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Abstract

Reliable human evaluation is critical to the
development of successful natural language
generation models, but achieving it is notori-
ously difficult. Stability is a crucial require-
ment when ranking systems by quality: consis-
tent ranking of systems across repeated evalu-
ations is not just desirable, but essential. With-
out it, there is no reliable foundation for hill-
climbing or product launch decisions. In
this paper, we use machine translation and its
state-of-the-art human evaluation framework,
MQM, as a case study to understand how to set
up reliable human evaluations that yield stable
conclusions. We investigate the optimal con-
figurations for item allocation to raters, num-
ber of ratings per item, and score normaliza-
tion. Our study on two language pairs pro-
vides concrete recommendations for design-
ing replicable human evaluation studies. We
also collect and release the largest publicly
available dataset of multi-segment translations
rated by multiple professional translators, con-
sisting of nearly 140,000 segment annotations
across two language pairs.1

1 Introduction
When conducting an evaluation to rank natural lan-
guage generation (NLG) systems, including mod-
ern “generative AI” systems, the goal is to reliably
recover the “true” ranking of the systems by quality
on the tasks/domains of interest. To date, human
evaluation remains the best way to do this. How-
ever, human raters can exhibit different behaviors
when rating NLG outputs. For example, raters
can have different stylistic preferences, and some
may grade more leniently or harshly than others.
Rigorous rater training procedures and precise an-
notation guidelines are helpful in addressing this
but are not guaranteed to completely eliminate rater
differences. Coupled with the fact that any given

1https://github.com/google/wmt-mqm-human-
evaluation/tree/main/generalMT2022

study will evaluate only a subset of potential NLG
outputs of interest using a finite set of raters, de-
cisions around which raters rate which items can
alter the final system ranking. This inherent insta-
bility can make it difficult to confidently attribute
ranking changes between evaluations to changes in
the underlying systems.

Our goal in this work is to offer recommenda-
tions on various aspects of designing multi-system
NLG human evaluation studies. We propose eval-
uating results through the lens of stability: the
degree to which a specific evaluation methodology
produces the same system ranking when repeated.
Specifically, we seek to answer these questions:

• How should rateable items be grouped?
• How should workload be distributed?
• How many ratings per item are needed?
• How should scores be normalized?
• How many items should be annotated?

To do this, we use machine translation (MT) eval-
uation as a case study. For MT, Multidimensional
Quality Metrics (MQM) is the state-of-the-art hu-
man evaluation framework (Lommel et al., 2014;
Freitag et al., 2021). In MQM, expert raters identify
error spans within translations, which are automat-
ically converted to numeric scores. Section 4.1
contains additional details.

Using MT and MQM as a specific use-case, we
make the following contributions:

• We provide concrete recommendations for de-
signing NLG system ranking evaluations (§3).

• We propose a meta-evaluation metric (§5) and
framework (§6), based on the notion of stabil-
ity, for evaluating evaluation methodologies.

• We justify our recommendations by analyzing
two MQM datasets that we collected (§7).

• We publicly release nearly 140,000 segment
ratings, comprising the largest publicly avail-
able dataset of multi-segment translations
rated by multiple professional translators.
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2 Terminology
A few key terms used throughout this work are
defined as follows:

• Segment: A unit of one or occasionally multi-
ple sentences, either in the input or the output.

• Document: A sequence of input segments
(e.g. an excerpt from a news article).

• Item: One MT system’s output on a single
document.

• Bucket: A subset of items in one of our
datasets that were all evaluated by the same
set of raters.

3 Research Questions and Findings
Here we pose the research questions considered in
this work. Each is expressed in a way that seeks a
recommendation on how to implement some facet
of an NLG ranking study. We provide these recom-
mendations below, and justify them experimentally
in Section 7 based on their positive effect on stabil-
ity, after describing our meta-evaluation methodol-
ogy in the intervening sections.

How should rateable items be grouped?
Some types of NLG evaluation use a side-by-side
methodology, where raters are shown an input and
two outputs from different systems, and then as-
sess their relative quality. In contrast, raters only
see one output at a time in the MQM framework
that we use for our analysis. Thus, the closest ana-
logue is what we term a pseudo-side-by-side (pSxS)
methodology, which means that all system outputs
from a given input are assigned to the same rater.

Based on our results, we strongly recommend
use of the pSxS methodology.

How should workload be distributed? When
sending a collection of rating items to a pool of
raters, one consideration is whether to limit how
many items any single rater can annotate. Doing
so can slow down progress as fast raters hit their
limits, but in exchange for preventing results from
being skewed toward any particular rater.

We recommend that all raters be given an equal
share of the total rating workload. However, we ob-
serve that excessive rating noise from differences
in both rater behaviors and input documents can
affect this recommendation, so we couple it with a
recommendation to leverage clear annotation guide-
lines and rater training to limit noise of this type.
Section 7.2 further discusses the effect of this noise.

How should scores be normalized? One poten-
tial technique for controlling noise from differences

in rater behavior is to apply normalization to col-
lected ratings. This is especially attractive as an
option to address noise introduced in the setup of
an evaluation after it has already been run.

We weakly recommend applying rater-wise Z-
score normalization. We make this recommenda-
tion weakly because the most pronounced gains
of Z-score normalization occur in settings that run
counter to other recommendations provided here.

How many items should be annotated? For
NLG it is generally infeasible to evaluate system
performance on all possible inputs of interest, and
practitioners must select a comparatively small sub-
set to be evaluated. When allocating budgets, it is
useful to understand how much reliability is gained
by annotating additional items.

We do not make a concrete recommendation
here, in part because judging the trade-off between
reliability and cost is highly setting-dependent.
However, we show all of our results over a wide
range of item counts to assist practitioners in mak-
ing this judgment for themselves.

How many ratings per item are needed? Col-
lecting more ratings for each item can limit noise
from differences in rater behavior, but in a practical
context with fixed budgets, this generally requires
reducing the number of distinct items proportion-
ally, introducing additional noise from item-level
differences. The conclusion therefore depends on
which source of noise is greater.

We recommend that each item be annotated by
a single rater to allow for the maximum number
of distinct items given a fixed budget. Note that
evaluation settings other than MQM for MT may
have different noise profiles that affect this recom-
mendation (see Section 9).

4 Data
4.1 Background on MQM
In the Multidimensional Quality Metrics (MQM)
framework for human evaluation of machine
translation (MT), expert annotators identify er-
ror spans within translations and assign a hierar-
chical category (e.g. Fluency/Grammar or Accu-
racy/Mistranslation) and severity (Major or Minor).
Unlike the Likert-style scheme used in many pre-
vious studies, e.g. Graham et al. (2020), MQM
raters do not directly assign scalar scores; instead,
scores are calculated after the annotation step by
applying a weighting scheme that considers sever-
ity and category, and systems are ranked by their
average score over segments in the evaluation set.
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The framework does not use reference translations,
and each rating item consists of the input segments
of one document and the corresponding translation
from a single system.

4.2 Dataset Descriptions
For our analysis, we use a set of MQM annotations
that we collected for English-German and English-
Chinese MT data from the WMT22 evaluation cam-
paign (Kocmi et al., 2022) and metric shared task
(Freitag et al., 2022). Each language pair’s data
comprises 181 documents, each of which is bro-
ken down into segments which are individually
scored by raters (in the context of the documents
in which they occur). Each segment is generally
one sentence, but sometimes several. The same
181 source documents were used for both datasets,
but for English-German they were truncated to the
first 10 segments.2 For every input document, all
system outputs in a given language were evaluated
by the same 3 raters, from a pool of 7 raters for
English-German and 6 for English-Chinese. All
raters are professional translators that regularly per-
form MQM annotation and are paid fair market
wages. Basic statistics about the datasets are shown
in Table 1. Combined, our two datasets include
nearly 140,000 segment ratings.

Both datasets are divided into buckets, which
are sets of documents rated by the same 3 raters.
No two buckets share the exact same set of 3 raters.
We experiment with a different bucketing scheme
for each dataset. For English-German, there are 7
buckets of 25-26 documents, and each rater rated
3 buckets. For English-Chinese there are only 2
buckets of 90-91 documents, and each rater rated a
single bucket. Appendix A.1 has further details.

Mean MQM scores for all systems are listed in
Appendix A.2.

English- English-
German Chinese

# Documents 181 181
# Segments 1315 2037
Min # Segments/Doc 1 1
Max # Segments/Doc 10 51
# Unique Raters 7 6
# Systems 15 13

Table 1: Basic counts for each dataset.

4.3 Rater Behavior and Agreement
As previously mentioned, human raters can exhibit
different behaviors when evaluating NLG tasks, for

2This is inherited from the WMT22 metric shared task.

Figure 1: Distribution of segment-level MQM scores
for two English-Chinese raters who rated the same
items, highlighting differences in rater behavior.

English- English-
Aggregation German Chinese

Single Documents 0.40 0.29
All Shared Documents 0.69 0.85

Table 2: Average over rater pairs of either: the av-
erage Kendall’s Tau between document-level system
rankings or the Kendall’s Tau between system rankings
over all documents rated by both raters.

reasons such as preferences and leniency. These
effects are present in our datasets, and we briefly
explore them here.

We find that raters often have different distribu-
tions of segment-level MQM scores (calculated
from the severity/category information of error
spans they annotated). Figure 1 illustrates this for
two raters who rated the same items. Based on
manual inspection of the data, we hypothesize that
these differences are not generally due to a rater
performing the task incorrectly, but rather due to
differences in harshness or leniency between raters:
a Minor error to one rater may be a Major error to
another.

Table 2 summarizes the average agreement be-
tween rater pairs, calculated either as the aver-
age Kendall’s Tau between single-document rank-
ings or the Kendall’s Tau between rankings cal-
culated from all documents that both raters anno-
tated. We point out that these two levels of granu-
larity disagree on which dataset has higher agree-
ment. This indicates that while the English-Chinese
raters tended to agree on the overall quality ranking
of systems more than the English-German raters,
there was more variance in quality rankings of in-
dividual documents.
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5 Quantifying Replicability
In human evaluation research, it is often difficult
to define a “ground truth” to compare to, as we are
in some sense attempting to determine what to use
as the ground truth in the first place. However, an
important feature of an evaluation methodology is
replicability, which in the context of system rank-
ing studies we examine through the lens of stabil-
ity. We imprecisely define stability as the tendency
of an evaluation methodology to produce the same
system rankings when repeated. Stability is a crit-
ical property of a sound evaluation methodology,
because unstable methodologies make it difficult to
attribute changes in system rankings to real changes
in quality.

We propose to estimate the stability of a method-
ology using a metric calculated on pairs of studies
designed with that methodology. We experimented
with approximately a dozen different metrics to
quantify stability, including well-known correla-
tion measures like average Pearson correlation and
average Kendall’s Tau. All of them pointed toward
the same answers to our research questions, so we
present only one metric in the main body of this
work: Stable Ranking Probability (SRP).

Given a set of studies with a common method-
ology, the Stable Ranking Probability of that set is
the proportion of ordered study pairs for which all
significant system pair differences in the first study
are reflected in the rankings of the second study,
ignoring significance. That is, if a study finds that
system A is significantly better than system B and
that system C is significantly better than system
D, SRP measures the probability that repeating the
study with the same methodology will agree that
A is better than B and that C is better than D. This
can be expressed with the following equations:

SRP(E) =
1

|π2(E)|
∑

(e1,e2)∈π2(E)

SR(e1, e2)

SR(e1, e2) = 1(∀i, j SBe1(si, sj)⇒ Be2(si, sj))

where E is a set of studies, π2(E) is the set of all
ordered pairs (i.e. size-2 permutations) of studies
in E, 1(p) is 1 if predicate p is true and 0 other-
wise, SBe1(si, sj) is a boolean function represent-
ing whether system si is statistically significantly
better than system sj according to study e1, and
Be2(si, sj) represents whether si is better than sj
according to study e2 without considering signifi-
cance.

SRP is fairly strict in that it requires directional
agreement over all significant system pair differ-
ences in a given study, with no partial credit for
agreement on only some system pairs3. We find
this to be important because we observe that many
system pairs in our datasets have such large qual-
ity differences that almost all simulated studies
detect a significant difference, and we want to fo-
cus on the more difficult case of reliably detect-
ing differences between systems with similar qual-
ity. We found that other metrics such as average
Kendall’s Tau tend to be dominated by these easily-
distinguishable system pairs, yielding a narrow
range of values. Another benefit of SRP is that
it is interpretable because it is a probability.

To determine statistical significance between
mean MQM scores for two systems, we use a ran-
dom permutation test on segment scores, with the
caveat that system labels for segments in the same
document are always permuted as a group. We
always use 500 permutations, and conclude that a
difference is significant if the p-value is less than
or equal to α = 0.05.

6 Simulation Analysis
Our approach to answering the questions listed
in Section 3 is to simulate a collection of stud-
ies sharing a common evaluation methodology by
repeatedly sampling a subset of ratings from our
datasets. We then evaluate the replicability of that
methodology using our SRP stability metric.

6.1 Evaluation Methodology Features
We formalize aspects of evaluation methodology
as features which take specific values. We orga-
nize the description of each feature based on the
research question that it helps us answer.

6.1.1 How should rateable items be grouped?
We explore this question using a feature we call
Item Grouping, which describes constraints on
which items must be rated by the same raters. The
feature takes one of three values:

• Pseudo-Side-by-Side (pSxS): All system out-
puts from a given input document form a
group where all are annotated by the same
rater(s).

• System-Balanced: Groups of one output from
each system are formed and annotated by the

3We explored a version that requires significance in both
studies, but found it to be too strict, consistently near 0.

4911



same rater(s) (as above), but the outputs can
be from different input documents.4

• No Grouping: No constraints are placed (i.e.
raters may be assigned more outputs from
some systems than others).

Compared to the unconstrained setting, system-
balanced item grouping controls for noise arising
from input-agnostic differences in rater behavior:
with no constraints, most outputs from one system
might be assigned to a particularly lenient rater,
boosting that system’s rating. Using pSxS item
grouping further controls for noise arising from
input-dependent differences, such as a rater having
strict stylistic preferences in a particular domain.

6.1.2 How should workload be distributed?
The feature we use for this question is Load Bal-
ancing, which governs how equally the total an-
notation workload is distributed among the raters.
The possible feature values are:

• Fully Balanced: Items are distributed as
evenly as possible among raters.

• Entropy-Balanced: Parameterized by an en-
tropy target between 0 and 1, the normal-
ized entropy of the workload distribution over
raters is within 0.03 of the specified target.

The normalized entropy is defined as:
−∑

r∈R p(r) log p(r)/ log |R| where R is
the set of raters in the given dataset, and p(r)
is the proportion of total item ratings assigned
to rater r. Normalized entropy will be 1 when
every rater is assigned the same number of items,
and 0 when a single rater is assigned all items.
The fully balanced setting is a special case of
the entropy-balanced setting when the entropy
is maximal, but not necessarily 1 when items
cannot be distributed completely evenly. Note
that the difference in bucketing between our two
datasets means that the minimal entropy that we
can actually instantiate is 0.51 for English-German
and 0.38 for English-Chinese.

While real studies are unlikely to explicitly en-
force a moderately imbalanced workload distribu-
tion, moderate imbalance is a likely result of studies
that place no restrictions on how many items each
rater evaluates, which is the default setup for many
evaluation platforms (including Amazon Mechani-
cal Turk). Our Load Balancing feature allows us to
measure the potential stability impact of this.

4A similar technique was used by Bojar et al. (2018), but
without comparison to alternatives.

6.1.3 How should scores be normalized?
We call this feature Normalization, which de-
scribes what normalizing transformation is applied
to segment-level quality scores after annotation and
before determining the overall system ranking. We
examine four values of this feature:

• Unnormalized: No normalization is applied.
• Mean-Normalized: Every score is multiplied

by a rater-specific value that results in all
raters having the same mean MQM score,
equal to the overall pre-normalized mean
MQM score for the entire study.

• Error-Normalized: Scores are first mean-
normalized, then multiplied by a rater-specific
value that is proportional to the total num-
ber of errors identified by that rater, ignoring
severity. The value is chosen such that the
mean MQM score for the entire study remains
unchanged.

• Z-Score-Normalized: Each rater’s mean score
is subtracted from each of their ratings, and
each result is divided by the standard deviation
of the rater’s scores.

A common motivation for all above normaliza-
tion methods is that the scores from harsh raters
will have greater magnitude than from lenient
raters, and will therefore dominate the final system
ranking computed from mean scores. If we trust
all raters equally then this is undesirable; mean-
normalized and Z-score-normalized studies avoid
this by making all raters have the same mean score.
Z-score-normalized studies additionally control for
differences in the range of scores that raters assign.

Error-normalized studies partially reverse the
assumption of trusting all raters equally, based on
the hypothesis that expert MQM raters have high
precision but variable recall over “true” errors, so
ratings with more identified errors are likely to be
of higher quality. Note that this method still ignores
differences in rater harshness from use of Major vs.
Minor severities.

6.1.4 How many items should be annotated?
We examine this question with two features that in-
teract with each other. The first, called Number of
Documents, simply denotes how many input doc-
uments are included in a study. We always include
all system outputs from each included document.

When simulating studies with a strict subset of
available documents, if we were to use the same
subset of documents for all studies, then our results
could be overly dependent on the specific subset
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Figure 2: Overview of the simulated rater assignment
procedure, focusing on two features. System transla-
tions are collected for the shuffled documents, and then
optionally shuffled based on the Item Grouping feature.
“By System” means that items are only shuffled among
the positions from the same system. Items are then as-
signed to shuffled raters, with the (im)balance of the
distribution controlled by the Load Balancing feature.

that was selected. We instead resample the docu-
ment subset with some frequency, described by the
Document Resampling feature, which takes one
of two values:

• Resampled Documents: The document subset
is resampled for every simulated study.

• 50 Simulations / Document Set: 50 studies are
simulated before resampling.

This feature interacts with our calculation of Sta-
ble Ranking Probability. With 50 simulations per
document set, we restrict the SRP calculation to
only consider ordered pairs of studies with the same
input documents. This is because practitioners usu-
ally iterate on a test/validation set with a fixed set
of documents, and calculating agreement between
studies on different documents would not accu-
rately reflect this. However, we do not apply this
restriction for the one experiment where we use
resampled documents (§7.4).

6.1.5 How many ratings per item are needed?
We investigate this question with the feature called
Ratings per Item, which takes one of two values:

• Single-Rated: Each item is annotated once.
• Double-Rated: Each item is annotated twice,

by different raters.

As mentioned in Section 3, we approach this
question from the perspective of a practitioner with
a fixed annotation budget. Therefore, we control
for the total number of ratings by comparing single-
rated studies of n input documents to double-rated
studies of n2 input documents.

6.2 Simulation Procedure
When simulating studies by choosing subsets of rat-
ings from our datasets, we first specify the value of
each feature described in Section 6.1. These feature

values then inform the procedure for simulating
studies with those properties. The two most rele-
vant features are Item Grouping and Load Balanc-
ing, and their effect on the procedure is illustrated
in Figure 2. Further details are in Appendix A.3.

7 Results
As with Sections 3 and 6.1, we organize this sec-
tion by research question, with experimental results
justifying the recommendations made in Section 3.
However, for answering “How many items should
be annotated?” we examine the effect of the Num-
ber of Documents feature in all experiments in this
section (the x-axis in our figures).

7.1 How should rateable items be grouped?
Figure 3 illustrates that grouping items using the
pSxS methodology (where all system outputs on
the same input are annotated by the same rater) pro-
vides a massive stability boost over no grouping at
all document counts, approximately doubling sta-
bility in the English-German case. Using a system-
balanced grouping provides a large improvement to
stability over using no grouping, but still generally
underperforms the pSxS grouping. Coupled with
the simplicity of pSxS grouping, we believe these
results strongly support our recommendation.

7.2 How should workload be distributed?
Figure 4 tells two conflicting stories about the re-
lationship between workload imbalance and sta-
bility, with English-German results favoring fully
balanced studies and English-Chinese results fa-
voring highly imbalanced studies. We attribute
this to an interesting quirk of our data, discussed
in Section 4.3: compared to the English-German
raters, pairs of our English-Chinese raters tended to
agree more on system rankings calculated over all
documents they both rated, despite agreeing less
on individual documents. This means that low-
entropy studies (where each bucket is essentially
rated by a single rater) tend to converge to the same
result regardless of which raters are selected, while
high-entropy studies exhibit more variance because
each selected rater sees a smaller portion of the
data. This is why we recommend taking steps to
limit differences in rater behavior: we believe that
low document-level ranking agreement is a sign
of excessive noise, and when it is mitigated, fully
balanced studies yield higher stability.

7.3 How should scores be normalized?
Figure 5 illustrates the effect of normalization in
our recommended setting. We see that Z-score-
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Figure 3: Evaluation of the Item Grouping feature.
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Figure 4: Evaluation of the Load-Balancing feature. Our datasets show the opposite relationship between imbal-
ance and stability.
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Figure 5: Evaluation of the Normalization feature in our recommended setting.

normalized studies exhibit higher stability than
others, but the magnitude of the difference is
not always large. In English-German, the gap is
quite small at high document counts but larger for
smaller studies. In English-Chinese, the gap is
generally modest.

Figure 6 examines the effect of normalization
on highly-imbalanced studies, with unnormalized
fully balanced studies shown for reference. In both
cases, Z-Score normalization provides a significant
boost to stability. For English-German, this boost
does not close the gap below fully balanced studies.
For English-Chinese, this boost widens the gap
above fully balanced studies. Note that normalizing
fully balanced studies does not close the gap to
highly-imbalanced studies in English-Chinese (cf.
Figures 5 and 6). The effect of other normalization
methods on stability is less consistent.

Figure 7 examines the effect of normalization on
studies that do not use item grouping, with pSxS-
grouped studies shown for reference. Again, Z-

score normalization provides a significant stabil-
ity boost. Mean normalization provides a slightly
smaller boost, with error normalization providing
little benefit. In English-Chinese, normalization
can close the gap below pSxS-grouped studies.

These latter two experiments show that normal-
ization is especially important when our other rec-
ommendations are not followed.

7.4 How many ratings per item are needed?
We make a few modifications to the experimental
settings for the analysis of the Ratings per Item
feature presented in Figure 8.

First, because we consider a fixed annotation
budget, each data point on a double-rated line cor-
responds to a set of studies each with half as many
documents as the single-rated data point at the same
position along the x-axis.

Second, we modify the Document Resampling
feature to use resampled documents and calculate
SRP over all study pairs, not just those with the
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Figure 6: Evaluation of the Normalization feature in balanced vs. highly imbalanced studies.
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Figure 7: Evaluation of the Normalization feature in pSxS-grouped vs. ungrouped studies.
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Figure 8: Evaluation of the Ratings per Item feature, where half as many documents are used in the double-rated
case and resampled documents are used in both cases.

same set of documents. This is because, when all
documents are shared, a pair of simulated double-
rated studies can be expected to share twice as
many exact ratings as a pair of single-rated studies.
This is especially important given that we only have
3 ratings to draw from for each item. By resam-
pling documents, the doubled chance of sharing a
rating on a shared document is exactly offset by the
halved chance of sharing the document in the first
place. Therefore, the expected number of shared
ratings between study pairs due to chance is the
same in the single- and double-rated case. This re-
sults in a fair comparison that essentially measures
whether the noise from differences in rater behavior
is greater than the noise from differences in relative
translation quality for different documents.

Third, we calculate each data point from 100
simulated studies instead of 250. This is because
relaxing the restriction of comparing studies with
the same documents increases the total number of
comparisons, which is approximately offset by the

reduction in the number of simulations.
With those considerations covered, we can now

conclude from Figure 8 that single-rated studies
on n documents are consistently more stable than
double-rated studies on n

2 documents, indicating
that annotation budget is best spent on increasing
the number of items rather than ratings per item.

8 Related Work
The work of Saldías Fuentes et al. (2022) is broadly
similar to ours in that it aims to improve MQM.
However, they focus on predicting individual sys-
tem scores rather than rankings, and investigate
ways to reduce the number of items annotated by
a single rater while minimizing error relative to
scores derived from the full test set. Gladkoff et al.
(2022) construct a statistical model of an MQM-
like annotation process, and run simulations with
it to estimate confidence intervals for various sam-
ple sizes. In contrast, we characterize the effects
of different rater/item configurations and sample
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sizes, and focus on stability rather than accuracy
compared to an assumed ground truth provided
by a larger sample. Complementary to our work,
Popović (2021) presents a fine-grained study on
how rater agreement varies with error type, and
Popović and Belz (2022) investigate how agree-
ment depends on different methods for normalizing
error counts, finding that raw error counts (which
we use) provide the most reliable estimates.

Other work has investigated properties of direct
Likert-style human scoring for MT with non-expert
crowd annotators. Building on earlier proposals for
score collection and normalization (Graham et al.,
2013, 2014), Graham et al. (2015) measure the
number of ratings per item required to achieve good
correlation with ground-truth scores, concluding
that at least 15 ratings are required. More recently,
Knowles (2021) examined the effect on ranking sta-
bility of assigning raters to different systems and
documents, making recommendations that are con-
sistent with our pSxS proposal. Wei et al. (2022)
characterize how the number of samples required
for adequately-powered statistical tests depends on
the magnitude of the difference between system
scores, and suggest strategies to reduce this num-
ber in practice. Finally, Licht et al. (2022) propose
a new adequacy-focused rating scheme with bet-
ter inter-annotator agreement than generic ratings,
and a method for calibrating ratings so they are
comparable across different languages.

Beyond MT, human assessment of automatically-
generated text is an area of increasing research
focus. The surveys by Howcroft et al. (2020) and
Gehrmann et al. (2023) provide an excellent guide
to work in this area.

As for MT evaluation datasets, Zouhar et al.
(2024) released a dataset of 25,000 MQM ratings
in the biomedical domain. The most similar dataset
to ours is that of Freitag et al. (2021), consisting
of approximately 100,000 MQM ratings on WMT
data. In contrast, our dataset contains approxi-
mately 140,000 ratings.

9 Conclusion

In this work we have proposed a framework for
evaluating reliability of NLG evaluations and used
it to provide recommendations to practitioners. Our
recommendations are supported by analysis of MT
data in two language pairs. Additionally, we release
these MQM annotations to the public to allow for
follow-up research by the community.
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Limitations
Throughout this work, we refer to our datasets as
“English-German” and “English-Chinese” because
that is the most relevant distinction between them,
but we caution readers against concluding that dif-
ferences in results between the two are due to intrin-
sic properties of German and Chinese. Other dif-
ferences in our datasets include the systems, raters,
bucketing scheme, and document lengths.

The recommendations we make in this work are
supported by our analysis and we offer plausible
explanations for our results. However, there are
variables not accounted for in this work, such as col-
lecting more than 3 ratings per item, increasing the
rater pool size, using different MT systems, eval-
uating documents from different domains, using
language pairs other than the two presented here,
and others. We therefore cannot guarantee that the
same trends will be seen on different datasets.

We also specifically call out the fact that the rat-
ings in our dataset come from expert raters who
are very familiar with the task, so our recommen-
dations may be less applicable to settings with non-
expert raters.

We only consider system ranking, meaning our
analysis does not consider the potential goal of
reliably quantifying the absolute quality of a single
system. We also consider stability of that ranking,
but it is possible that reducing the variance of the
ranking could potentially bias it away from the
(unknown) “true” ranking.

Finally, we use MT and MQM to draw our con-
clusions. While we expect our recommendations
to be generally applicable to other NLG evaluation
settings, it is possible that, for tasks other than MT
or evaluation frameworks that are highly dissim-
ilar to MQM, our recommendations may be less
applicable.
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Maja Popović. 2021. Agree to disagree: Analysis of
inter-annotator disagreements in human evaluation
of machine translation output. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 234–243, Online. Associa-
tion for Computational Linguistics.
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A Appendix
A.1 Dataset Bucketing
Tables 3a and 3b illustrate the specific bucket-rater
assignments used in our datasets.

Bucket # Raters

1 A,B,C
2 B,C,D
3 C,D,E
4 D,E,F
5 E,F,G
6 F,G,A
7 G,A,B

(a) English-German

Bucket # Raters

1 H,I,J
2 K,L,M

(b) English-Chinese

Table 3: Bucket-rater assignments for each dataset.
For English-German, raters were rotated through the
buckets. For English-Chinese, buckets were rated by
3 raters with no overlap between buckets. English-
German buckets contain 25-26 documents, while
English-Chinese buckets contain 90-91 documents.

A.2 System Mean MQM Scores
Table 4 shows the mean MQM scores of systems
included in our datasets.

A.3 Simulating Studies with Specified
Properties

Here we offer some more detail on how we simulate
studies from specified properties. As mentioned in
Section 6.2, Item Grouping and Load Balancing
control most aspects of the simulation method. The
procedures we used, based on these two properties,
are:

pSxS, Fully Balanced: For each bucket, shuffle
the documents and assign them to the 3 raters of
that bucket in a round-robin fashion. Each rater
rates all items for each assigned document.

pSxS, Entropy-Balanced: Begin with a ran-
dom rater assignment for each document. Then,
in a random order, re-assign each document to the
rater that moves the normalized entropy of the over-
all rater distribution closest to the target; if there
are multiple raters that satisfy this, pick one at ran-
dom. If the resulting study’s normalized entropy is
outside the tolerance range, reject it and repeat.

No Grouping: For any load balancing scheme,
use the same procedure as in the Valid pSxS case,
but operate on items instead of documents.

System-Balanced Grouping, Fully Balanced:
For each bucket and each system, shuffle the raters
and documents for that bucket and then assign the
outputs of that system to the raters in a round-robin
fashion.

Incorporating other properties requires only mi-
nor changes to the above procedures:

Ratings per Item: For double-rated studies, as-
sign to pairs of raters instead of single raters; this
is trivial because, at 3 ratings per item, the number
of rater pairs is also 3.
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English-German System MQM Score

Online-W 0.81
refB 0.98

MBR-bleu 1.05
Online-B 1.09

JDExploreAcademy 1.16
MBR-bleurt 1.17
MBR-comet 1.18

Online-A 1.33
Online-Y 1.39
Online-G 1.40
QUARTZ 1.44

Lan-Bridge 1.51
OpenNMT 1.77
PROMT 1.78
M2M100 2.96

English-Chinese System MQM Score

refB 1.45
Lan-Bridge 1.60
Online-W 1.67

JDExploreAcademy 1.88
Online-B 1.91

LanguageX 1.97
Manifold 2.01

HuaweiTSC 2.04
AISP-SJTU 2.10

Online-A 2.21
Online-Y 2.26

DLUT 2.57
Online-G 2.65

Table 4: Average segment-level MQM scores for sys-
tems in both datasets (lower is better). Note that “refB”
in both datasets is a human reference translation.

Number of Documents: Sub-sample docu-
ments from each bucket equally to achieve the tar-
get number before rater assignment.

Normalization: Apply the specified normaliza-
tion after rater assignment.
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