for an individual reader. To do this effectively,
consider including relevant background information or motivations
related to the subject matter, provide necessary definitions or
explanations to elucidate complex concepts, and incorporate significant
methodological or result-oriented details. However, ensure that any
additional information included is directly relevant and can be traced
back to the provided content. The paper needed to be personalized is:{
}; The reader’s publications are: { }; The reader’s references are:{}; The
personalized abstract is: .

text-
davinci-
003

500 0

Top-10
significant
terms

Please review the following scientific paper abstract. Your task is to
identify all scientific-related word/phrases within the text and then rank
these word/phrases in descending order based on their significance
within the abstract itself. Retain the first 10 word/phrases:.

text-
davinci-
003

100 0

Familiarity
classifica-
tion

Your job is to estimate how much the reader knows about an entity. You
will be provided with the entity, the abstract where the entity came from,
and related data about either the reader or the abstract. Entity: {}
Abstract:{} Related Data:{} Here’s how to gauge the reader’s
familiarity: - 0: The reader knows this subject well and can describe it
to others. - 1: The reader has either encountered this subject before but
knows little about it, or has never come across it at all. Based on the
information provied, determine the familiarity score, either 0 or 1:

gpt-4 100 0

Definition
needs clas-
sification

Your job is to estimate whether the reader might need an additional
definition to fully grasp the entities mentioned in a given abstract. You
will be provided with the entity, the abstract where the entity came from,
and related data about either the reader or the abstract. Definition of
definition/explanation: provides key information on the term
independent of any context (e.g., a specific scientific abstract). A
definition answers the question, Ẅhat is/are [term]?.̈ Entity: {}
Abstract:{} Rel:{}. Provide the estimation whether additional
information is needed in a list in the order of the entity. The estimation
should be either 0(no) or 1(yes). No need to mention the entity:

gpt-4 100 0

Back-
ground
needs clas-
sification

Your job is to estimate whether the reader might need additional
background to fully grasp the entities mentioned in a given abstract. You
will be provided with the entity, the abstract where the entity come from,
and related data about either the reader or the abstract. Definition of
background/motivation: introduces information that is important for
understanding the term in the context of the abstract. Background can
provide information about how the term relates to overall problem,
significance, and motivation of the abstract. Entity: {} Abstract:{}
Rel:{}. Provide the estimation whether additional information is needed
in a list in the order of the entity. The estimation should be either 0(no)
or 1(yes). No need to mention the entity:

gpt-4 100 0

Example
needs clas-
sification

Your job is to estimate whether the reader might need additional
example to fully grasp the entities mentioned in a given abstract. You
will be provided with the entity, the abstract where the entity come from,
and related data about either the reader or the abstract. Definition of
example: offers specific instances that help illustrate the practical
application or usage of the term within the abstract. Entity: {}
Abstract:{} Rel:{}. Provide the estimation whether additional
information is needed in a list in the order of the entity. The estimation
should be either 0(no) or 1(yes). No need to mention the entity:

gpt-4 100 0

Table 7: GPT prompts and configurations. We prompted models in September of 2023.
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Model F1 Recall Precision

Majority Baseline 44.4±1.8 100.0±0.0 28.6±1.5

Oracle
Majority 50.7±2.8 42.7±2.9 62.3±3.4

Nearest-neighbor 54.3±2.4 60.4±2.9 49.3±2.7

Lasso
Mixed 13.7±3.6 24.0±6.2 9.6±2.7

Individual 56.4±2.8 45.5±3.0 74.1±3.4

GPT
Baseline 47.7±1.8 97.3±1.0 31.6±1.6

Self-defined Subfield 48.4±1.9 92.9±1.6 32.7±1.6

Context-enhanced 47.5±1.8 97.0±1.1 31.5±1.6

Table 8: Mean model performance (±std) on additional
definition prediction in the test set (200 entities). The
bold value indicates the best performing model for each
category. Standard deviation is calculated by bootstrap-
ping.

Model F1 Recall Precision

Majority Baseline 37.2±1.7 100.0±0.0 22.8±1.3

Oracle
Majority 0.0±0.0 0.0±0.0 0.0±0.0

Nearest-neighbor 0.0±0.0 0.0±0.0 0.0±0.0

Lasso
Mixed 15.0±5.1 10.5±3.8 26.3±8.7

Individual 48.1±3.3 36.9±3.2 69.3±4.0

GPT
Baseline 40.0±1.9 95.5±1.3 25.3±1.5

Self-defined Subfield 39.3±1.9 93.1±1.7 24.9±1.5

Context-enhanced 38.6±1.9 96.9±1.2 24.1±1.4

Table 9: Mean model performance (±std) on additional
background prediction in the test set (200 entities). The
bold value indicates the best performing model for each
category.

Model F1 Recall Precision

Majority Baseline 31.5±1.8 100.0±0.0 18.7±1.2

Oracle
Majority 0.0±0.0 0.0±0.0 0.0±0.0

Nearest-neighbor 0.0±0.0 0.0±0.0 0.0±0.0

Lasso
Mixed 0.0±0.0 0.0±0.0 0.0±0.0

Individual 28.7±3.9 18.0±2.8 71.7±6.6

GPT
Baseline 31.9±1.8 97.4±1.2 19.1±1.2

Self-defined Subfield 32.4±1.8 91.3±2.1 19.7±1.3

Context-enhanced 32.5±1.8 97.4±1.1 19.5±1.3

Table 10: Mean model performance (±std) on addi-
tional example prediction in the test set (200 entities).
The bold value indicates the best performing model for
each category.

4549



Annotator Familiarity Definition Background Example

ID Sub-field Neighbor Sub-field Neighbor Subfield Neighbor Subfield Neighbor Subfield

1 CV 10 CV 5 Security 8 NLP 4 NLP
2 Networking 3 NLP 9 Networks 3 NLP 11 CV
3 NLP 11 CV 4 NLP 11 CV 2 Networking
4 NLP 11 CV 3 NLP 11 CV 1 CV
5 Security 2 Networking 2 Networking 11 CV 2 Networking
6 Theory 3 NLP 9 Networks 3 NLP 9 Networks
7 NN 8 NLP 9 Networks 4 NLP 10 CV
8 NLP 11 CV 3 NLP 11 CV 11 CV
9 Networks 7 NN 2 Networking 4 NLP 6 Theory
10 CV 3 NLP 3 NLP 8 NLP 5 Security
11 CV 3 NLP 4 NLP 8 NLP 2 Networking

Table 11: Nearest-neighbor for each annotator.

Entity sentence Domain Ann.
subdomain Fam. Informa-

tion
Total
Fam.

We study auctions for selling a limited supply of a
single commodity in the case where the supply is
known in advance and the case it is unknown and must
be instead allocated in an online fashion.

Economics CS Theory Familiar Example 9

Inference with the graphical model for de novo peptide
sequencing estimates posterior probabilities for amino
acids rather than scores for single symbols in the
sequence.

Engineer-
ing

Computer
Vision Familiar Example 7

. . . to communicate foreign policy goals and decisions,
construct a strategic narrative of Indian foreign policy
and counter narratives inimical to Indian interests.

Political
Science NLP Familiar None 6

Several parameters obtained from the experimental
results were compared and analyzed, including the
load-bearing capacity, stiffness, ductility, energy
dissipation, and failure characteristics of the specimens.

Engineer-
ing,
Materials
Science

CS Theory Unfamil-
iar Definition 5

Agents with identical linear time-invariant dynamics
are considered.

Mathemat-
ics

Neural
Networks Familiar None 2

Self-directed learning is a necessary skill for students
and workers to remain lifelong learners. Education NLP Unfamil-

iar
Definition,
Motivation 9

Table 12: Sample of entities with sentence context, their familiarity ratings, and information needs. Entities are
bolded within the sentence. Total familiarity count indicates how many annotators rated an entity as familiar.
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