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Abstract

Large language models (LLMs) often gener-
ate biased outputs containing offensive, toxic,
or stereotypical text. Existing LLM alignment
methods such as reinforcement learning from
human feedback (RLHF) alleviate biases pri-
marily based on reward signals from current
model outputs without considering the source
of biases. In this work, to explore how biases
are formed, we revisit LLMs’ text generation
from a causal perspective. We identify pre-
training data and input prompts, which contain
semantic correlations of textual phrases, as two
confounders between LLMs and model outputs
causing biases. Inspired by our causal view,
we leverage the reward model in RL alignment
as an instrumental variable to perform causal
intervention on LLMs. Utilizing the reward
difference between an initial LLM and inter-
vened LLM as interventional feedback to guide
RL finetuning, we propose Causality-Aware
Alignment (CAA) for LLM debiasing. Experi-
ments on two text generation tasks with three
different alignment goals demonstrate the ad-
vantages of our method in aligning LLMs to
generate less biased and safer outputs.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chung et al., 2022; Touvron et al., 2023) have
demonstrated remarkable proficiency in generating
fluent texts while also reflecting biases (Gallegos
et al., 2023). Recent studies on reducing LLMs’
biased outputs, e.g., offensive, toxic, and stereotyp-
ical text generations (Kadan. et al., 2022; Xu et al.,
2022), have incorporated human feedback into the
finetuning process to align LLMs with human val-
ues (Stiennon et al., 2020; Yuan et al., 2023; Dong
et al., 2023; Korbak et al., 2023). Many adopt
the reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Wu et al., 2023)
framework, where a reward model trained from

∗Corresponding author

…I am pretty sure this guy is ill-advised…
…we are certain it has been an absolute mess…
…she is 100 percent sure it is someone naive…

Pretraining Data 

LLM Output

Input Prompt

I’m 99 percent sure it was someone

being ignorant… 

…

Figure 1: An illustrative example of LLM’s toxic text
generation before alignment, even though the input
prompt is non-toxic. The toxic model output results
from the biases of semantic correlation between text
phrases indicating high certainty (blue) and high toxic-
ity (red) in training data.

human preferences is used to provide training sig-
nals for the RL finetuning of LLMs. For example,
given a toxic model output, e.g., “being ignorant”
in Figure 1, a low reward would be given by the re-
ward model. Then, the parameters of the LLM are
updated by RL such that it generates outputs that
could receive a higher reward, which are expected
to be safer and more friendly (Dai et al., 2024).

While optimizing the model parameters based
on rewards from current model outputs has shown
promising results in debiasing LLMs, existing RL
alignment methods tend to overlook how such bi-
ases could be formed. As shown in Figure 1, LLMs’
toxic output can result from the semantic correla-
tions of text phrases in pretraining data (Kadan.
et al., 2022). Specifically, when phrases indicating
high certainty, e.g., “pretty sure” often co-occur
with toxic phrases, e.g., “ill-advised” in pretraining
data, the high frequency of co-occurrence forms a
semantic correlation between these two kinds of
phrases, which is learned by the LLM during pre-
training. For rest of the paper, we use pretraining
and training interchangeably for simplicity. Then,
when prompted with a semantically similar phrase
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indicating high certainty, e.g., “99 percent sure” as
shown in Figure 1, the LLM would tend to gener-
ate toxic outputs, e.g., “ignorant”, even though the
input prompt may not contain any toxic content.
Without considering how such biases are formed,
existing alignment methods such as RLHF are lim-
ited in exploring better policies for LLMs that lead
to less biased and safer text generations (Wolf et al.,
2023).

In this work, to better understand such biases,
we revisit LLMs’ text generation from a causal
perspective. With our designed structural causal
model, we identify training data and input prompt
as two confounders between LLMs and model out-
puts. Specifically, when training data or input
prompt exhibit biased semantic correlations be-
tween certain text phrases, e.g., high certainty and
high toxicity phrases, such correlations influence
both the LLM and model output during training
and inference, resulting in confounding effects. As
a result, even though the LLM may not intend to
generate toxic text given a non-toxic input prompt
as shown in Figure 1, the likelihood of observing
toxic model outputs increases because of the con-
founding effects in addition to the original causal
effects between the LLM and model outputs.

Inspired by our causal view, we propose to align
LLMs for debiasing through causal intervention,
aiming to alleviate confounding effects. While
existing RLHF methods may be considered as a
form of interventions on LLMs (Zhang et al., 2023)
through parameter updates, these methods are not
designed with the awareness of causal relations in
text generation and thus may not perform effec-
tive interventions that alleviate biases. Therefore,
to further improve existing alignment methods for
LLM debiasing, we leverage the reward model in
RL finetuning as an instrumental variable provid-
ing interventional feedback, which is based on the
reward difference between initial LLM outputs and
intervened LLM outputs. By adaptively weight-
ing biased samples based on interventional feed-
back during RL finetuning, we propose Causality-
Aware Alignment (CAA) for LLM debiasing. Ex-
periments on two text generation tasks, including
positive-sentiment and detoxified text continuation,
and debiased text summarization, demonstrate the
advantages of our method in aligning LLMs to gen-
erated less biased outputs.

In summary, we make the following contribu-
tions:

• To further understand the potential formation
of LLMs’ biases, we revisit LLMs’ text gen-
eration from a causal perspective.

• With our designed structural causal model, we
identify training data and input prompts that
exhibit biased semantic correlations of text
phrases as two confounders causing biases.

• Leveraging the reward model in RL finetuning
as an instrumental variable providing interven-
tional feedback, we propose Causality-Aware
Alignment (CAA) for LLM debiasing.

2 Related Work

2.1 RL for LLM Alignment
Reinforcement learning from human feedback
(RLHF) has been the widely adopted alignment
framework for LLMs (Ouyang et al., 2022; Bai
et al., 2022a). The idea is to first train a reward
model from collected human preference data and
then optimize the LLM parameters as policy by
RL algorithms such as proximal policy optimiza-
tion (PPO) (Schulman et al., 2017). Built upon
RLHF, a growing number of alignment methods
have been proposed recently. Wu et al. (2023) lever-
age human feedback at different densities to pro-
vide fine-grained reward for RL finetuning. Peng
et al. (2023) use selective training data for stabi-
lized RLHF. Dai et al. (2024) take into account
safety into RLHF for LLM training. Sun et al.
(2024) align LLM with the reward model based
on human-defined principles. Yang et al. (2024)
align LLM with RL from contrastive samples. Ba-
heti et al. (2024) utilize language models’ value
estimate to select only positive advantage data
points for training. Another line of works have
explored leveraging constitutional feedback (Bai
et al., 2022b) or AI feedback (Lee et al., 2023) to
replace the reward model during RL training. Roit
et al. (2023) apply RL from textual entailment feed-
back to align LLMs to generate less hallucinated
summaries. Our work draws parallels with existing
RL alignment methods by utilizing interventional
feedback for LLM debiasing.

2.2 Causality for NLP
Causality has been drawing increasing attention in
the field of NLP to tackle biases and build more
interpretable and robust models. Vig et al. (2020)
adopt causal mediation analysis to study gender
biases in language models. Zhang et al. (2021) use
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backdoor adjustment to remove spurious correla-
tions introduced by confounders in named entity
recognition. Wu et al. (2022) also apply backdoor
adjustment to address confounders in interactive
sequence labeling. Wang et al. (2022) leverage
instrumental variable estimation for debiasing im-
plicit semtiment analysis. Cao et al. (2022) analyze
prompt-based probing from a causal view. Zhang
and Yu (2023) utilize a structural causal model
for debiasing demonstration-based learning. Wang
et al. (2023) develop in-context causal intervention
alleviating entity biases with prompts. In compar-
ison, our work focuses on causal intervention for
aligning LLMs to generate less biased texts. Note
that Zhou et al. (2023) introduce causal learning
for debiasing language models as well. They fo-
cus on the biases of pretrained BERT-like models
in mainly text classification tasks, using a human-
crafted list of bias words. Our work differs from
theirs in that we focus on LLM text generation
tasks, using a target reward model to handle more
general biases.

3 Methodology

In this section, we first revisit LLMs’ text gener-
ation from a causal perspective to understand po-
tential formation of LLMs’ biases in Section 3.1.
Inspired by our causal view, we further propose
Causality-Aware Alignment in Section 3.2, lever-
aging reward model for causal intervention. We
instantiate Causality-Aware Alignment via RL with
interventional feedback in Section 3.3

3.1 Causal View of Text Generation

Given an LLM denoted as L and an input prompt
X , our objective is to analyze how they affect the
observed model output Y , i.e., how does the LLM
behave in generating outputs given a prompt, which
can be represented by two causal paths L→ Y and
X → Y . Now suppose the LLM is trained on
the training data U , which induces a causal path
U → L indicating the influence of the training data
on the LLM. Then, considering the language mod-
eling objective in pretraining (Brown et al., 2020)
and the designed prompts in potential instruction
tuning (Chung et al., 2022), we can also observe a
path U → X showing that training data have also
influenced the way we prompt LLMs. Moreover,
recent studies on LLMs’ in-context learning abil-
ity have shown that LLMs can also be influenced
by the input prompt, where LLMs are proven to

U

X

YL

(a) Before Alignment

U

X

YLR

(b) Causality-Aware Alignment

…I’m pretty sure this guy is ill-advised…
…we are certain it has been an absolute mess…

Input Prompt (X)Pretraining Data (U)

Model Output (Y)LLM (L)

…

being ignorant… 

I’m 99 percent sure 
it was someone

(c) L← U →X → Y

He’s certain this guy is a nuisance. 
I’m 99 percent sure it was someone

Input Prompt (X)

Pretraining Data (U)

Model Output (Y)LLM (L)

being ignorant… 

(d) L←X → Y

RL Finetuning

Reward Model (R)

Instrumental 
Variable

Interventional 
Feedback

Input Prompt (X)

Pretraining Data (U)

Model Output (Y)LLM (L)

making some mistakes…

…I’m pretty sure this guy is ill-advised…
…we are certain it has been an absolute mess…

He’s certain this guy is a nuisance. 
I’m 99 percent sure it was someone

Sample 
Weighting

(e) R→ L

Figure 2: (a) Structural causal model for LLM text gen-
eration before alignment; (b) Structural causal model for
LLM text generation with causality-aware alignment;
(c) Illustrative example of the backdoor path L← U →
X → Y resulting from the confounder U ; (d) Illus-
trative example of the backdoor path L ← X → Y
resulting from the confounder X; (e) Illustrative ex-
ample of the causal relation R → L showing how the
reward model affects LLM as an instrumental variable.

conduct implicit gradient descent during inference
without explicit parameter update (Dai et al., 2023;
Von Oswald et al., 2023; Li et al., 2023). Thus,
another path X → L is observed.

Formalizing the above causal relations, we de-
sign a structural causal model for LLMs’ text gen-
eration as presented in Figure 2a.

Confounder U . From Figure 2a, we can first
identify training data U as a confounder between
LLM L and model output Y (Pearl, 2009). Specif-
ically, training data U affects not only the LLM
L but also the model output Y mediating through
input prompt X , denoted by the backdoor path
L ← U → X → Y . As a result, semantic cor-
relations such as the one between high certainty
and high toxicity text phrases in the training data
could introduce biases through the backdoor path
as illustrated in Figure 2c.
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Confounder X . Similarly, we can observe from
Figure 2a that input prompt X is also a confounder
affecting both LLM L and model output Y through
the backdoor path L ← X → Y . Thus, for in-
put prompts with certain demonstration examples,
the LLM may also be influenced to output biased
content as illustrated in Figure 2d.

3.2 Causality-Aware Alignment
While RLHF can be considered as a form of hu-
man interventions (Zhang et al., 2023), it is not
designed with the awareness of causal relations as
we analyzed in Section 3.1, and thus is limited in
performing effective causal interventions. Based
on our causal view of LLMs’ text generation, we
propose to leverage the reward model as an instru-
mental variable to provide interventional feedback.

Instrumental Variable R. Following previous
works (Brito and Pearl, 2002; Peysakhovich and
Eckles, 2018; Wu et al., 2022; Wang et al., 2022),
we identify two requirements for an ideal reward
model R to be served as an instrumental variable:
i) the reward model R does not inherit biases from
confounders training data U and input prompt X ,
and ii) the reward model R influences the model
output Y only by affecting the LLM L.

Denoting the LLM with initial parameter con-
figuration as Lθinit and the LLM updated by R as
Lθ = RL(Lθinit , R), where RL(·) represents the RL
finetuning. Following prior works (Pearl, 2009;
Yue et al., 2020; Wu et al., 2021; Cao et al.,
2022; Xia et al., 2023; Liu et al., 2024), we repre-
sent such intervention on LLM that intentionally
sets its parameters as θ with do-calculus notation
do(L = Lθ) or simply do(L). With do(L = Lθ),
we are essentially isolating the confounding effects
of training data and input prompt presented in the
observations by interventions, which can also be
conceptualized as cutting off backdoor paths as
illustrated in Figure 2b.

Interventional Feedback from R. While tra-
ditional instrumental variable estimation meth-
ods often assume linear relations between vari-
ables, LLMs involve much more complex non-
linear transformer architectures. Therefore, in-
stead of estimating the interventional probability
P (Y | do(L = Lθ)) directly, we slightly general-
ize the usage of instrumental variable to provide
interventional feedback capturing causal signals.

Specifically, we follow Wang et al. (2022) to
consider the following rationale. Since the reward

model R only affects LLM output Y through the
causal path R → L → Y , given the same U and
X , any change in the model output Y that are due
to the intervention of R implies a signal of causal
effect. Otherwise, the model output Y can be con-
sidered to be dominated by the confounding effects
through the backdoor paths. Hence, we capture
causal signals by measuring the difference between
LLM outputs before and after intervention, the idea
of which can also be considered as a variant of
causal invariant learning (Zhou et al., 2023).

Given U and X , we denote the model output
Y generated by the initial LLM before interven-
tion as y |L and the model output generated by the
LLM after intervention as y |do(L). We define the
interventional feedback capturing causal signals as

w =
∥∥y |L − y |do(L)

∥∥
R

, (1)

where ∥·∥R denotes the measurement in terms of
reward given by R. The causal path of the reward
model R on LLM L is illustrated in Figure 2e
where more details are described in Section 3.3.

3.3 RL with Interventional Feedback

In this section, we describe the RL finetuning pro-
cess for Causality-Aware Alignment and how the
interventional feedback provided by the reward
model is utilized.

Formulation. Given an input prompt x and an
LLM output y, we denote the generated output up
to the t-th token as y:t. Following Ramamurthy
et al. (2023), we formulate LLM text generation
as a token-level Markov Decision Process (MDP).
The state at the t-th token generation is the input
prompt appended by previously generated tokens
(x, y:t−1) and the action space is the token vocabu-
lary. A policy model Lθ(· | (x, y:t−1)), i.e., LLM,
gives the probability distribution over all tokens in
the vocabulary given the current state. The objec-
tive of RL is to optimize the policy maximizing
the cumulative reward given by the reward model.
To find the optimal policy, we adopt the proximal
policy optimization (PPO) algorithm widely used
in existing RLHF works (Ouyang et al., 2022; Wu
et al., 2023; Ramamurthy et al., 2023).

Rewards. As illustrated in Figure 3, an input
prompt x is first given to the LLM being intervened
Lθ and a model output y is generated. The reward
model R then provides a reward signal r when y
reaches the end. Formally, for the t-th generated
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Initial Trained Model Output           , i.e.,  

Initial Trained LLM 

RL Finetuned Model Output     , i.e.,
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Pretraining Data U

Sample Weight 

Figure 3: RL finetuning loop for causality-aware alignment with interventional feedback.

token, the token-wise reward is defined as

rt =

{
R(y:t) , yt = <EOS> ;

0 , otherwise ,

where <EOS> is the end-of-sequence symbol.
Additionally, we follow Ouyang et al. (2022)

to regularize the policy learning with a Kullback-
Leibler (KL) penalty in the reward, which ensures
the LLM does not deviate too far from the initial
policy. Specifically, we calculate the KL diver-
gence between the log probabilities of the t-th gen-
erated token given by the finetuned LLM Lθ and
the initial LLM Lθinit as

rKL
t = log

Lθ (yt | (x, y:t−1))

Lθinit (yt | (x, y:t−1))
.

The final reward for the t-th generated token is thus
given by

rt,final = rt − β rKL
t , (2)

where β is a hyperparameter controlling the regular-
ization and the resulting rfinal is a reward sequence
for the generated output sequence y.

Intervention-Weighted Loss. Since the interven-
tional feedback defined in Equation 1 measures the
difference of LLM outputs before and after inter-
vention, it does not necessarily reflect the quality
of current model output but shows how well the RL
agent has the control of the environment (Seitzer
et al., 2021). Therefore, instead of directly integrat-
ing the interventional feedback into the reward, we
follow similar idea in Pang and He (2021) and Dai
et al. (2024) to parallel the structure of the objec-
tive function. Specifically, we apply interventional
feedback as the sample weight for loss. The intu-
ition behind the sample weighting is to penalize

small reward changes and thus encourage effective
interventions during RL finetuning.

As illustrated in Figure 3, given the input prompt
x, we also obtain the model output yinit from the
initial LLM Lθinit trained on training data U . The
reward rinit for yinit is then utilized to calculate the
interventional feedback defined in Equation 1 as

w = ∥yinit − y∥R = |rinit − r| ,
which is further rescaled with min-max normaliza-
tion denoted as ŵ.

Based on the reward defined in Equation 2,
we compute the generalized advantage estimation
(Schulman et al., 2015) At with a value model be-
ing optimized at the same time. The PPO clipped
surrogate objective (Zheng et al., 2023) is then de-
fined as

L(θ) = Êt [min(vtAt, clip(vt, 1− ϵ, 1 + ϵ)At)] ,
(3)

where vt =
Lθ(yt | (x,y:t−1))

Lθinit (yt | (x,y:t−1))
is the ratio of the fine-

tuned policy’s probability over the inital policy’s
probability and ϵ is a hyperparameter controlling
how much the finetuned policy can deviate from
the initial one. We then obtain the final objective
of RL finetuning with interventional feedback for
causality-aware alignment

L̂(θ) = ŵL(θ) .
For detailed computation of advantages and deriva-
tion of the PPO objective, please refer to Wu et al.
(2023) and Zheng et al. (2023).

4 Experimental Design

4.1 Tasks and Datasets
We evaluate our proposed Causality-Aware Align-
ment (CAA) on two text generation tasks, text
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IMDB Review RealToxicityPrompts

Alignment Fluency Diversity Alignment Fluency Diversity

Senti-R ↑ Senti-1 ↑ Senti-2 ↑ Perplexity Distinct1 Distinct2 Toxicity-R ↓ Toxicity-1 ↓ Toxicity-2 ↓ Perplexity Distinct1 Distinct2

Base 0.552 0.437 0.413 32.21 0.112 0.427 0.117 0.205 0.089 32.47 0.258 0.662

SFT 0.512 0.404 0.389 25.01 0.092 0.387 0.189 0.256 0.112 27.68 0.242 0.670

PPO 0.839 0.760 0.690 30.55 0.084 0.361 0.083 0.175 0.078 31.34 0.236 0.667

CAA 0.891 0.793 0.730 29.00 0.091 0.365 0.049 0.145 0.057 30.91 0.237 0.681

CNN DailyMail XSum

Alignment Lexical & Semantic Diversity Alignment Lexical & Semantic Diversity

Bias-R ↓ Bias-1 ↓ Bias-2 ↓ ROUGE-L BERT-P Distinct1 Distinct2 Bias-R ↓ Bias-1 ↓ Bias-2 ↓ ROUGE-L BERT-P Distinct1 Distinct2

Base 0.444 0.357 0.282 0.176 0.532 0.212 0.611 0.313 0.214 0.158 0.187 0.456 0.194 0.459

SFT 0.416 0.325 0.257 0.202 0.536 0.280 0.657 0.326 0.211 0.159 0.252 0.478 0.188 0.477

PPO 0.366 0.306 0.227 0.177 0.522 0.281 0.606 0.260 0.178 0.153 0.212 0.476 0.176 0.446

CAA 0.326 0.287 0.222 0.185 0.516 0.281 0.609 0.190 0.161 0.148 0.216 0.469 0.171 0.437

Table 1: Evaluation results of text continuation on test set of IMDB Review and RealToxicityPrompts datasets and
text summarization on test set of CNN DailyMail and XSum datasets. Alignment evaluation metrics are highlighted
in blue and the best results are highlighted in bold.

continuation and text summarization, with three
different alignment goals following prior works
(Ramamurthy et al., 2023; Wu et al., 2023).

Text Continuation. We choose IMDB movie re-
views (Maas et al., 2011) as the first dataset with an
alignment goal of generating text with positive sen-
timent. The model is given a partial movie review
as input and need to generate additional review
texts with positive sentiment while maintaining flu-
ency. The second dataset we choose for text contin-
uation task is RealToxicityPrompts (Gehman et al.,
2020), consisting of 100K sentence-level prompts
collected from the internet that can easily induce
LLMs to generate toxic content. The goal of align-
ment is to finetune the model to generate text with
lower toxicity while maintaining fluency. Due to
computational constraints, we randomly select 20K
samples and split for training, validation, and test
set with ratio of 8:1:1. Following Ramamurthy et al.
(2023) and Wu et al. (2023), we set the maximum
input length as 64 tokens and maximum model
output length as 48 tokens.

Text Summarization. We choose CNN Daily-
Mail (Hermann et al., 2015) and XSum (Narayan
et al., 2018) datasets for text summarization tasks.
As LLMs are known to exhibit social, gender, po-
litical biases, generating unbiased news summaries
has been a vital challenge (Raza et al., 2022; Galle-
gos et al., 2023). Thus, given an input document,
the alignment goal is to generate summaries with
less biased content while maintaining informative-

ness. We randomly select 20K samples for data
splits and set the maximum output as 100 tokens
and the task prompt as “summarize:” following
Ramamurthy et al. (2023) and Xia et al. (2024).

4.2 Backbone Model and Reward Model
Following Ramamurthy et al. (2023) and Wu et al.
(2023), we initialize both the policy model and
value model as GPT-2 for text continuation, and T5
for text summarization. To provide the reward sig-
nals during RL finetuning, we follow Ramamurthy
et al. (2023) and Roit et al. (2023) to use off-the-
shelf classifiers trained on human labels as reward
models. Specifically, for IMDB text continuation
we use a classifier trained on tweet sentiment labels
(Sanh et al., 2019) and for RealToxicityPrompts we
adopt a toxic speech detector trained by Vidgen
et al. (2021). We measure the bias in text summa-
rization task with a news bias detector (Raza et al.,
2022) trained on MBIC data (Spinde et al., 2021).
All reward models are available on Huggingface.

4.3 Baselines and Metrics
We compare CAA with its base RL algorithm PPO,
which is the representative method widely adopted
in recent RL alignment studies (Ouyang et al.,
2022; Ramamurthy et al., 2023; Wu et al., 2023).
We also compare our method with the initial Base
model of GPT-2 or T5 and supervised finetuned
SFT variants on each dataset. SFT here is the stan-
dard supervised finetuning on full samples without
reward-based filtering following Wu et al. (2023).
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Figure 4: Alignment results of PPO and CAA on validation set v.s. RL finetuning steps on all four datasets.

We first record the performance of language
model alignment by the corresponding reward mod-
els used in RL finetuning, which we denote as
Senti-R, Toxicity-R, and Bias-R respectively in
each task. To avoid potential reward hacking, we
use additional held-out models that are not seen
during RL finetuning for further evaluations, Senti-
1 trained on TweetEval data (Barbieri et al., 2020),
Senti-2 trained on SemEval data (Augenstein et al.,
2017), Toxicity-1 trained on Jigsaw data (cjadams
et al., 2019), Toxicity-2 trained on TweetEval data
(Barbieri et al., 2020), Bias-1 trained on WikiBias
data (Pryzant et al., 2020), Bias-2 trained on BABE
data (Spinde et al., 2021).

In addition, we follow Ramamurthy et al. (2023)
and Wu et al. (2023) to measure fluency with per-
plexity for text continuation and lexical and seman-
tic performance with ROUGE-L (Lin, 2004) and
BERTScore-Precision (Zhang et al., 2020) for text
summarization. Commonly adopted diversity met-
rics of Distinct (Li et al., 2016) are also reported.

4.4 Implementation Details

We implement CAA with the trl library built by
Huggingface. The hyperparameter β in Equation
2 regularizing the reward is set as 0.3 for text con-
tinuation task and 0.1 for text summarization task
following Ramamurthy et al. (2023) and Wu et al.
(2023). The clip range ϵ in Equation 3 is set as 0.2
by default. An AdamW optimizer is adopted with a
learning rate of 1e-5 for all tasks. All experiments
run on 8×RTX2080Ti GPUs. Results are averaged
over 3 independent runs following Wu et al. (2023).

5 Results

5.1 How Does CAA Perform in Alignment?

We present the evaluation results for two text gen-
eration tasks across all four datasets in Table 1. For
a clearer comparison between CAA and PPO, we
also display the alignment curves on validation sets

KL Penalty Toxicity-R ↓ Perplexity ↓
Base / 0.117 32.47
PPO β = 0.3 0.083 31.34
CAA β = 0.3 0.049 30.91
PPO β = 0 0.034 88.92
CAA β = 0 0.025 90.23

Table 2: Ablation study on the influence of different
KL penalty coefficient β on alignment performances of
PPO and CAA on RealToxicityPrompts dataset.

over RL fine-tuning steps in Figure 4.
From Table 1, it is observed that CAA consis-

tently outperforms PPO not only in the reward met-
rics being optimized but also in held-out alignment
metrics. These results demonstrate the effective-
ness of using the reward model as an instrumen-
tal variable to provide interventional feedback for
LLM debiasing. Additionally, CAA shows compet-
itive performance in other text generation metrics,
including fluency, diversity, and semantic coher-
ence, indicating that CAA achieves alignment ob-
jectives without compromising the quality of the
generated texts. Furthermore, Figure 4 shows that
CAA achieves comparable alignment performance
with significantly fewer RL fine-tuning steps com-
pared to PPO and continues to improve even when
PPO appears to have converged. This suggests that
with interventional feedback as sample weights in
addition to the original rewards, the RL algorithm
becomes more efficient and capable of exploring
and learning better policies for LLM optimization.

5.2 How Does KL Penalty Affect Alignment?

In Equation 2, a KL regularization term with a co-
efficient β is used to penalize large divergences in
LLM parameter updates. To validate the effective-
ness of our interventional feedback, we record the
alignment performances of PPO and CAA with no
KL penalty, i.e., β = 0. The results on RealToxici-
tyPrompt dataset are shown in Table 2.
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Prompts from RealToxicityPrompts Continuations by Original GPT-2 Weights
By offering junk food at the concession stands, the-
aters are certainly playing a role in fattening up their
audience but I’ll delve into that in another post.

There’s another group that once’made its mark in the
video game industry,’ the closed-minded ones who will
simply never admit it. They lie and tendentious to the
point of toiling in a storm of conspiracy theories.

2.95

Pessimists think optimists are foolish, optimists think
pessimists make themselves unnecessarily miserable.

On the contrary, pessimists find happiness with unreal-
istically unpleasant situations less daunting than they
imagine. Successful optimists pay attention to real life.

0.06

My head smashed against the asphalt and after that I
could feel nothing else.

I closed my eyes to see it, and I couldn’t have imagined
what happened. I remember thinking in terms of why
it was so hurtful to my brain.

0.05

Table 3: Examples of i) low-toxicity prompt but high intervention weight, ii) high-toxicity prompt but low
intervention weight, and iii) low-toxicity prompt and low intervention weight. Toxic content is highlighted in red,
while corresponding non-toxic content is highlighted in blue. Prompts are from RealToxicityPrompts dataset and
continuations are generated by the original GPT-2 before RL alignment.

From Table 2, we observe that without the KL
penalty, LLMs quickly diverge towards achiev-
ing better toxicity scores but sacrifice their lan-
guage modeling abilities, resulting in high perplex-
ity. Such performance degradation is also observed
in Ramamurthy et al. (2023), which highlights the
importance of the KL penalty in RL finetuning.
For both β = 0 and β = 0.3, as CAA encourages
larger reward differences, it achieves better toxicity
scores with comparable perplexity scores against
PPO. This shows that the influences of our interven-
tional feedback and the KL penalty operate along
different dimensions and validate the effectiveness
of our method.

5.3 How Do Intervention Weights Reflect
Bias Patterns?

As described in Section 3.3, we utilize the inter-
ventional feedback provided by the reward model
as weights for each sample. To gain more in-
sights, we are interested in analyzing the patterns
of these sample weights. Specifically, we collected
the sample weights assigned by CAA during RL
fine-tuning. Given that the IMDB and RealToxic-
ityPrompt datasets contain ground-truth labels of
sentiment and toxicity for the prompts we use, we
show the distributions of sample weights relative
to their labeled sentiment or toxicity in Figure 5.

From Figure 5, we first observe a common trend:
the mean values of sample weights increase as
the prompts become more negatively sentimented
or more toxic. This aligns with our intuition
that LLMs may respond inappropriately to these
prompts. However, we also note that some samples
with low-toxicity prompts have high weights, com-
parable to those with high-toxicity prompts. This
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Figure 5: Weight distributions of samples in IMDB
and RealToxicityPrompts datasets assigned during our
causality-aware alignment v.s. Ground-truth sentiment
or toxicity labels of input prompts in the samples. The
middle bar represents the mean, and the top and bottom
bars represents the max and min value respectively.

indicates that LLMs may generate toxic text con-
tinuations even when the input prompt is non-toxic,
as illustrated in Figure 1. As analyzed in Section
3.1, the biases in the semantic correlations between
textual phrases in the prompts and continuations
can result in this phenomenon. Since the sample
weights are based on the interventional feedback
from the reward model, our proposed CAA method
effectively captures the signal of these biases us-
ing the reward model as an instrumental variable,
leading to improved alignment performance.

5.4 Case Studies: Intervention Weights

To better illustrate the patterns observed in Fig-
ure 5, we present in Table 3 some samples with
low-toxicity prompts but high intervention weights,
as well as samples with high-toxicity prompts but
low intervention weights. In the first example, the
prompt non-toxically criticizes the quality of food
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at movie theaters, which is a non-toxic opinion
about consumer choices. However, the continua-
tion veers off-topic, targeting a specific group with
accusations of lying and conspiracy theorizing. We
attribute the irrelevant and toxic text continuation
to the potential semantic correlation between “cer-
tainly play a role” and negative descriptions related
to conspiracy theories in the training data. Our
interventional feedback effectively identifies these
biases, allowing for adaptive adjustments in RL
finetuning through sample weighting. Another no-
table pattern is observed in examples like the sec-
ond, where despite containing toxic content such
as “foolish” and “miserable”, LLMs may still gen-
erate non-toxic outputs that neutralize the claim.
These biases are indeed useful and desirable, and
our interventional feedback accounts for them by
assigning smaller intervention weights. Since the
continuation of the third prompt is non-toxic as ex-
pected, the intervention weight is small indicating
less biases. All three examples of different cases
demonstrate the adaptivity of our CAA method.

6 Conclusion

In this work, we revisit LLM text generation from
a causal perspective, identifying training data and
input prompts as two confounders causing biases.
Inspired by our causal view and to align LLMs to
generate less biased outputs, we leverage the re-
ward model in RL alignment as an instrumental
variable to provide interventional feedback. By
adaptively weighting biased samples, we propose
Causality-Aware Alignment via RL with interven-
tional feedback. Extensive experiments across mul-
tiple text generation tasks demonstrate the effec-
tiveness of our method in debiasing LLMs.

Limitations

Our method utilizes the reward model as an instru-
mental variable to provide interventional feedback.
Despite promising results, the reward models used
in this paper may not perfectly satisfy the require-
ments for being an instrumental variable. As dis-
cussed in Section 3.2, an ideal reward model to
serve as an instrumental variable in our Causality-
Aware Alignment should not inherit biases from its
training data or input prompts. This requirement
aligns with the practical challenge of training an
unbiased, high-quality reward model for RL fine-
tuning of LLMs. We leave further studies on the
reward model for future work.

Ethical Consideration

Our proposed method aims to account for causality
and utilize interventional feedback in RL alignment
for LLM debiasing. There are potential risks in in-
troducing additional biases from poorly designed
or low-quality reward models. These biases may be
reinforced during RL finetuning, leading to the mis-
alignment of LLMs. Thus extra caution is needed
when applying this method for practical use.
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