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Abstract

Automatic speech recognition (ASR) systems,
increasingly prevalent in education, healthcare,
employment, and mobile technology, face sig-
nificant challenges in inclusivity, particularly
for the 80 million-strong global community of
people who stutter. These systems often fail to
accurately interpret speech patterns deviating
from typical fluency, leading to critical usabil-
ity issues and misinterpretations. This study
evaluates six leading ASRs, analyzing their
performance on both a real-world dataset of
speech samples from individuals who stutter
and a synthetic dataset derived from the widely-
used LibriSpeech benchmark. The synthetic
dataset, uniquely designed to incorporate vari-
ous stuttering events, enables an in-depth analy-
sis of each ASR’s handling of disfluent speech.
Our comprehensive assessment includes met-
rics such as word error rate (WER), character
error rate (CER), and semantic accuracy of the
transcripts. The results reveal a consistent and
statistically significant accuracy bias across all
ASRs against disfluent speech, manifesting in
significant syntactical and semantic inaccura-
cies in transcriptions. These findings highlight
a critical gap in current ASR technologies, un-
derscoring the need for effective bias mitigation
strategies. Addressing this bias is imperative
not only to improve the technology’s usabil-
ity for people who stutter but also to ensure
their equitable and inclusive participation in
the rapidly evolving digital landscape.

1 Introduction

1.1 Background and Motivation

Stuttering is a complex neurodevelopmental con-
dition affecting over 80 million people worldwide
(Wu, 2023; Yairi and Ambrose, 2013). This condi-
tion is characterized by various involuntary speech
disruptions or disfluencies (Johnson, 1959; Am-
brose and Yairi, 1999), including repetitions of
parts of words (“li-li-like this”), prolongations of

Figure 1: Transcript produced by an automatic speech
recognition (ASR) model from a speech sample of an
individual who stutters, sourced from FluencyBank (Rat-
ner and MacWhinney, 2018). This figure illustrates a
real-world scenario where the individual is conduct-
ing an interview. Highlighted are both the disfluencies
characteristic of stuttered speech and the corresponding
transcription inaccuracies produced by the ASR.

sounds (“lllllike this”), and blocks (silent periods,
“l—ike this”). While everyone may experience dis-
fluencies, in people who stutter, these are more pro-
nounced and are accompanied by a loss of control
over speech (Tichenor and Yaruss, 2019). Soci-
ety’s negative perceptions of stuttered speech often
leads to discrimination and lower job satisfaction,
as fluent speakers tend to be preferred in employ-
ment settings (Gerlach et al., 2018; Gonzales, 2022;
Plexico et al., 2019).

In the post-COVID-19 era, characterized by the
widespread adoption of voice-activated artificial
intelligence (voice AI), individuals who stutter are
confronted with heightened challenges, especially
in employment contexts. Automatic speech recog-
nition (ASR) systems, the fundamental technology
underpinning voice AI and designed to transcribe
spoken language into text (Prabhavalkar et al.,
2023), have emerged as notable barriers in vari-
ous aspects of daily and professional life for this
demographic. The broad integration of ASR tech-
nology across sectors such as education, healthcare,
and employment, as well as in mobile devices and

4795



other applications (Prabhavalkar et al., 2023; Malik
et al., 2021), has led to the inadvertent marginal-
ization of people who stutter. These systems fre-
quently struggle to accurately decode speech that
differs from typical patterns (Wheeler; Wu, 2023;
Lea et al., 2023), a fact exemplified in Fig. 1. In
stark contrast, ASRs demonstrate up to 95% word
accuracy when processing standard speech (Tobin
and Tomanek, 2022). The ramifications of this dis-
parity are profound, ranging from difficulties in
executing simple tasks, such as using automated
phone systems for prescription refills, to experienc-
ing bias in AI-driven job interviews (Junior et al.,
2020; Center, 2019; Meyer, 2018).

As the global voice recognition market is pro-
jected to nearly quintuple by 2030, reaching a val-
uation of US$59.62 billion (Insights, 2022), the
prevalence of AI-powered voice technologies, bol-
stered by the recent success of large language mod-
els, is set to increase dramatically (Horvitz, 2016).
This growth suggests an impending escalation in
bias against individuals who stutter. Leading tech-
nology companies like Apple and Google have be-
gun addressing variations in speech, introducing
alternative solutions such as typing commands to
voice assistants (Wheeler). However, these mea-
sures, while helpful, fall short of addressing the
inherent bias in ASR accuracy. In particular, ini-
tiatives like Google’s Project Euphonia focus on
collecting data for differing speech patterns, aiming
to enhance ASR capabilities for understanding peo-
ple with speech impairments like dysarthria (Tobin
and Tomanek, 2022). However, these efforts of-
ten neglect the unique aspects of stuttered speech.
Given the significant variability of stuttering across
different individuals and situations (Tichenor and
Yaruss, 2021), this oversight reveals a critical gap.
Unless ASRs are specifically tailored and refined
to accommodate the diverse expressions of stutter-
ing, they are likely to continue underperforming
for individuals who stutter, exacerbating existing
societal biases.

1.2 Our Contributions
This paper examines the response of contemporary
ASRs to disfluent speech characteristic of stutter-
ing, with a focus on identifying and quantifying bi-
ases. While previous research has explored speech
variations such as dysarthria (Shor et al., 2019;
Moore et al., 2018) and ASR fairness in the context
of gender, age, or accent differences (Feng et al.,
2021; Liu et al., 2022), biases specific to disflu-

ent speech have remained largely unexplored. The
work of Lea et al. (Lea et al., 2023) investigates in-
teractions between people who stutter and AI-based
voice assistants, yet it stops short of providing a
quantitative analysis of biases.

Overall, the main contributions of this paper rela-
tive to previous work are threefold: (1) Quantitative
analysis of bias: We conduct a comprehensive anal-
ysis of bias in both the word error rate (WER) and
character error rate (CER) of six popular ASRs,
utilizing real speech data from people who stut-
ter. This approach offers a deeper understanding
of how these systems perform with speech patterns
that differ from the norm. (2) Semantic accuracy
evaluation: We extend our analysis to the semantic
accuracy of these ASRs, exploring how well they
preserve the meaning of disfluent speech, which is
crucial for effective communication. (3) Synthetic
disfluent speech dataset: To address the scarcity
of stuttered speech datasets, we have developed a
synthetic disfluent speech dataset using novel text-
to-speech and audio manipulation techniques. This
synthetic dataset, designed to complement real stut-
tered speech samples, allows us to finely control
the types and frequencies of disfluencies in speech
samples. This controlled environment enables a
granular examination of how various disfluencies
and the inherent variability in stuttering affect ASR
performance. Our findings aim to inform bias miti-
gation strategies in ASR development, ultimately
aiding people who stutter in their daily interactions
with voice-driven technologies.

The remainder of the paper is organized as fol-
lows. In Section 2, we provide a literature review of
state-of-the-art ASRs, ASRs for people with speech
variations, and define fairness/bias measurement
in the context of AI. Section 3 details our method-
ology, datasets, models, and metrics for studying
bias. Section 4 presents our findings and their anal-
ysis. Finally, Section 5 concludes with remarks and
suggestions for future research directions.

2 Related Work

This section provides a brief literature review of
three key areas to set the stage for subsequent sec-
tions examining bias in ASRs: the evolution and
current state of ASR models, their adaptation for
people with speech differences, and the measure-
ment of bias in AI models.
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2.1 Automatic Speech Recognition

Recent advancements in ASR have been largely
driven by the integration of deep neural networks,
leading to a significant reduction in WER compared
to classical statistical multi-stage models (Prab-
havalkar et al., 2023). These neural network mod-
els adopt an end-to-end (E2E) approach, directly
mapping input acoustic features to their correspond-
ing transcripts (Prabhavalkar et al., 2023). Key
datasets like LibriSpeech (Panayotov et al., 2015),
encompassing 1,000 hours of diverse audiobook
recordings, and TIMIT (Garofolo, 1983), featur-
ing recordings of 630 speakers across American
English dialects, have been pivotal in training and
benchmarking ASRs. Among the notable ASR ar-
chitectures are the Conformer (Gulati et al., 2020),
wav2vec 2.0 (Baevski et al., 2020), and Whisper
(Radford et al., 2023), with Whisper demonstrat-
ing remarkable zero-shot performance and the best
WER at the time of this writing (Gulati et al.,
2020; Baevski et al., 2020; Radford et al., 2023).
However, these models’ effectiveness on stuttered
speech remains underexplored. Comprehensive
surveys on ASR systems are provided by Malik
et al. (Malik et al., 2021) and on E2E ASRs by
Prabhavalkar et al. (Prabhavalkar et al., 2023).

2.2 Automatic Speech Recognition for People
with Speech Differences

Efforts to enhance ASR performance for people
with different speech patterns, such as stuttering,
have primarily focused on disfluency identifica-
tion. This involves classifying disfluency events
to enhance ASR accuracy, either by adjusting, ig-
noring, or removing these elements before they
are processed by an ASR, or by providing their
location to the ASR (Zayats et al., 2016; Shon-
ibare et al., 2022). Notable datasets supporting
stuttering identification include SEP-28K, KSoF,
and LibriStutter, although they lack properly coded
transcripts for ASR training and evaluation (Sheikh
et al., 2022; Lea et al., 2021; Kourkounakis et al.,
2020). While there is limited research on directly
enhancing ASRs for stuttering, some progress has
been made. Lea et al. fine-tuned Apple’s Speech
framework models with data from people who stut-
ter, observing a reduction in WER. They also ap-
plied disfluency refinement and endpoint truncation
techniques to improve accuracy (Lea et al., 2023).
Mitra et al.’s work on tuning decoding parameters
of ASRs also contributes to this effort (Mitra et al.,

2021). Additionally, other research, such as those
by Tobin et al., Shor et al., and MacDonald et al.,
has focused on adapting ASRs for various speech
differences (Tobin and Tomanek, 2022; Shor et al.,
2019; MacDonald et al., 2021; Kim et al., 2008;
Moore et al., 2020).

2.3 Fairness in Artificial Intelligence
Fairness in AI involves mitigating human and sys-
temic biases that may arise from factors like un-
representative training data, inappropriate features
used during training, or biased target labels (Mu-
jtaba and Mahapatra, 2019). The concept of fair-
ness in AI has evolved, with historical foundations
in anti-discrimination legislation and contemporary
frameworks like the AI Risk Management Frame-
work by NIST aiming to enhance AI trustworthi-
ness (Commision; NIST). A fundamental fairness
criterion in AI literature is “fairness through un-
awareness” (Kusner et al., 2017):

Definition 1. Fairness Through Unawareness: An
AI model C is deemed fair under the principle of
’Fairness Through Unawareness’ if it does not ex-
plicitly use protected attributes A in its decision-
making process. This principle is operationalized
through a mapping Ŷ : X → Y , where X repre-
sents the set of observable features excluding any
protected attributes A, Ŷ represents a model’s pre-
diction, and Y the intended outcome.

In this paper, A represents the presence of disflu-
encies, C is the ASR model under evaluation, X
is the user’s speech input, and Y is the transcript
produced by an ASR. Our study investigates the
correlation between the presence of disfluencies
(A) and model error rates to evaluate ASR fairness.
This can be captured through the notion of “coun-
terfactual fairness” (Kusner et al., 2017; Wachter
et al., 2017):

Definition 2. Counterfactual Fairness: An AI
model C is deemed counterfactually fair if its pre-
dictions Ŷ in the real world are the same as those in
the counterfactual world where an individuals’ pro-
tected attributes A belonged to a different group.

3 Methodology

To investigate accuracy biases in contemporary
ASR systems against disfluent speech, we have de-
signed two experiments, each focusing on a differ-
ent speech dataset. The first dataset is well-known
in the speech-language pathology (SLP) commu-
nity, and the second is widely used in ASR mod-
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eling and evaluation. Our objective is to compare
ASR performance on two versions of these datasets:
one with disfluencies and another identical in con-
tent but without disfluencies.

Experiment 1 utilizes the FluencyBank dataset
(Ratner and MacWhinney, 2018), known for its
collection of real stuttered speech samples with
accompanying transcripts (detailed in Sec. 3.2).
We refer to this original dataset as FluencyBank-
Y (FB-Y), where “Y” indicates the presence of
disfluencies. These samples are transcribed using
six different ASR models (Sec. 3.1), and the ac-
curacy of these transcriptions is measured using
WER, CER, and BERTScore, a metric for seman-
tic similarity analysis (Sec. 3.4). For comparative
analysis, we generate a version of this dataset with
apparent instances of stuttering or disfluencies re-
moved, named FluencyBank-N (FB-N), where “N”
signifies the absence of disfluencies, using text-
to-speech (TTS) techniques (Sec. 3.3). We then
employ the Spearman correlation coefficient test
to systematically compare the performance of the
ASRs on both the original FB-Y and the modified
FB-N datasets.

To complement Experiment 1, Experiment 2 uti-
lizes the LibriSpeech dataset (Panayotov et al.,
2015), frequently used in training and evaluat-
ing ASRs and characterized by standard, non-
disfluent speech samples. We refer to this dataset
as LibriSpeech-N or LS-N to convey the absence
of disfluencies. To assess the impact of disfluen-
cies, we create a synthetic dataset by introducing
controlled disfluency events into the LibriSpeech
dataset. This is achieved through a combination
of audio processing and TTS methods. This newly
modified dataset, denoted LibriSpeech-Y or LS-Y,
where “Y” indicates the presence of disfluencies,
is then subjected to the same testing process as
the FluencyBank dataset in Experiment 1, using
the same set of six ASR models. This approach
ensures a systematic analysis of bias within these
ASR systems across diverse speaking scenarios.

3.1 ASR Models Studied
We investigate a mix of commercially-available
market ASRs and research-oriented, open-source
models, to uncover biases across diverse ASR
systems. The market ASRs include: (a) Google
Cloud’s Speech-to-Text V1 (Cloud), (b) IBM Wat-
son’s Speech-to-Text (IBM), (c) Microsoft Azure
(Azure), and (d) RevAI (Rev.AI). It is important to
note that the specific details regarding the training

Figure 2: Histogram showing the frequency distribution
of utterance durations in seconds for each of the four
speech datasets.

processes of these commercial models are propri-
etary and not publicly disclosed.

In addition to these market ASRs, our investi-
gation extends to two open-source, research-based
ASR models, which are:

• wav2vec 2.0 (Baevski et al., 2020): This
is an end-to-end ASR model, utilizing con-
nectionist temporal classification loss for
training. For our analysis, we employ the
‘wav2vec2-large-960h’ configuration, avail-
able from Meta on the HuggingFace Library
(Facebook). This specific model was trained
on a substantial corpus of 960 hours of the
LibriSpeech dataset.

• Whisper (Radford et al., 2023): Representing
the current state-of-the-art in ASR technol-
ogy, Whisper is a transformer-based encoder-
decoder model. It has been pretrained on over
680k hours of multilingual data, leveraging
semi-supervised learning and multitasking ap-
proaches—including tasks like language iden-
tification and voice activity detection. The
primary aim of Whisper is to achieve gener-
alization across a variety of benchmarks. For
our purposes, we utilize the ‘whisper-1’ model
configuration provided by OpenAI API, which
is the most up-to-date version at the time of
this writing.

3.2 FluencyBank: Stuttered Speech Dataset
Our study utilizes the FluencyBank dataset (Ratner
and MacWhinney, 2018) to examine biases in real
stuttered speech. FluencyBank comprises a series
of video recordings featuring individuals who stut-
ter, captured while reading passages and during
interviews. Each video in this dataset is accompa-
nied by a transcript, which has been segmented into
individual utterances—a sentence or a fragment of
a sentence (containing whole phrases) spoken by a
single individual.
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Due to temporal misalignment and incorrect tran-
script errors, which were identified by us and others
(Sheikh et al., 2022; Lea et al., 2021), we had the
dataset relabeled by trained SLPs with expertise in
stuttering. They used the standard Codes for the
Human Analysis of Transcripts format (MacWhin-
ney, 2021), and added start and end timestamps
for each utterance within a given audio file, while
ensuring inter-annotator agreement. The dataset
utilized in our analysis consists of 1,373 utterances,
derived from 7 reading and 12 interview videos.
The distribution of these utterances in terms of du-
ration is shown in Fig. 2, with the cumulative audio
duration amounting to approximately 2.21 hours.

In addition to the original dataset (FB-Y), we
produced a version with apparent instances of
stuttering or disfluencies removed, referred to as
FluencyBank-N or FB-N. This variant was created
using TTS, which synthesized speech from refer-
ence transcripts devoid of disfluencies. This ap-
proach, detailed in Sec. 3.3, serves as a crucial
component in our comparative analysis of bias.

3.3 Synthetic Disfluent Speech Generation
To complement our analysis using the Fluency-
Bank dataset, we produce a synthetic dataset
(LibriSpeech-Y or LS-Y) derived from Lib-
riSpeech, an ASR dataset featuring public do-
main audiobook recordings. We utilized the
‘clean’ sample from LibriSpeech’s test set, avail-
able through the HuggingFace library, to ensure
that the wav2vec 2.0 model was not previously
exposed to this data during training. However,
for commercial models (i.e., those available from
Google and Microsoft), we do not have specific
training data details and hence can not exclude
the possibility that LibriSpeech has been used in
their training, thus potentially boosting their per-
formance in our analysis.

Our approach improves upon the LibriStutter
dataset by FluentNet (Kourkounakis et al., 2020),
which lacks diversity in disfluency events. LibriS-
tutter’s limitations include inadequate representa-
tion of the variability of stuttering, such as inserting
only one to two word repetitions. Moreover, Lib-
riStutter only uses audio processing methods for
disfluency insertion. We introduce a more diverse
range of disfluency events (Einarsdóttir and Ing-
ham, 2005): interword blocks, intraword blocks,
prolongations, word repetitions, phrase repetitions,
and interjections. While these do not cover all
types of disfluencies associated with stuttering,

they serve to demonstrate key variations for our
bias study.

We introduce disfluencies into the speech sam-
ples using two methods: textual disfluency inser-
tion and audio disfluency insertion. For textual
disfluency insertion, we modify the transcript and
then use a TTS model, specifically SpeechT5 TTS
(Ao et al., 2022, 2021), to generate speech that nat-
urally includes the disfluency events. This process,
supported by a set of pre-trained speaker vectors
(Hollemans), allows us to simulate a diverse range
of voices. This technique is primarily used for word
repetitions, phrase repetitions, and interjections.
The frequency and location of these disfluencies
within each sentence are selected randomly within
predetermined ranges: (1) for word repetition, we
select between 1 to 3 words in each utterance to
repeat 1 to 4 additional times; (2) for phrase repeti-
tion, we choose a phrase of 2 to 4 words and repeat
it 1 to 3 times; (3) for interjections, we randomly
insert either “uh” or “um” in 1 to 4 locations and
repeat them 1 to 4 times.

For audio disfluency insertion, we directly mod-
ify the speech waveform to add disfluencies that
TTS cannot create, such as blocks and prolonga-
tions. We employ a pre-trained wav2vec 2.0 model
and PyTorch CTC forced alignment (Zhang and
Hira) for precise alignment of words with their
timestamps. This method allows for the insertion
of interword blocks, intraword blocks, and addi-
tional word and phrase repetitions with parameters
similar to those used in textual disfluency insertion.
The parameters for disfluency events applied in au-
dio processing are also randomly selected: (1) for
interword blocks, we insert a pause after 1 to 4
words with a duration of 1 to 3 seconds; (2) for in-
traword blocks, we insert a pause into 1 to 3 words,
each lasting between 1 to 3 seconds; (3) for pro-
longations, we extend the sound of 1 to 3 words
at their beginning, stretching it to 5 to 25 times its
original length. Additionally, word and phrase rep-
etitions are applied following the same parameters
as in the textual disfluency insertion process.

Each disfluency is randomly applied, without re-
placement, to an equal number of samples, amount-
ing to 10% of the LibriSpeech dataset, ensuring a
balanced representation. The resulting dataset com-
prises approximately one hour of speech samples,
with 308 records in total. The duration of these
samples, in seconds, is depicted in Figure 2.

This approach allows for a comprehensive and
nuanced analysis of ASR performance across a
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Table 1: Examples of disfluency events including word
repetition (WR), phrase repetition (PR), prolongation
(Prolong.), interword block (InterWB), intraword block
(IntraWB), and interjection (Interject.). Words in <>
brackets are added through textual disfluency insertion,
while (pause) signifies the audio insertion of silence.

Disfluency Event Example
WR How <are> are you?
PR How <are you> are you?
Interject. How are <um> you?
InterWB How are (pause) you?
IntraWB How a(pause)re you?
Prolong. How aaare you?

range of disfluency types, thereby enriching our
understanding of bias in these systems.

3.4 ASR Evaluation Metrics

To effectively assess biases in ASR systems, we
employ three key metrics, each offering a unique
lens on transcription accuracy and semantic fidelity.

The first metric is the word error rate (WER), a
widely recognized standard in ASR evaluations, de-
fined as: WER = S+D+I

S+D+C , where S, D, I , and C
represent the number of word substitutions, word
deletions, word insertions, and correct words, re-
spectively, in the ASR-produced transcript relative
to the reference transcript. WER provides a direct
measure of transcription accuracy at the word level.
A lower WER, approaching zero, is desirable, indi-
cating higher word transcription accuracy.

In conjunction with WER, we analyze the char-
acter error rate (CER), which evaluates transcrip-
tion errors at the character level. Similar to WER
but more granular, CER offers insight into the ac-
curacy of finer transcription details. As with WER,
a lower CER is indicative of better performance.

Our third metric, BERTScore (Zhang et al.,
2019), examines semantic similarity between pre-
dicted and target sentences. This metric is crucial
for cases where a transcription error might involve
just a single word, yet lead to a significant change
in meaning. For instance, incorrectly transcribing
"not" in a sentence could completely reverse its
intended meaning, despite being a single-word er-
ror. BERTScore assesses this aspect, with a score
closer to 1 indicating greater semantic similarity
between the predicted and target sentences.

With BERTScore, we can observe the mean-
ing behind each word. Given an ASR-produced
sentence x = ⟨x1, ..., xk⟩ and a reference sen-
tence x̂ = ⟨x̂1, ..., x̂l⟩, where xi and x̂i repre-

sent the ith token embeddings derived directly
from a pre-trained BERT model’s contextual em-
beddings, BERTScore computes the cosine sim-
ilarity of each token in x with every token in x̂
to obtain an F1 score. We utilize embeddings
from the ‘microsoft/deberta-large-mnli’ model (He
et al., 2021) alongside the re-scaled version of
BERTScore, wherein the range is within [−1, 1],
where a 1 would be semantically identical tran-
scripts, and -1 opposite. We refer to this as FBERT

(Tobin et al., 2022; Zhang et al., 2019) and it is
defined as the following:

FBERT = 2
PBERT ×RBERT

PBERT +RBERT
,where (1)

RBERT =
1

|x|
∑

xi∈x
max
x̂j∈x̂

(xT
i · x̂j), and (2)

PBERT =
1

|x̂|
∑

x̂i∈x̂
max
xj∈x

(xT
i · x̂j). (3)

We use the Spearman correlation coefficient to
analyze the relationship between ASR performance
metrics across disfluent and non-disfluent speech
datasets. We opt for this non-parametric test be-
cause the performance distributions are non-normal
(as detailed in Appendix B.1), necessitating an anal-
ysis approach that does not assume normality. The
Spearman correlation coefficient, defined as:

rWER = 1− 6
∑

d2i
n(n2 − 1)

, (4)

facilitates our understanding of variations in ASR
model performance across the two datasets. Here,
di is the difference in ranks between each observa-
tion’s WER in disfluent and non-disfluent speech
datasets, and n represents the total number of ob-
servations or utterances. This approach helps us
quantify the impact of disfluent speech patterns,
like stuttering, on ASR accuracy. A value closer
to 1 or -1 indicates a strong positive or negative
correlation, respectively, between the presence of
disfluencies and the difference in WER, suggest-
ing a significant impact of disfluencies on ASR
performance. Conversely, a correlation closer to 0
implies a weaker relationship. We perform simi-
lar computations for CER (rCER) and BERTScore
(rBERT ), offering a multidimensional view of each
ASR system’s bias and accuracy.

Additionally, we incorporate the calculation of
the p-value to determine the statistical significance
of the observed biases. The p-value quantifies the
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Table 2: Comparative analysis of ASR model perfor-
mance metrics (WER, CER, and FBERT ) on Fluency-
Bank datasets: ‘Y’ denotes the presence of stuttering
(FB-Y), and ‘N’ denotes its absence (FB-N). The mean
of scores across ASRs is given by µ, and the standard
deviation by σ.

WER CER FBERT

Y N Y N Y N

Azure .168 .073 .117 .052 .805 .896
GCP .275 .069 .182 .050 .623 .920
IBM .476 .167 .407 .150 .463 .838
RevAI .263 .159 .187 .133 .586 .508
Whisp .121 .063 .082 .047 .870 .935
W2V2 .380 .101 .212 .061 .549 .865

µ .281 .105 .198 .082 .649 .827
σ .120 .042 .103 .042 .143 .146

probability of observing the results under the null
hypothesis, which in this context is the absence of
bias. A p-value lower than a typical threshold (e.g.,
0.05) suggests that the observed bias is statistically
significant and not due to random chance. This
metric is essential for substantiating the reliability
of our findings.

4 Results and Discussion

Our analysis, divided into two parts corresponding
to each experiment in Sec. 3, reveals significant
insights into ASR performance with real and syn-
thetic disfluent speech. The evaluation was con-
ducted using ASR services as of March. 14, 2024,
utilizing default API settings. For wav2vec 2.0, the
analysis was performed locally using an NVIDIA
T4 GPU. Transcripts returned blank by models due
to audio processing challenges (e.g., due to noise
or blocks) were retained in our dataset. Prior to
evaluation, all transcripts underwent normalization
using Whisper’s “BasicTextNormalizer” and “En-
glishNumberNormalizer” functions from the Trans-
formers library (HuggingFace), ensuring consistent
casing and punctuation removal. Any speech atmo-
spherics in output transcripts, such as laughing or
indications of silence, were also removed.

4.1 Experiment 1: Real Stuttered Speech

The outcomes of ASR model performance on the
FluencyBank dataset, with and without disfluen-
cies (denoted as FB-Y and FB-N, respectively), are
presented in Table 2. Our findings indicate a con-
sistent pattern across all models: lower WER, CER,

Table 3: Spearman correlation coefficients (r), all of
which had p < 0.05, indicating the statistical signifi-
cance of the impact of disfluencies on △WER, △CER,
and △FBERT . FB refers to comparisons between FB-Y
and FB-N datasets, and LS to comparisons between syn-
thetic (LS-Y) and original (LS-N) LibriSpeech datasets.
“All” refers to the combination of all ASR predictions.

△WER △CER △FBERT

FB LS FB LS FB LS

Azure .363 .656 .385 .700 -.33 -.62
GCP .552 .547 .559 .609 -.35 -.47
IBM .531 .616 .539 .690 -.52 -.49
RevAI .245 .557 .246 .611 -.21 -.50
Whisp .285 .501 .298 .528 -.24 -.48
W2V2 .563 .712 .562 .781 -.54 -.67

All .413 .566 .423 .623 -.38 -.50

and higher FBERT on the FB-N dataset, implying
a systemic bias against disfluent speech. Among
the evaluated models, Whisper exhibited the lowest
WER and highest FBERT . However, its perfor-
mance on FB-Y was markedly worse (about two
times) compared to that on FB-N, where it achieved
a WER of just 6.3%. We also note that the RevAI
model showed a higher FBERT for FB-Y than for
FB-N, primarily due to blank transcript predictions.
Upon removing these from the analysis, the re-
ported FBERT on FB-Y is 0.809 and on FB-N is
0.933. This disparity in performance highlights a
significant bias in ASRs against disfluent speech.

Moreover, Fig. 3 illustrates the WER distribu-
tion for the wav2vec 2.0 model across all datasets.
The mean WER is noticeably higher for datasets
with disfluencies, highlighting a broader range and
more outliers with elevated WER.

4.2 Experiment 2: Synthetic Speech
In our second experiment, we evaluated the ASR
models against our synthetic disfluency dataset
compared to the original LibriSpeech. The results
(Table 4) mirror those from Experiment 1, with
higher WER and CER for the synthetic disfluency
dataset. This finding confirms the bias observed in
Experiment 1, not just for real disfluent speech but
also for synthesized versions. The Whisper model
again showed superior performance, but with a
significant drop (WER of 3.1% vs. 19.8%) when
disfluencies were introduced.

Further analysis on disfluency-event-type spe-
cific WER (Table 5) reveals that certain disfluen-
cies, such as word repetitions, prolongations, and
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Table 4: Evaluation of ASR models on synthetic stutter-
ing and original LibriSpeech datasets. Metrics include
WER, CER, and FBERT , with ‘Y’ indicating synthetic
stuttering (LS-Y) and ‘N’ indicating the original dataset
(LS-N). The mean of scores across ASRs is given by µ,
and the standard deviation by σ.

WER CER FBERT

Y N Y N Y N

Azure .228 .037 .197 .018 .772 .957
GCP .268 .070 .217 .034 .744 .904
IBM .560 .191 .518 .127 .448 .757
RevAI .254 .062 .209 .031 .742 .901
Whisp .198 .031 .157 .015 .811 .969
W2V2 .259 .033 .219 .009 .718 .952

µ .295 .071 .253 .039 .706 .907
σ .121 .056 .120 .040 .119 .072

interjections, significantly increase WER. In con-
trast, intraword block and interword block events
showed a less pronounced impact. This suggests
that different disfluency types vary in their effect
on ASR performance, underscoring the need for
more inclusive and diverse training data in ASRs.

The Spearman correlation coefficients and corre-
sponding p-values (Table 3) across all models and
for different disfluencies (Appendix B.2) under-
score this finding. We find all correlation values in
Table 3 are statistically significant, with p < 0.05,
indicating that the presence of disfluencies substan-
tially impacts ASR accuracy. For example, prolon-
gations and interjections showed a high correlation
with increased WER, highlighting specific areas
where ASRs struggle in handling disfluent speech.
We also note the correlation coefficients for FBERT

present an inverse correlation, where ASRs consis-
tently had lower FBERT scores on FB-Y and LS-Y,
indicating poor semantic similarity.

Overall, our results indicate a clear bias in cur-
rent ASR technology against disfluent speech, both
real and synthetic. This bias is evident across vari-
ous disfluency event types and is statistically signif-
icant, emphasizing the need for targeted improve-
ments in ASRs to accommodate speech variations.

5 Conclusion

This study represents a significant step in identi-
fying and quantifying the biases in ASR systems
against individuals who stutter. By analyzing the
performance of six popular ASR models using
two distinct datasets—FluencyBank and a custom-

Figure 3: Violin plot illustrating the range and distribu-
tion of WER for the wav2vec 2.0 model on FluencyBank
(FB) and synthetic (LS) datasets. The plot highlights
mean values and variability in WER scores.

generated synthetic dataset incorporating disflu-
ency events from LibriSpeech—we have uncov-
ered substantial biases. Our findings reveal that
all six models demonstrate notably worse WER,
CER, and BERTScore when processing disfluent
speech. This bias is consistent across both real and
synthetic datasets and is statistically significant.

Our research also delves into disfluency-event-
specific biases, revealing that the majority of dis-
fluencies—six out of eight types—exhibit a statisti-
cally significant WER bias across all models. This
discovery is crucial in understanding the nuances
of ASR performance and the challenges faced by
people who stutter in real-world scenarios.

To address these challenges, there are a few ap-
proaches that can be considered. First, incorporat-
ing speech from people who stutter in ASR train-
ing; this is challenging due to the limited avail-
ability of relevant data. Additionally challenging
is the task of acquiring sufficient data that encom-
passes samples from a diverse population to capture
the variability in speech associated with stuttering.
However, with a strategic data collection approach,
this can address a primary limitation in ASR acces-
sibility. Secondly, obtaining feedback from people
who stutter and benchmarking ASRs before de-
ployment are crucial steps towards accessibility.
Rigorous testing on disfluent speech can identify
ASR deficiencies, allowing for targeted training or
post-processing to address them.

Looking forward, we also identify two promis-
ing directions for future research. Firstly, there is
a need to explore the impact of longer-form audio
on ASR biases. Current models often struggle with
correctly segmenting and transcribing longer audio
samples containing disfluencies, leading to signifi-
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Table 5: WER results for each ASR on the synthetic dataset, broken down by specific disfluency event types. These
include audio-based word repetition (Aud-WR), audio-based phrase repetition (Aud-PR), prolongation (Prolong.),
interword block (InterWB), intraword block (IntraWB), interjection (Interject.), text-TTS-based word repetition
(Txt-WR), and text-TTS-based phrase repetition (Txt-PR). ‘Y’ denotes the presence of each disfluency event type,
and ‘N’ indicates its absence. The mean of scores across ASRs is given by µ, and the standard deviation by σ.

Aud-WR Aud-PR Prolong. InterWB IntraWB Interject. Txt-WR Txt-PR
Y N Y N Y N Y N Y N Y N Y N Y N

Azure .27 .02 .22 .03 .35 .04 .12 .05 .08 .03 .32 .05 .32 .05 .26 .03
GCP .33 .05 .24 .06 .53 .08 .11 .08 .08 .05 .38 .07 .36 .09 .28 .10
IBM .67 .42 .35 .22 .65 .20 .72 .21 .68 .11 .52 .15 .42 .20 .49 .12
RevAI .34 .05 .23 .04 .44 .08 .10 .08 .07 .05 .36 .08 .36 .09 .28 .04
Whisp .23 .03 .12 .03 .32 .03 .07 .04 .04 .02 .41 .04 .33 .05 .23 .02
W2V2 .33 .02 .21 .03 .55 .03 .11 .03 .09 .03 .34 .04 .32 .04 .26 .05

µ .36 .10 .23 .07 .47 .08 .20 .08 .17 .05 .39 .07 .35 .09 .30 .06
σ .14 .14 .07 .07 .12 .06 .23 .06 .23 .03 .07 .04 .04 .05 .08 .04

cant transcription inaccuracies or even cessation of
live transcription. This aspect is particularly criti-
cal as it can severely limit the practical usability of
ASR technologies for individuals who stutter.

Secondly, incorporating human feedback from
people who stutter represents an important area of
exploration. Current metrics like WER and seman-
tic accuracy might not fully capture the transcrip-
tion preferences of individuals who stutter. While
our study assumes that the transcription of Flu-
encyBank, with stuttering indicators removed, ac-
curately represents the intended speech, this may
not align with the preferences of those who stutter.
They might desire their speech patterns, such as
interjections, prolongations, and other disfluencies,
to be reflected in the transcripts. Hence, engaging
directly with individuals who stutter to establish
ground-truth labels could offer a more authentic
and respectful approach to ASR development.

In conclusion, our research is among the first to
systematically examine and highlight the biases in
ASR systems towards disfluent speech. The impli-
cations of these biases are far-reaching, potentially
exacerbating disparities in various domains, from
healthcare to recruitment, where ASR technologies
are increasingly integrated. To pave the way for
more inclusive and equitable ASR technologies,
bias mitigation strategies, including diversifying
training data with disfluent speech and incorporat-
ing feedback from the stuttering community, are
essential. Our work lays the foundation for this cru-
cial endeavor, opening avenues for future research
and development in the field of speech recognition.

Limitations

We acknowledge three limitations of our work.
First, our study focuses solely on accuracy bias by
ASR models transcribing speech in English, and
people who stutter speaking English. This does
not cover the many multilingual ASR models and
people who stutter speaking other languages. Sec-
ond, our synthetic dataset does not encompass all
types of disfluencies, and not all disfluencies (e.g.,
interjections) can be considered stuttering in all cir-
cumstances since they depend upon the presence
of a loss of control by the speaker while speaking
(Tichenor and Yaruss, 2019). Our intended use for
this dataset is for studying bias at a fine-grained
disfluency level, with control over the frequency
and location of occurrence of disfluencies. There-
fore, this dataset should not be used for ASR model
training as a bias mitigation measure, and should
also not be used to study bias unaccompanied by
other datasets. Likewise, third, our study method
should not be used as the sole assessment of bias in
ASRs. We define bias by observing the transcript
accuracy (i.e., WER, CER, and semantic accuracy)
difference with and without disfluencies. However,
other metrics for bias and other facets, such as age
or gender, can affect ASR bias. Overall, we seek
to develop more inclusive ASRs, and have these
limitations addressed in future work.
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A Evaluation of Synthetic Disfluent
Speech

To ensure that our synthetic disfluent speech dataset
(LS-Y) presented in Section 3.3 is comparable to
real stuttered speech, we assess its similarity to
the FluencyBank dataset (FB-Y). It is important
to note that our dataset’s objective is not to mimic
stuttering precisely; instead, it aims to provide a
comparable framework for evaluating ASR biases
toward stuttered speech.

Table 6: Comparative analysis of similarity scores be-
tween our synthetic dataset LS-Y with disfluencies, and
both FluencyBank datasets where ‘Y’ denotes the pres-
ence of disfluencies (FB-Y), and ‘N’ denotes its absence
(FB-N). This is broken down by specific disfluency
event types. These include audio-based word repetition
(Aud-WR), audio-based phrase repetition (Aud-PR),
prolongation (Prolong.), interword block (InterWB), in-
traword block (IntraWB), interjection (Interject.), text-
TTS-based word repetition (Txt-WR), and text-TTS-
based phrase repetition (Txt-PR). The mean of similar-
ity scores is given by µ, and the standard deviation by σ.
“All’ is the average distance across all disfluency types.
We observe across all disfluency types, our synthetic
speech dataset is closer to resembling stuttered speech
than non-stuttered speech.

FB-Y FB-N
µ σ µ σ

Aud-WR .659 .178 .614 .190
Aud-PR .589 .192 .524 .192
Prolong. .634 .178 .590 .190
InterWB .637 .187 .569 .192
IntraWB .546 .190 .472 .176
Interject. .667 .174 .635 .189
Txt-WR .648 .184 .597 .197
Txt-PR .598 .193 .531 .194

All .623 .189 .567 .197

To compare, our evaluation procedure starts by
computing the cosine similarity between all spec-
trograms of audio samples in LS-Y and FB-Y. Fol-
lowing this, we calculate the cosine similarity be-
tween all spectrograms of audio samples in LS-Y
and FB-N, our corresponding FluencyBank dataset
without disfluencies. This approach aims to deter-
mine whether our dataset exhibits greater similarity
to FB-Y, which contains stuttered speech, than to
FB-N, which lacks stuttering. Such a comparison
helps gauge the resemblance of our dataset to stut-
tered speech versus non-stuttered speech.

The effectiveness of this approach and our
dataset is demonstrated through the results pre-
sented in Table 6, which display the average and
standard deviation of similarities on a disfluency-
specific level between LS-Y and both FB-Y and FB-
N datasets. We observe that our synthetic speech
dataset exhibits a greater similarity to real stuttered
speech (FB-Y) than to non-stuttered speech (FB-N)
across all disfluency types. This finding is further
supported by the fact that our FB-N dataset was
generated using voices through TTS (Sec. 3.3)
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Table 7: Spearman correlation coefficient (rWER denoted by r below) and corresponding p-value results for each
ASR model on the synthetic dataset, broken down by specific disfluency event types. These include audio-based
word repetition (Aud-WR), audio-based phrase repetition (Aud-PR), prolongation (Prolong.), interword block
(InterWB), intraword block (IntraWB), interjection (Interject.), text-TTS-based word repetition (Txt-WR), and
text-TTS-based phrase repetition (Txt-PR). ‘Y’ denotes the presence of each disfluency event type, and ‘N’ indicates
its absence. “All” refers to the combination of all ASR predictions.

Aud-WR Aud-PR Prolong. InterWB IntraWB Interject. Txt-WR Txt-PR
r p r p r p r p r p r p r p r p

Azure .78 .00 .83 .00 .40 .00 .56 .00 .58 .00 .70 .00 .76 .00 .79 .00
GCP .72 .00 .81 .00 .45 .00 .18 .11 .27 .01 .71 .00 .69 .00 .62 .00
IBM .54 .00 .51 .00 .48 .00 .76 .00 .84 .00 .61 .00 .48 .00 .66 .00
RevAI .79 .00 .80 .00 .46 .00 .11 .33 .29 .01 .65 .00 .68 .00 .74 .00
Whisp .64 .00 .40 .00 .36 .00 .17 .13 .10 .40 .77 .00 .74 .00 .78 .00
W2V2 .82 .00 .83 .00 .71 .00 .48 .00 .66 .00 .78 .00 .78 .00 .72 .00

All .67 .00 .67 .00 .46 .00 .33 .00 .40 .00 .69 .00 .67 .00 .70 .00

overlapping with our LS-Y dataset, possibly in-
creasing the similarity between LS-Y and FB-N.
Therefore, overall, our synthetic stuttered speech
generation method proves to be an effective means
of introducing disfluencies in non-stuttered speech.

B Additional Experiment Results

B.1 ASR performance distributions

The distribution of WER, CER, and FBERT scores
for all ASR models on real and stuttered speech
datasets are presented in Figure 4, Figure 5, and
Figure 6, respectively. We observe that the mean is
lower for each ASR when disfluencies are present,
specifically in LS-Y and FB-Y, in comparison to
LS-N and FB-N without perceived stuttering.

B.2 Correlation Coefficient Test Results

We test the correlation between degraded ASR ac-
curacy and the presence of disfluent speech using
the Spearman rank correlation coefficient, as pre-
sented in Table 3. Similarly, we also compute the
individual correlation coefficients and associated
p-values for each disfluency type in our synthetic
dataset (LS-Y). These results are presented in Table
7. We find all correlation coefficients, excluding
those for interword blocks, statistically significant,
with p < 0.05. In the case of interword blocks,
we find a weak correlation, rWER < 0.20, in the
GCP, RevAI, and Whisper models without statisti-
cal significance, whereas other ASR models have a
strong correlation with statistical significance. This
is due to the difference in WER being quite small
when an interword block is present, as observed in

Table 1, with only a 2% change for RevAI, and 3%
change for GCP and Whisper. This is also seen for
the Whisper ASR on the intraword block, where a
low correlation rWER = 0.10 is observed, as well
as only a small decrease, of 2%, in WER. In com-
parison, other disfluency types such as word repeti-
tions, interjections, and phrase repetitions show a
high correlation with their presence in speech and
a decrease in WER. When combining predictions
across ASR models, we also observe a statistically
significant correlation between all disfluency types,
with phrase repetitions having the strongest, and
interword blocks having the weakest.
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Figure 4: Violin plots illustrating the range and distribution of WER for each ASR model on FluencyBank (FB) and
LibriSpeech (LS), both with disfluencies (Y) and without disfluencies (N).

Figure 5: Violin plots illustrating the range and distribution of CER for each ASR model on FluencyBank (FB) and
LibriSpeech (LS), both with disfluencies (Y) and without disfluencies (N).
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Figure 6: Violin plots illustrating the range and distribution of FBERT for each ASR model on FluencyBank (FB)
and LibriSpeech (LS), both with disfluencies (Y) and without disfluencies (N).
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