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Abstract

Referring Image Segmentation (RIS) is a cross-
modal task that aims to segment an instance
described by a natural language expression. Re-
cent methods leverage large-scale pretrained
unimodal models as backbones along with
fusion techniques for joint reasoning across
modalities. However, the inherent cross-modal
nature of RIS raises questions about the effec-
tiveness of unimodal backbones. We propose
RISCLIP, a novel framework that effectively
leverages the cross-modal nature of CLIP for
RIS. Observing CLIP’s inherent alignment be-
tween image and text features, we capitalize
on this starting point and introduce simple but
strong modules that enhance unimodal feature
extraction and leverage rich alignment knowl-
edge in CLIP’s image-text shared-embedding
space. RISCLIP exhibits outstanding results on
all three major RIS benchmarks and also outper-
forms previous CLIP-based methods, demon-
strating the efficacy of our strategy in extending
CLIP’s image-text alignment to RIS.

1 Introduction

Referring Image Segmentation (RIS) is a multi-
modal task that aims to produce a pixel-wise mask
of an instance referred to by a natural language
expression. The task holds great potential with
various applications, such as language-based im-
age editing (Chen et al., 2018; Parmar et al., 2023;
Brooks et al., 2023) and human-robot interac-
tion (Wang et al., 2019).

RIS poses a formidable challenge, demanding a
nuanced understanding of both visual and linguistic
modalities. Thus, conventional methods (Li and Si-
gal, 2021; Wang et al., 2022; Zhu et al., 2022; Yang
et al., 2022; Liu et al., 2023b) leverage the profound
knowledge learned by large-scale pretrained mod-
els, employing image and text encoders as back-
bones, such as Swin-T (Liu et al., 2021) trained on
ImageNet-21K (Ridnik et al., 2021) and BERT (De-
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Figure 1: CLIP’s image-text alignment produces pre-
liminary patch-level groundings through cosine sim-
ilarity between patch-level image and sentence-level
text features. Building upon this alignment, we refine
CLIP’s groundings into accurate segmentations with
three modules. Cross-modal Feature Extraction (CFE)
modules enhance CLIP’s unimodal image and text fea-
tures by aligning them at candidate regions. Shared-
space Knowledge Exploitation (SKE) modules lever-
age the rich alignment knowledge in CLIP’s image-text
shared-embedding space to discern the target referent.
Lastly, a decoder transforms the patch-level grounding
into a pixel-wise segmentation.

vlin et al., 2019) trained on Wikipedia and Google’s
BookCorpus. Additionally, various fusion tech-
niques (Hu et al., 2016; Ye et al., 2019; Ding et al.,
2021; Hu et al., 2020; Hui et al., 2020) have been
introduced to enable joint reasoning across modali-
ties, significantly advancing RIS.

However, the inherent cross-modal nature of
RIS raises questions about the effectiveness of uni-
modal backbones. In contrast, we posit that the
cross-modal nature of CLIP (Radford et al., 2021)
makes it a better candidate for RIS. Extending on
the findings of MaskCLIP (Zhou et al., 2022), we
observe that CLIP possesses image-text alignment
beneficial for RIS—cosine similarity maps between
patch- and sentence-level features (Zhou et al.,
2022) produce preliminary groundings. To fully
utilize this image-text alignment, we freeze CLIP
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and build upon this promising starting point. While
previous work (Wang et al., 2022; Xu et al., 2023b)
demonstrates the potential of adopting CLIP for
RIS, their performances trail behind the current
state of the arts, indicating an opportunity for im-
provement.

In our framework, RISCLIP, we effectively adapt
CLIP to RIS, capitalizing on its image-text align-
ment. Firstly, we enhance the unimodal feature
extraction by introducing cross-modal interaction
between the image and text encoders with Cross-
modal Feature Extraction (CFE) modules. These
modules effectively align the image and text fea-
tures at candidate regions—regions described by
or related to the target text. Then, we leverage
the rich alignment knowledge captured in CLIP’s
image-text shared-embedding space by introducing
inter- and intra-modal interactions after the feature
extraction process with Shared-space Knowledge
Exploitation (SKE) modules. The comprehensive
interactions allow RISCLIP to discern the target
from the candidate regions. Our CFE and SKE
modules effectively adapt CLIP to RIS, evolving
CLIP’s preliminary image-text alignment into ac-
curate groundings, as shown in Fig. 1.

RISCLIP exhibits outstanding performance on
all three major RIS benchmarks. Particularly,
RISCLIP excels on the more challenging datasets,
such as RefCOCOg (Mao et al., 2016) with com-
plicated texts. Such result indicates that adopting a
cross-modal backbone like CLIP, which trains on
varied captions including extensive expressions, is
beneficial for RIS. Furthermore, RISCLIP also sur-
passes previous CLIP-based methods (Wang et al.,
2022; Xu et al., 2023b), proving that such perfor-
mance arises from both CLIP and our effective
adaptation strategy.

2 Related Work

Referring image segmentation. RIS aims at pre-
dicting a pixel-wise mask of an object described by
a natural language text. The pioneering work (Hu
et al., 2016) extracts image and text features with re-
current LSTMs and a CNN and concatenates them
along the channel dimension into multi-modal fea-
tures. Follow-up work expands on this framework
by incorporating recurrent multi-modal interac-
tions (Liu et al., 2017) along with more fine-grained
segmentation with hierarchical visual features (Li
et al., 2018; Margffoy-Tuay et al., 2018; Chen et al.,
2019; Jain and Gandhi, 2022). Another line of

research focuses on attending to more important
words in the referring expression (Yu et al., 2018;
Shi et al., 2018; Liu et al., 2022) and proposes effec-
tive cross-modal attention modules (Ye et al., 2019;
Ding et al., 2021; Hu et al., 2020; Hui et al., 2020).
Recent methods adopt pretrained transformer en-
coders to extract image and text features (Kim et al.,
2022; Tang et al., 2023), and others further leverage
the encoder transformer layers for multi-modal fea-
ture extraction (Feng et al., 2021; Yang et al., 2022;
Zhang et al., 2019; OuYang et al., 2023). Moving
towards real-world conditions, recent work tackles
settings where expressions describe none to mul-
tiple objects (Hu et al., 2023; Liu et al., 2023a),
image-expression pairs only are provided without
segmentation masks (Strudel et al., 2022; Liu et al.,
2023a; Kim et al., 2023; Lee et al., 2023), and no
labels are provided for training (Yu et al., 2023;
Suo et al., 2023).
Contrastive language-image pre-training.
CLIP (Radford et al., 2021) is well-known for
its general cross-modal capacity. Acquired
through extensive contrastive pretraining on
large-scale image-text pairs, CLIP carries not only
expertise knowledge in both visual and linguistic
modalities but also general alignment between
image and text features. Various multi-modal
tasks, including text-to-image generation (Ramesh
et al., 2022; Rombach et al., 2022) and visual
captioning (Mokady et al., 2021; Hessel et al.,
2021), benefit from CLIP’s rich multi-modal
alignment. Several works attempt to adapt CLIP to
dense prediction tasks, such as open vocabulary
object detection (Du et al., 2022; Rasheed et al.,
2022) and semantic segmentation (Luo et al., 2022;
Xu et al., 2023a). In particular, MaskCLIP (Zhou
et al., 2022) exploits the alignment between patch-
and sentence-level features for zero-shot open
vocabulary segmentation. We hypothesize that
such patch-level alignment is a good starting point
for RIS, and, consistent with such hypothesis,
observe that the alignment produces a notice-
able 23.86 mIoU on the most challenging RIS
benchmark—RefCOCOg-UMD (Nagaraja et al.,
2016)—with a upsampling decoder attached. Thus,
we propose a new framework that effectively
exploits such informative cross-modal alignment
of CLIP to produce accurate RIS predictions.
CLIP for RIS. Although methods that adopt CLIP
for RIS exist (Radford et al., 2021), they either fully
finetune CLIP and risk losing its general knowl-
edge (Wang et al., 2022) or do not explicitly lever-
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age the alignment between the image and text fea-
tures learned from millions of image-text pairs (Xu
et al., 2023b). Above all, their performance falls
behind the state of the art, suggesting room for
improvement. Thus, we take a new approach of
explicitly exploiting CLIP’s rich image-text align-
ment by extracting preliminary grounding maps
from frozen CLIP and enhancing them into accu-
rate segmentations with our adaptive modules. Our
framework achieves compelling results, showing
that we effectively extend CLIP’s image-text align-
ment to RIS.

3 Method

Fig. 2 illustrates the overall pipeline of our method,
RISCLIP. We exploit CLIP’s cross-modal align-
ment between patch- and sentence-level features
and evolve cosine similarity maps between them
into precise pixel-wise groundings with our new
framework. The Cross-modal Feature Extraction
(CFE) modules enhance the unimodal feature ex-
traction of CLIP with cross-modal communica-
tion, aligning image and text features at candi-
date regions related to the text. The Shared-space
Knowledge Exploitation (SKE) modules exploit
CLIP’s rich knowledge captured within the image-
text shared embedding space to discern the target
referent from candidate regions, particularly those
described by complicated expressions. Together,
CFE and SKE modules adapt CLIP to RIS, produc-
ing precise patch-level grounding maps. Finally, a
simple decoder refines these maps into pixel-level
segmentations. The following sections detail each
module—CFE, SKE, and the decoder—starting
with the original CLIP feature extraction.

3.1 CLIP for referring image segmentation

To fully utilize CLIP’s invaluable image-text align-
ment, we freeze CLIP and introduce modules that
enhance the features for RIS. We explain the fea-
ture extraction process of CLIP and detail the con-
struction of the patch-level grounding map in the
following paragraphs.
Feature extraction. Both CLIP’s image and
text encoders consist of repeated transformer lay-
ers (Vaswani et al., 2017), followed by a layer nor-
malization (LN) (Ba et al., 2016) and a linear pro-
jection to a shared image-text embedding space.
Each transformer layer has two submodules: a
multi-head self-attention (MHSA) and a multilayer
perceptron (MLP) with each submodule preceded

by LN. Text features are extracted via a text encoder
as a sequence of word- and sentence-level repre-
sentations. Firstly, the sentence is transformed into
word embeddings via byte pair encoding (Gage,
1994) and encased with a learnable [SOS] and [EOS]
token. This sequence is then passed through trans-
former layers and linearly projected to the shared
image-text embedding space. The output [EOS]
token acts as the sentence-level representation of
the text, and we denote it teos ∈ R1×d, where d is
the dimensionality of the shared embedding space.
Analogously, image features are extracted with an
image encoder as a sequence of patch-level rep-
resentations prepended with an image-level em-
bedding. Specifically, the image is divided into a
sequence of patches, prepended with a learnable
[CLS] token, passed through transformer layers,
and linearly projected to the shared embedding
space. We denote the output patch-level features as
Vpatch ∈ RNvisual×d, where Nvisual is the number of
patches.
Patch-level grounding map. We build upon the
findings of MaskCLIP (Zhou et al., 2022) that CLIP
possesses cross-modal alignment between patch-
and sentence-level features to produce preliminary
patch-level RIS groundings. Slightly modifying the
image feature extraction process of the last image
transformer layer, we adopt the value tokens from
the MHSA as patch tokens and pass them through
the subsequent LN, MLP, and linear projection to
the image-text shared embedding space to produce
a new Vpatch. Cosine similarity between Vpatch
and teos produces preliminary grounding maps for
RIS, highlighting regions related to the text. We
observe that the patch-level grounding maps with
a decoder attached provide a promising mIoU of
23.86 on the RefCOCOg-UMD test set (Nagaraja
et al., 2016). Adopting this as a good starting point,
we introduce modules to transform the preliminary
maps into accurate segmentations.
Adapters. Since the CLIP backbone is trained
with contrastive learning between the image- and
sentence-level features, its features are suboptimal
for dense prediction tasks like RIS. Thus, we intro-
duce adapters to transform the features into repre-
sentations more appropriate for RIS. We adopt the
adapter architecture from (Houlsby et al., 2019;
Chen et al., 2022), which consists of a down-
projection linear layer, a non-linear activation, and
an up-projection linear layer. These structures are
residually attached after the MHSA and MLP mod-
ules of CLIP’s transformer layers. The residual
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Figure 2: The overall pipeline of RISCLIP. We adopt frozen CLIP image and text encoders as backbones to exploit
their aligned image and text features and adapt them to RIS with two modules, CFE and SKE. Firstly, the CFE
modules between the encoders enable cross-modal commnuication between the two encoders to align their unimodal
features at candidate regions. Secondly, the SKE modules on top of the encoders leverage the rich cross-modal
alignment knowledge in CLIP’s image-text shared embedding space to discern the target referent. Then a cosine
similarity between the patch- and sentence-level features produces a patch-level grounding map. Lastly, a decoder
refines the map into a pixel-level segmentation prediction.

summations introduce fine-grained structural de-
tails that refine the segmentation boundaries of the
patch-level grounding map, thereby increasing the
mIoU on the RefCOCOg-UMD test set to 48.29
mIoU.

3.2 Cross-modal feature extraction

The independent feature extraction of image and
text features in CLIP yields unimodal features
which are bound to limited alignment between the
target instance and referring text. Consider the
image-text pair in Fig. 2. Given an image of two
giraffes and the text “A giraffe looking up while
another giraffe next to it looks down”, the patch-
level features of the target giraffe are unlikely to
perfectly align with the sentence-level feature, as
the giraffe can be described with different texts
like “the taller giraffe behind the fence” and “gi-
raffe sticking its chin up.” For the target patch-level
features to better align with the sentence-level fea-
ture, they must evolve to be like the text feature, or
vice versa, through cross-modal interaction. There-

fore, we introduce Cross-modal Feature Extraction
(CFE) modules between the unimodal image and
text encoders to enable cross-modal communica-
tion via cross-attention which aligns the image and
text features at text-relevant regions. Starting from
the deepest layers of the backbone, we pair an im-
age and text encoder layer and attach a single CFE
module in between to communicate intermediate
image and text features, where the number of CFE
modules introduced is a hyperparameter.

Consider a CFE module between the k-th text
and l-th image transformer layers which take as
input text and image features, tk and vl, respec-
tively. First, the CFE module projects tk and vl to
a shared image-text embedding space with linear
projections, Wt2s and Wv2s, to produce tsk and
vs
l . Then, two separate multi-head cross-attention

(MHCA) modules input tsk and vs
l , where each

modality is set as query and the other key and value,
to produce text and image multi-modal features,
tmk and vm

l . Lastly, the multi-modal features are
projected from the shared embedding space back
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to each modalities’ space with linear projections,
Ws2t and Ws2v to produce the final multi-modal
features tm

′
k and vm′

l . We elaborate on this process
to output tm

′
k below, where vm′

l can be computed
in vice versa, as

tsk = Wt2stk, vs
l = Wv2svl, (1)

tmk = MHCA(tsk,v
s
l ,v

s
l ) (2)

tm
′

k = Ws2tt
m
k . (3)

These multi-modal features, tm
′

k and vm′
l , are

added back to the input features as tk = tk + tm
′

k

and vl = vl + vm′
l to inject multi-modal informa-

tion into the CLIP features. Then, tk and vl are
input to the k-th text and l-th image transformer
layers to be processed by the subsequent MHSA
and MLP. We visualize the feedforward process in
the bottom-right of Fig 2.

These modules effectively inject cross-modal
information into CLIP’s previously unimodal fea-
tures, allowing the target patch-level features to
align with the sentence-level features and vice
versa. The better aligned features output more accu-
rate groundings, increasing performance to 60.58
mIoU on the RefCOCOg-UMD test set.

3.3 Shared-space knowledge exploitation

Although the CFE modules effectively adapt CLIP
to RIS, we observe that they often miss the tar-
get described by complex texts about intricate re-
lationships among multiple instances. Thus, we
attempt to leverage the alignment between images
and lengthy captions residing in CLIP’s image-text
shared embedding space, which was obtained dur-
ing its extensive contrastive learning pretraining.
We introduce Shared-space Knowledge Exploita-
tion (SKE) modules which execute both inter- and
intra-modal conditioning on the image and text
features within the shared embedding space via
residually connected MHCA, MHSA, and MLPs,
with LN applied before every submodule. We vi-
sualize the feedforward in the top-right of Fig. 2.
The intra-modal interactions allow the model to
grasp intricate relationships between objects within
in each modality, while the inter-modal interac-
tions allow cross-modal alignment and grounding.
These comprehensive interactions handle lengthy,
intricate descriptions effectively, increasing the per-
formance to 62.64 mIoU on the RefCOCOg-UMD
test set.

3.4 Decoder
The patch-level grounding maps are upsampled
to pixel-level predictions (mappixel) with a de-
coder. Since the role of the decoder is to fig-
ure out the boundary of the referred instance de-
tected by the grounding map, we adopt a simple
decoder (Yang et al., 2022). To accurately restore
the geometric details of the target referent, the
decoder exploits intermediate patch-level features
from the first four layers of the CLIP image back-
bone, Vi, i ∈ {1, 2, 3, 4}.

The decoder consists of four layers, Di, i ∈
{1, 2, 3, 4}, where Di comprises of two repetitions
of 3×3 convolutions, ReLU (Agarap, 2018), and
batch normalization (Ioffe and Szegedy, 2015), fol-
lowed by double-resolution upsampling. The feed
forward process is given by

d4 = D4([v4;mappatch])

di = Di([di+1;u(vi)]), i = 1, 2, 3,

where di is the output features of Di, mappatch the
sigmoided patch-level grounding map, u the up-
sampling operation, and [;] channel-wise concate-
nation. Finally, d1 undergoes a linear projection
that produces background and foreground score
maps, which are sigmoided into the pixel-wise pre-
diction, mappixel. The binary prediction mask is
obtained via argmax during inference.

3.5 Loss functions
RISCLIP is trained in two stages. In the first stage,
the Adapters, CFE, and SKE modules align the
sigmoided patch-level grounding map, mappatch,
with a patch-level downsampled ground truth mask,
maskpatch. Once mappatch converges, the decoder
is introduced in the second stage to upsample
mappatch to a pixel-wise map, mappixel, aligning
with the pixel-level ground truth mask, maskpixel.
During this stage, all modules except the decoder
remain frozen, and the decoder only is trained
for a single epoch. Although training the entire
framework end-to-end with the decoder is feasi-
ble, this approach inevitably makes the decoder
receive random patch-level grounding maps during
initial training steps, resulting in meaningless train-
ing signals and wasted computation. Conversely,
the two-stage training simplifies the decoder’s role
to delineating patch-level grounding boundaries,
requiring only one epoch for convergence in the
second stage. This approach enhances efficiency
by minimizing unnecessary computation.
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Following (Li and Sigal, 2021), we adopt a lin-
ear combination of DICE/F-1 loss (Milletari et al.,
2016) and focal loss (Lin et al., 2017) for both train-
ing stages, first between mappatch and maskpatch
and after between mappixel and maskpixel.

4 Experiments

4.1 Datasets and evaluation metrics

Datasets. We evaluate RISCLIP on three major
RIS datasets: RefCOCO (Yu et al., 2016), Ref-
COCO+ (Yu et al., 2016), and RefCOCOg (Mao
et al., 2016). The RefCOCO family originates from
the same MSCOCO (Lin et al., 2014) dataset and
thus shares images but possesses different texts. Re-
fCOCO (Yu et al., 2016) and RefCOCO+ (Yu et al.,
2016) texts are relatively concise, consisting of 3.6
words and 1.6 nouns on average. RefCOCO+ (Yu
et al., 2016) differs from RefCOCO (Yu et al.,
2016) in that the texts do not include absolute
positional information, such as first, second, left,
and right, is thus more difficult. Lastly, Ref-
COCOg (Mao et al., 2016) comprises of longer,
more complex texts (8.4 words and 2.8 nouns per
text) and is thus the most challenging. We evaluate
on the conventionally used UMD split (Nagaraja
et al., 2016).
Evaluation metrics. We employ two metrics
widely used in RIS: the overall intersection-over-
union (oIoU) and the mean intersection-over-union
(mIoU). The oIoU is the sum of all intersections
over the sum of all unions, while the mIoU is the
average of intersection over unions. The mIoU
is a fairer metric than the oIoU, which is biased
towards large objects (Yang et al., 2022). Hence,
we report both oIoU and mIoUs but adopt mIoUs
when comparing with previous methods.

4.2 Model settings

To explore the effect of the CLIP backbone size,
we experiment with two backbones trained with
ViT-B and ViT-L (Vaswani et al., 2017) and dub
our framework RISCLIP-B and -L, respectively. In
RISCLIP-B, we use the 12-layer ViT-B (Vaswani
et al., 2017) with patch size 16×16 as the image en-
coder and a 12-layer transformer as the text encoder.
In RISCLIP-L, we use ViT-L (Vaswani et al., 2017)
with patch size 14×14 and the same 12-layer text
transformer as in RISCLIP-B. For both RISCLIP-
B and -L, we attach Adapters in all layers of both
encoders, six CFE, and six SKE modules. Other
hyperparameters are detailed in Appendix A.1.

4.3 Comparison with state of the arts

We compare RISCLIP with previous methods
on the three aforementioned datasets in Table 1.
On RefCOCOg-UMD (Nagaraja et al., 2016),
RISCLIP-B achieves superior performance com-
pared to DMMI (Hu et al., 2023), with an average
improvement of 1.01 mIoU points across both the
validation and test sets. Analogously, RISCLIP-B
surpasses DMMI by 0.63 and 1.13 mIoU points on
RefCOCO (Yu et al., 2016) and RefCOCO+ (Yu
et al., 2016), respectively. Furthermore, RISCLIP-
L, which adopts a larger image encoder, advances
the frontier set by RISCLIP-B by an average of
3.96, 3.20, and 5.54 mIoU points, respectively.
Such performance improvement across all datasets
demonstrates the competency of RISCLIP.

We compare RISCLIP to previous work that
leverage CLIP: CRIS (Wang et al., 2022) and
ETRIS (Xu et al., 2023b). Different from RISCLIP-
L which uses ViT-L (Vaswani et al., 2017) as the
image encoder, CRIS uses ResNet-101 (He et al.,
2016). RISCLIP-L surpasses CRIS by an aver-
age of 11.62, 8.66, and 11.99 mIoU points on the
three datasets, respectively. RISCLIP-B surpasses
ETRIS by an average of 4.73, 3.05, and 4.82 oIoU
points, respectively. Such performance difference
shows that we utilize CLIP effectively.

Also, we compare RISCLIP to PolyFormer (Liu
et al., 2023b) in a separate Table 2, since Poly-
Former was trained on the combined RefCOCO
family while the others were trained on each dataset
separately. We also train RISCLIP on the com-
bined dataset following PolyFormer for fair com-
parison. RISCLIP-B attains comparable perfor-
mance to PolyFormer-B, but with bigger back-
bones, RISCLIP-L outperforms PolyFormer-L by
an average of 2.83, 2.39, and 2.43 mIoU points on
the three datasets. In summary, RISCLIP achieves
a new state of the art.

4.4 Ablation studies

We conduct ablation studies on the test set of
RefCOCOg-UMD (Nagaraja et al., 2016) to prove
the effectiveness of our framework and verify its ar-
chitectural designs. For expedited experiments, we
conduct them with a small image size of 240×240
for 50 epochs. Other hyperparameters are the same
as those written in Appendix in A.1.
Module ablation. We validate the effectiveness of
Adapters, CFE, and SKE modules by progressively
introducing each module to frozen CLIP in Table 3.
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Table 1: Comparison with state of the arts on RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016), and
RefCOCOg-UMD (Mao et al., 2016; Nagaraja et al., 2016). We reproduce DMMI (Hu et al., 2023) on RefCOCO
and RefCOCO+ with the official code to report its mIoU scores unprovided in the original paper. RN101 is ResNet-
101 (He et al., 2016), DN53 Darknet-53 (Redmon and Farhadi, 2018), and WRN101 Wide ResNet-101 (Zagoruyko
and Komodakis, 2016). CLIP-B and CLIP-L denote the Transformer-based CLIPs which adopt ViT-B and ViT-
L (Vaswani et al., 2017) as the image encoder, respectively, while CLIP-L* is the ResNet-based CLIP which utilizes
ResNet-101 (He et al., 2016).

Method Image Text RefCOCOg RefCOCO RefCOCO+

Encoder Encoder Val Test Val Test A Test B Val Test A Test B

oIoU

BRINet (Hu et al., 2020) RN101 LSTM - - 60.98 62.99 59.21 48.17 52.32 42.11
CMPC (Huang et al., 2020) RN101 LSTM - - 61.36 64.53 59.64 49.56 53.44 43.23
LSCM (Hui et al., 2020) RN101 LSTM - - 61.47 64.99 59.55 49.34 53.12 43.50
CMPC+ (Liu et al., 2022) RN101 LSTM - - 62.47 65.08 60.82 50.25 54.04 43.47
MCN (Luo et al., 2020b) DN53 Bi-GRU 49.22 49.40 62.44 64.20 59.71 50.62 54.99 44.69
BUSNet (Yang et al., 2021) RN101 Self-Attn - - 63.27 66.41 61.39 51.76 56.87 44.13
CGAN (Luo et al., 2020a) DN53 Bi-GRU 51.01 51.69 64.86 68.04 62.07 51.03 55.51 44.06
LTS (Jing et al., 2021) DN53 Bi-GRU 54.40 54.25 65.43 67.76 63.08 54.21 58.32 48.02
ReSTR (Kim et al., 2022) ViT-B BERT - - 67.22 69.30 64.45 55.78 60.44 48.27
ETRIS (Xu et al., 2023b) CLIP-B CLIP-B 59.82 59.91 70.51 73.51 66.63 60.10 66.89 50.17
LAVT (Yang et al., 2022) Swin-B BERT 61.24 62.09 72.73 75.82 68.79 62.14 68.38 55.10
SLViT (OuYang et al., 2023) SegNeXt BERT 62.75 63.57 74.02 76.91 70.62 64.07 69.28 56.14
DMMI (Hu et al., 2023) Swin-B BERT 63.46 64.19 74.13 77.13 70.16 63.98 69.73 57.03
DMMI (Reproduced) Swin-B BERT - - 73.79 75.67 69.96 63.85 69.65 55.71

RISCLIP-B CLIP-B CLIP-B 64.10 65.09 73.57 76.46 69.76 65.53 70.61 55.49
RISCLIP-L CLIP-L CLIP-L 67.96 68.71 76.92 80.99 73.04 71.24 76.99 61.56

mIoU

CRIS (Wang et al., 2022) CLIP-L* CLIP-L* 59.87 60.36 70.47 73.18 66.10 62.27 68.06 53.68
SeqTR (Zhu et al., 2022) DN53 Bi-GRU 64.69 65.74 71.70 73.31 69.82 63.04 66.73 58.97
RefTR (Li and Sigal, 2021) RN101 BERT 66.63 67.39 74.34 76.77 70.87 66.75 70.58 59.40
LAVT (Yang et al., 2022) Swin-B BERT 63.34 63.62 74.46 76.89 70.94 65.81 70.97 59.23
VLT (Ding et al., 2023) Swin-B Bi-GRU 63.49 66.22 72.96 75.96 69.60 63.53 68.43 56.92
DMMI (Hu et al., 2023) Swin-B BERT 66.48 67.07 - - - - - -
DMMI (Reproduced) Swin-B BERT - - 75.26 76.96 72.05 67.51 72.1 60.38

RISCLIP-B CLIP-B CLIP-B 67.61 67.95 75.68 78.01 72.46 69.16 73.53 60.68
RISCLIP-L CLIP-L CLIP-L 71.82 71.65 78.87 81.46 75.41 74.38 78.77 66.84

Table 2: Comparison with PolyFormer (Liu et al., 2023b) in mIoU. Both RISCLIP and PolyFormer are trained on
the combined RefCOCO dataset (Yu et al., 2016; Mao et al., 2016; Nagaraja et al., 2016).

Method Image Text RefCOCOg RefCOCO RefCOCO+

Encoder Encoder Val Test Val Test A Test B Val Test A Test B

PolyFormer-B (Liu et al., 2023b) Swin-B BERT 69.36 69.88 75.96 77.09 73.22 70.65 74.51 64.64
RISCLIP-B CLIP-B CLIP-B 69.61 69.56 76.01 78.63 71.94 69.67 74.30 61.37

PolyFormer-L (Liu et al., 2023b) Swin-L BERT 71.15 71.17 76.94 78.49 74.83 72.15 75.71 66.73
RISCLIP-L CLIP-L CLIP-L 73.45 74.52 79.53 82.13 75.78 74.88 78.88 68.09

Introducing Adapters boosts performance by an
mIoU of 24.43, proving that Adapters effectively
adapt CLIP to the segmentation task. Moreover, at-
taching CFE improves performance by 12.29 mIoU,
indicating that transforming unimodal feature ex-
traction into a cross-modal one is beneficial for RIS.
Introducing SKE further pushes the performance

by 2.06 mIoU, showing that comprehensive inter-
action within CLIP’s image-text shared-embedding
space is helpful. In contrast, finetuning CLIP along
with the modules performs worse than its frozen
CLIP twin, with a mIoU drop of 4.76. Thus, our
choice of residually adapting frozen CLIP features
with Adapters, CFE, and SKE is a viable approach.
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Table 3: Performance when Adapters, CFE, and SKE
modules are successively introduced into frozen CLIP.
The last row (‘Fine-tuned’) denotes the setting where
CLIP is fine-tuned along with the introduced modules.

RISCLIP-B Adapter CFE SKE mIoU oIoU

Frozen ✗ ✗ ✗ 23.86 33.13
Frozen ✓ ✗ ✗ 48.29 50.98
Frozen ✓ ✓ ✗ 60.58 58.39
Frozen ✓ ✓ ✓ 62.64 62.02
Fine-tuned ✓ ✓ ✓ 57.88 55.75

Table 4: Performance when MHCA in CFE and SKE
modules are replaced with other more complex fu-
sion methods, including state-of-the-art fusion mech-
anisms (Yang et al., 2022; Ding et al., 2023).

Fusion Direction mIoU oIoU

a) MHCA replaced with complex attention-based fusion modules

MHCA (Ours) Bidirectional 62.64 62.02
MHSA on Concat Bidirectional 62.63 61.65
MHCA on Concat Bidirectional 62.04 60.87

b) MHCA replaced with state-of-the-art fusion modules

PWAM (Yang et al., 2022) Text-to-Image 60.58 59.29
PWAM (Yang et al., 2022) Bidirectional 61.01 59.39
SDF (Ding et al., 2023) Text-to-Image 59.8 57.81
SDF (Ding et al., 2023) Bidirectional 60.28 58.87

Fusion ablation. We validate our choice of a sim-
ple MHCA for cross-modal fusion instead of more
complex fusion methods. Specifically, we replace
the MHCA in CFE and SKE modules with other
attention-based fusion methods such as MHSA on
concatenated image and text tokens (MHSA on
Concat) and MHCA where the query is one modal-
ity’s tokens and the key, value are the concate-
nated image and text tokens (MHCA with Con-
cat). Firstly, ‘MHSA on Concat’ produces a slight
performance decrease (0.01 mIoU and 0.37 oIoU),
indicating it’s a viable option. Yet, the computa-
tion increase due to attention between the summed
number of image and text tokens makes it less effi-
cient than the simple MHCA. Secondly, ‘MHCA
with Concat’ decreases performance by 0.6 mIoU
and 1.15 oIoU. In summary, the simple MHCA
is an efficient yet effective attention mechanism
for our CFE and SKE modules. The results are
summarized in section a) of Table 4.

We also demonstrate the superiority of the
simple MHCA over existing state-of-the-art fu-
sion modules like Pixel-Word Attention Module
(PWAM) in LAVT (Yang et al., 2022) and Spatial-
Dynamic Fusion (SDF) in VLT (Ding et al., 2023)

Table 5: Performance when the number of Adapters,
CFE, and SKE modules are varied. The original set-
ting of 12 Adapters, six CFE, and six SKE modules is
marked with asterisk.

Prec@0.5 Prec@0.7 Prec@0.9 mIoU oIoU

a) Adapters attached to N last CLIP encoder layers

N = 3 71.81 55.3 11.29 61.40 60.84
N = 6 72.73 56.53 11.87 62.15 61.33
N = 9 72.50 57.44 14.03 62.31 60.68
N = 12* 73.19 57.68 14.21 62.64 62.02

b) CFE modules attached to N last CLIP encoder layers

N = 2 72.56 57.05 14.16 62.33 61.34
N = 4 72.33 57.31 13.89 62.41 61.47
N = 6* 73.19 57.68 14.21 62.64 62.02

c) SKE modules of N layers attached behind CLIP encoders

N = 2 72.17 56.72 14.23 62.30 61.56
N = 4 72.73 57.68 14.57 62.79 61.95
N = 6* 73.19 57.68 14.21 62.64 62.02

for adapting CLIP to RIS. Since both modules per-
form unidirectional fusion by conditioning image
features on text features, we implement bidirec-
tional versions for fair comparison to our CFE and
SKE modules that execute bidirectional fusion. As
shown in Table 4, replacing the simple MHCA with
these modules in CFE and SKE all results in per-
formance drops, suggesting that complex fusion
modules are not needed to adapt CLIP to RIS.
Architecture ablation. We investigate the effect
of our modules by varying their numbers in a base-
line model. The results are summarized in Table 5.
Section a) shows that performance improves with
the number of Adapters attached to the latter CLIP
encoder layers. Such a trend suggests that Adapters
can beneficially adapt CLIP features to RIS at all
layers. In section b), performance increases with
the number of CFE modules, indicating that using
more cross-modal interaction during feature extrac-
tion is advantageous. In section c), the performance
plateaus from 4 to 6 SKE modules, suggesting that
there is a limit to the benefits that interaction within
the image-text space can bring.

4.5 Visualizations

We visualize predictions of RISCLIP-B on the
RefCOCOg-UMD (Nagaraja et al., 2016) test set.
Fig. 3 shows our model’s ability to capture a wide
variety of instances, detect partially visible or
blurry targets, and differentiate the ground truth
from resemblances, even with complicated expres-
sions. More visualizations are provided in Ap-
pendix A.2.2.
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The face of the clock 
tower is in the shadow

Black suv parked on side A umbrella near the 
green flag
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the bat
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branch

Little girl with white shirt 
with a design on it sitting 
at the table with a little 
girl with a pink shirt
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black hat and blue 

shoes, holding a pink 
umbrella

The smallest vaseA gray-haired woman 
standing in the background

Widest glass vaseThe arm of a man 
sitting down

The pitcher in white

b)

a)

c)

Figure 3: Visualization of RISCLIP-B predictions on RefCOCOg-UMD (Nagaraja et al., 2016) test set. Row a)
shows RISCLIP’s understanding of various instances, row b) RISCLIP’s detection of partial, blurry instances and
differentiate similar objects, row c) RISCLIP’s discernment of the target instance among resembling instances
described by lengthy texts.

5 Conclusion

RISCLIP effectively extends the image-text align-
ment of CLIP to RIS, achieving outstanding per-
formance on all major RIS benchmarks. We ef-
fectively build upon CLIP’s patch-level image-text
alignment by introducing cross-modal communi-
cation during feature extraction and leveraging the
rich cross-modal alignment within CLIP’s image-
text shared-embedding space to successfully delin-
eate referents described by complicated texts.

6 Limitations

We can improve our work by adopting other image-
text alignment backbones such as ALIGN (Jia et al.,
2021) and Florence (Yuan et al., 2021). Such ex-
tension would allow us to investigate image-text
alignment within various cross-modal foundation
models and the effectiveness of adapting them to
RIS. Also, while RISCLIP achieves state-of-the-art
results with impressive margins, there are complex
cases where our framework struggles to identify
the target instance accurately. We include these
cases in Appendix A.2.1.

7 Broader impacts

RIS holds the potential to impact numerous do-
mains that use human-computer interaction, such
as autonomous driving and assistant robots. For
example, a user could instruct a domestic service
robot to “fetch the blue cup, not the red one”, and
the RIS-built-in robot will be able to accurately
detect the blue cup and serve his/her owner. Nev-
ertheless, potential ethical concerns, including pri-
vacy, model bias, and data processing should be
considered. Even the RefCOCO (Yu et al., 2016;
Mao et al., 2016) dataset includes offensive expres-
sions and provocative images that require removal.
In summary, RIS will impact diverse fields adopt-
ing human-computer interaction, but ethical issues
should be addressed to ensure beneficial develop-
ment and safe deployment.
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A Appendices

A.1 Training details

Training scheme. We train both RISCLIP-B and
-L for 60 epochs with AdamW (Loshchilov and Hut-
ter, 2019b) optimizer, using weight decay of 5e-3
and an initial learning rate of 5e-5 with polynomial
learning rate decay. Images are resized to 640×640
for RISCLIP-B and 560×560 for RISCLIP-L, such
that the visual encoders are both fed 40×40 patch
tokens. We apply random affine transformation
and random intensity saturation data augmenta-
tions following RefTR (Li and Sigal, 2021). The
ratio between dice (Milletari et al., 2016) and focal
loss (Lin et al., 2017), λdice and λfocal, is empiri-
cally set to 1.0 to 1.75, and alpha and gamma, αfocal
and γfocal, in the focal loss are set to 0.65 and 2.0.

We use batch size of 32 for the models trained on
separate RefCOCO datasets (Yu et al., 2016; Mao
et al., 2016) (reported in Table 1), whilst we use
bigger batch sizes of 96 for RISCLIP-B and 56
for RISCLIP-L trained on the combined RefCOCO
family (Yu et al., 2016; Mao et al., 2016) (reported
in Table 2) to prevent prolonged training.
Initializations. The backbone encoders are initial-
ized from different sources for RISCLIP-B and -L.
In RISCLIP-B, the backbone encoders are initial-
ized with the official weights of OpenCLIP (Ilharco
et al., 2021) pretrained on LAION-400M (Schuh-
mann et al., 2021). On the other hand, RISCLIP-L’s
backbone encoders are initialized with the official
weights of CLIP (Radford et al., 2021) pretrained
on 400 million image-text pairs collected by Ope-
nAI. We use different sources for the pretrained
weights because each source provides a model pre-
trained with a bigger image size than the other
source (i.e. OpenCLIP provides a ViT-B backbone
pretrained with image size 240×240 pixels whilst
OpenAI provides one with 224×224 pixels). We
empirically find that using a backbone pretrained
with a bigger image size provides better segmenta-
tion ability.

The Adapters adopt different initializations. For
the Adapters, we follow (Chen et al., 2022) and ini-
tialize the down-projection linear layer with Kaim-
ing Normal (He et al., 2015) and the up-projection
layer with zeros. Initializing the up-projection with
zeros makes the initial adapter output zero, which
is required for stable training (Chen et al., 2022).
Inspired by this, we also initialize CFE and SKE
modules such that the outputs are initially zero. In
detail, for CFE modules, we initialize the image-
text shared embedding projections in the MHSA
as zeros, and, for SKE modules, the value projec-
tions in MHA and MHSA as zeros. We experiment
with other compositions and find that the adopted
initialization provides the best performance, which
is slightly better than the others (about 0.6 IoUs).
Additional techniques. Furthermore, we observe
that incorporating learnable temperatures in the
attention modules of the Adapters and introduc-
ing learnable channel-wise scalers before residual
summation of the Adapter outputs lead to a slight
enhancement in performance (up to 0.5 IoU points).
All hyperparameters are listed in Table A1.

A.2 Analysis
In Sections A.2.1 and A.2.2, we analyse RISCLIP-
B and RISCLIP-L trained on RefCOCOg-
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Table A1: Hyperparameters for training RISCLIP-B and -L on the separate RefCOCO datasets (Yu et al., 2016;
Mao et al., 2016; Nagaraja et al., 2016). The only difference when training on the combined RefCOCO family (Yu
et al., 2016; Mao et al., 2016; Nagaraja et al., 2016) is the batch size, which is increased from 32 to 96 and 56 for
RISCLIP-B and -L, respectively. We denote Adam with decoupled weight decay (Loshchilov and Hutter, 2019a) as
AdamW, rectified linear unit (Agarap, 2018) as ReLU, Brain Floating Point (Burgess et al., 2019) format as BF16,
and single-precision floating-point format as FP32.

Hyperparameters RISCLIP-B RISCLIP-L

Backbone

Pretrained Weight Source OpenAI OpenCLIP
Image Encoder Patch Size 16 14
Image Encoder Transformer Layers 12 24
Text Encoder Transformer Layers 12 12
Image Encoder MHA Head Number 14 16
Text Encoder MHA Head Number 10 12
fvL dimension 896 1024
f tL dimension 640 768
v dimension 640 768
t dimension 640 768

Adapters

Image Encoder Adapter Bottleneck dimension 449 512
Text Encoder Adapter Bottleneck dimension 320 384
Non-linear Activation ReLU ReLU
Scaler Initial value 0.6 0.6

Cross-modal Feature Extraction (CFE)

Module Number 6 6
svm−1 640 768
stm−1 640 768
MHA Head Number 10 12
Scaler Initial value 0.5 0.5

Shared-space Knowledge Exploitation (SKE)

Module Number 6 6
MHA, MHSA Head Number 8 8
Scaler Initial value 0.5 0.5

Others

Image Size 640 560
Batch Size 32 32
Epochs 60 60
Optimizer AdamW AdamW
β1 for AdamW 0.9 0.9
β2 for AdamW 0.999 0.999
Learning Rate Initial Value 5e-5 5e-5
Weight Decay Strength 5e-3 5e-3
λdice 1.0 1.0
λfocal 1.75 1.75
αfocal 0.65 0.65
γfocal 2.0 2.0
Locator Precision BF16 BF16
Refiner Precision FP32 FP32

4624



UMD (Nagaraja et al., 2016)). We choose Ref-
COCOg (Mao et al., 2016) among the three datasets
since it possesses longer and more expressive texts,
which offer greater insight about the types of texts
that RISCLIP understands and struggles with.

A.2.1 Failure cases
Referring Image Segmentation is a challenging
task that involves a various expressions and im-
ages. Thus, how to group and categorize the image-
text pairs is ambiguous. Nevertheless, we attempt
to identify common scenarios where RISCLIP of-
ten makes false predictions. Analysing predictions
made by RISCLIP-B on the test set, we observe
that RISCLIP tends to struggle in two situations:
“Recognition of Characters” and “Comprehension
of Absence”. We illustrate each case with visualiza-
tions, where the ground-truth masks are displayed
in blue and predictions made by RISCLIP in pink.
Recognition of characters. The first case involves
the recognition of characters. Figure A1 shows that
RISCLIP fails to detect numbers ‘13’ and ‘48’, the
letter ‘B’, and the word ‘STOP’.
Comprehension of absence. The second case con-
cerns texts that describe the target instance with
the ‘absence’ of some attribute. Figure A2 shows
examples where RISCLIP struggles to comprehend
instances described as “A squat vase with no flow-
ers" and “The man with the bat wearing his shirt
untucked".

We hypothesize that RISCLIP’s relatively poor
performance in the two scenarios arises from the
limited number of such texts in the dataset. Im-
proving RISCLIP to excel in these cases is another
direction for future research.

A.2.2 Visualizations
RISCLIP-B. We provide visualizations of cases
where RISCLIP-B successfully segments the target
instance on the RefCOCOg-UMD (Nagaraja et al.,
2016)) test set in Figure A3. Even when the texts
are lengthy and similar instances exist in the im-
age, RISCLIP-B successfully discerns the referred
instance.
RISCLIP-L. As observed in Table 1, RISCLIP-L
performs better than RISCLIP-B. Thus, we provide
visual representations of examples where RISCLIP-
L successfully identifies target instances that are
overlooked by RISCLIP-B on the RefCOCOg-
UMD (Nagaraja et al., 2016)) test set in Figure A4.
The segments colored in pink on the left are the
predictions made by RISCLIP-B, while the purple

segments on the right are those made by RISCLIP-
L.

The visualizations suggest that RISCLIP-L pos-
sesses an additional capability to detect targets that
are only partially visible or require the recognition
of subtle visual cues. Such ability can be attributed
to the more fine-grained CLIP image encoder of
RISCLIP-L: during CLIP (Radford et al., 2021)
pretraining, the CLIP image encoder of RISCLIP-L
is trained with image size 336×336 and patch size
14×14 which results in 24×24=576 tokens, whilst
that of RISCLIP-B is pretrained with image size
240×240 and patch size 16×16 which amounts to
15×15=225 tokens. Thus, RISCLIP-L possesses
are more fine-grained image feature extractor and
thereby perceives subtle visual cues better.

4625



G
T 

/ P
re

di
ct

io
n

G
T 

/ P
re

di
ct

io
n

Baseball player with number 13 on uniform A train that has B on the front of it

A man wearing a red number 48 jersey A sign with STOP on it facing the viewer

Figure A1: Visualization of RISCLIP-B predictions on RefCOCOg-UMD (Nagaraja et al., 2016) test set samples.
RISCLIP fails to recognize alphabetic and numeric characters.
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A squat vase with no flowers in it A tall plant without leaves
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An elephant with no tusks The man with the bat wearing his shirt untucked

Figure A2: Visualization of RISCLIP-B predictions on RefCOCOg-UMD (Nagaraja et al., 2016) test set samples.
RISCLIP fails to comprehend texts that describe the target object with the ‘absence’ of some attribute.
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L: The horse with the blue cover on its back
R: The brown and white horse

L: A little boy with long blonde hair and a red jacket
R: A foal with themother close by

L: A woman with a multicolored scarf watches another woman
R: A woman in a purple corat adjusts a cake

L: Woman in plaid jacket and blue pants on sjits
R: A person in red jacket ready for skiing

L: A container holding broccoli, cauliflower, cucumber, and carrots
C: Cooked vegetables with a brown sauce in a white container
R: White fluffy rice is a good compliment to the stir fry

One of the zebras has 
its backside to the 

camera

Teddy bear in the hands 
of a little boy with a 
yellow cap and gray 

shirt

The silhouette of a cat 
sitting to the left of 

a flower vase

The lighter colored vehicle 
behind the darker one

Figure A3: Visualization of RISCLIP-B predictions on RefCOCOg-UMD (Nagaraja et al., 2016) test set samples.
‘L’ denotes the text of the left subfigure whilst ‘R’ denotes that of the right. RISCLIP succeeds in locating different
target instances within the same image, even when the texts are long and complex. We also present cases where
there are similar instances to the target.
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Person with back to others A blue snowboard

A player preparing to catch the ball Backpack that police officer is wearing

A woman riding a bike behind a lady wearing 
a red shirt

The horse that can be barly seen

Man with dark hair using a laptopYellow taxi cab with a advertising sign on roof

Figure A4: Visualizations of RISCLIP-B (left subfigures in pink) and RISCLIP-L (right subfigures in blue)
predictions on RefCOCOg-UMD (Nagaraja et al., 2016) test set samples. RISCLIP-L detects instances that have
small detecting cues or that are partially visible which are omit by RISCLIP-B.
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