
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 4936–4953

June 16-21, 2024 ©2024 Association for Computational Linguistics

Generalizable and Stable Finetuning of Pretrained Language Models on
Low-Resource Texts

Sai Ashish Somayajula Youwei Liang Li Zhang Abhishek Singh Pengtao Xie
UC San Diego, USA

{ssomayaj, p1xie}@ucsd.edu

Abstract

Pretrained Language Models (PLMs) have
advanced Natural Language Processing (NLP)
tasks significantly, but finetuning PLMs
on low-resource datasets poses significant
challenges such as instability and overfitting.
Previous methods tackle these issues by fine-
tuning a strategically chosen subnetwork on a
downstream task, while keeping the remaining
weights fixed to the pretrained weights.
However, they rely on a suboptimal criteria for
sub-network selection, leading to suboptimal
solutions. To address these limitations, we
propose a regularization method based on
attention-guided weight mixup for finetuning
PLMs. Our approach represents each network
weight as a mixup of task-specific weight and
pretrained weight, controlled by a learnable
attention parameter, providing finer control
over sub-network selection. Furthermore,
we employ a bi-level optimization (BLO)
based framework on two separate splits of the
training dataset, improving generalization and
combating overfitting. We validate the efficacy
of our proposed method through extensive
experiments, demonstrating its superiority over
previous methods, particularly in the context
of finetuning PLMs on low-resource datasets.
Our code is available at https://github.com/Sai-
Ashish/Attention_guided_weight_mixup_BLO.

1 Introduction

Pretraining large language models on a large corpus
of unlabeled texts and further finetuning them on
downstream tasks have been a common practice
in natural language processing (NLP), resulting
in significant advances in tasks such as sentiment
classification, natural language inference, and text
generation (Devlin et al., 2018; Liu et al., 2019;
Lewis et al., 2019; Raffel et al., 2020).

However, conventional finetuning of pretrained
language models (PLMs) presents several chal-
lenges. First, PLMs are prone to instability in

finetuning, characterized by high variance in per-
formance for different weight initializations even
when using the same hyperparameters, especially
on small datasets (Ziser and Reichart, 2019; Devlin
et al., 2018; Phang et al., 2018; Lee et al., 2019;
Dodge et al., 2020; Zhang et al., 2020). Moreover,
PLMs, due to their extremely large capacity, are
prone to overfitting when finetuned on small down-
stream datasets, leading to poor generalization on
test set (Belinkov et al., 2020; Aghajanyan et al.,
2020; Kuang et al., 2021). Consequently, adapt-
ing PLMs to a variety of low-resource tasks, while
preserving stability and maximizing generalization,
remains a significant challenge in the field.

Finetuning a strategically chosen sub-network
on a downstream task, while keeping the remain-
ing weights fixed to the pretrained weights, has
effectively mitigated these challenges. Within this
umbrella, CHILD-TUNINGD (Xu et al., 2021) and
DPS dense (Zhang et al., 2022) are promising. In
CHILD-TUNINGD (Xu et al., 2021), a static sub-
network, termed “child network”, is first selected
based on the Fisher Information Matrix (FIM) and
this child network is subsequently updated during
finetuning. Dynamic Parameter Selection (DPS)
(Zhang et al., 2022) further refines this approach
by dynamically selecting the child network during
PLM finetuning using FIM as a guiding principle.

Nevertheless, these prior works exhibit certain
limitations. FIM, which is empirically calculated
using the training dataset to identify important net-
work parameters, may not be optimal for child net-
work selection, especially in low-resource settings
where data scarcity can skew the gradient that is
used to compute FIM (Kunstner et al., 2019). This
scenario can lead to unimportant parameters being
subsequently chosen in the sub-network, deterio-
rating performance on downstream tasks. More-
over, Soen and Sun (2021) theoretically shows that
empirically determined FIM deviates significantly
from the true FIM when the number of samples is

4936

https://github.com/Sai-Ashish/Attention_guided_weight_mixup_BLO
https://github.com/Sai-Ashish/Attention_guided_weight_mixup_BLO

low. Thus, the discrete selection of child networks
based on heuristics (i.e., FIM), may result in selec-
tion of suboptimal child networks for downstream
tasks. These limitations necessitate a departure
from FIM-based discrete child network selection
strategies in favor of one that selects a child net-
work based on the model’s downstream task perfor-
mance. Consequently, we advocate for a continu-
ous optimization approach for child network selec-
tion that does not rely on FIM, guided by the goal
of optimizing performance in downstream tasks.

In this work, we propose an end-to-end frame-
work that converts prior heuristic-based approaches
to discrete child network selection into a continu-
ous relaxation that can be optimized using gradient
descent. The crux of our method is an attention-
guided weight mixup mechanism that facilitates
this transformation. Each weight is represented as
a weighted sum of task weights (from downstream
task finetuning) and pretrained weights (which is
frozen), controlled by a mixing coefficient, which
we refer to as “attention parameter” 1. This setup
leads to a continuous relaxation: a larger attention
value of a weight indicates that it is more likely
to belong to the child network and vice versa. We
formulate the learning of task weights and the at-
tention parameters in a bi-level optimization (BLO)
framework (Feurer et al., 2015) on two different
splits of the training dataset. In the lower level of
our formulation, we update task weights by min-
imizing loss on the first split, while in the upper
level of the framework, we update the attention
parameter by minimizing loss on the second split.
This bi-level learning of task weights and the at-
tention parameters on two different splits of the
training dataset sidesteps the FIM-based heuristic,
ensuring it is more adapted to the downstream task,
leading to better performance (Sec. 4).
Our major contributions are summarized below:

• We address the crucial issue of finetuning
PLMs on low-resource datasets by leveraging
an attention-guided weights mixup strategy.
In this approach, each weight is represented
as a mixup of task weights and pretrained
weights, controlled by an attention parameter.
This method is a continuous relaxation of the
prior discrete sub-network selection approach.

• We capitalize on an inter-dependency between
task weights and attention parameter to formu-

1This attention parameter, α, is not to be confused with
the attention layers of the transformers.

late the learning objective as a BLO problem,
which allows us to learn the attention parame-
ter and model weights on two separate splits
of the training set respectively. This has been
a key of our method to combating overfitting
and increasing stability.

• We extensively evaluate our method on sev-
eral datasets of the GLUE benchmark in
low-resource settings, demonstrating improve-
ments over several baselines. Our method has
also achieved enhanced stability over standard
finetuning across different PLMs.

2 Related works

2.1 Generalizable finetuning

Finetuning PLMs on small downstream datasets
can lead to overfitting and instability. Several tech-
niques have been proposed to address this issue.
Weight decay (Daumé III, 2009) incorporates a
regularization term with a fixed trade-off coeffi-
cient to mitigate overfitting, while RecAdam (Chen
et al., 2020) improves weight decay by introduc-
ing a time-varying trade-off coefficient for regu-
larization loss, and an L2 loss between task and
pretrained weights, which is used to regularize the
finetuning. Top-K-layer finetuning (Houlsby et al.,
2019) focuses on updating the weights of the top
K layers and keeping the pretrained bottom layer
weights intact, thereby regularizing the finetuning.
R3F (Aghajanyan et al., 2020) introduces paramet-
ric noise into input sentence embeddings for bet-
ter generalization. R-Dropout (Wu et al., 2021)
minimizes the Kullback-Leibler divergence of the
predictions from two sub-models created by dif-
ferent dropouts, thereby fostering prediction con-
sistency. Re-init (Zhang et al., 2020) reinitializes
the pooler and top K Transformer layers before
finetuning BERT, which is found to perform better
than vanilla finetuning. Mixout (Lee et al., 2019)
proposes to randomly replace task weights with
their corresponding pretrained weights to mitigate
overfitting and improve stability.

Instead of randomly replacing some task
weights, sub-network optimization methods such
as CHILD-TUNINGD (Xu et al., 2021) and DPS
dense (Zhang et al., 2022) leverage FIM to select
a subset of the model parameters that are relevant
to downstream tasks to finetune, resulting in bet-
ter performance than Mixout and other methods
above. However, FIM-based methods have some

4937

limitations especially in low-resource scenarios. To
address these issues, we propose to use the model
performance on the downstream task to select the
sub-network to finetune. To overcome overfitting,
we propose to update the task weights on a training
set and use the model performance on a separate
validation set for the sub-network selection, result-
ing in a BLO framework. Appendix C has more
details about each method.

2.2 Bi-level optimization (BLO)

BLO refers to a class of optimization problems in
which one optimization problem (lower level) is
nested within another optimization problem (up-
per level) (Sinha et al., 2017). Many problems
in machine learning, including neural architecture
search (Liu et al., 2018), hyperparameter tuning
(Feurer et al., 2015; Baydin et al., 2017), data se-
lection (Shu et al., 2019; Wang et al., 2020; Ren
et al., 2020), meta-learning (Finn et al., 2017), and
noisy label correction (Baydin et al., 2017), can be
formulated as a BLO problem. In these applica-
tions, the upper-level optimization is responsible
for learning meta-variables, such as hyperparame-
ters and architectures, by minimizing the validation
loss, while the lower-level optimization focuses on
learning model weights by minimizing the train-
ing loss. Although these works, as well as ours,
are formulated as BLO problems, our contribu-
tions are notably different since we target different
domains. Recognizing the limitations of existing
sub-network optimization methods, we introduce
a continuous relaxation approach that utilizes an
attention-guided weight mixup strategy. Subse-
quently, we suggest employing BLO, capitalizing
on the problem’s structure as detailed in Section 3.

3 Method

We introduce “Attention-Guided Weights Mixup”,
depicted in Fig 1, an approach to improving stabil-
ity and performance on small downstream datasets
in PLMs. Central to our approach is a unique rep-
resentation of weights as a blend of the pretrained
weights (those prior to finetuning) and the task
weights (post-downstream task finetuning), modu-
lated by an “attention parameter”. This coefficient
represents the degree of emphasis or “attention” to
be placed on a pretrained weight during the com-
putation of the resultant weight. To mitigate over-
fitting, we propose to learn the attention parame-
ter and the task weights using BLO on different

splits of the training dataset; pretrained weights
are frozen. This initial phase, termed search phase,
aims to find optimal attention parameters, i.e., to
find the optimal child network. Subsequently, in
the finetune phase, the task weights are further
adjusted using the entire training dataset and the
learned attention parameters.

3.1 Continuous relaxation of child network
selection

To overcome the limitations of FIM-based discrete
child network selection methods, we introduce
a unique continuous relaxation approach. This
approach is based on an attention-guided weight
mixup mechanism. To elaborate on this formula-
tion, consider the task weights and the pretrained
weights of a PLM, denoted by W ∈ RN×M and
W0 ∈ RN×M respectively, where N and M are
the dimensions of the weight. An attention parame-
ter, denoted by α ∈ [0, 1]N×M , is associated with
each pretrained weight. This parameter indicates
the relative importance of the pretrained weight
compared to the task weight. We compute the re-
sultant weight, W̃ . This weight is represented as
an interpolation between the task and pretrained
weights, the balance of which is dictated by the
respective attention parameter:

W̃ = g(W,α,W0) = α⊙W + (1− α)⊙W0

where, ⊙ denotes the element-wise multiplication
operation, and 1 ∈ RN×M denotes the matrix with
all its entries 1’s. The discrete child network selec-
tion can be perceived as a special case within this
formulation. To elaborate, if α equals 1, the impli-
cation is that the weight belongs to the child net-
work. Conversely, if α is 0 (the matrix with all its
entries 0’s), the weight is tied to the pretrained, non-
child network. Nonetheless, the entries of α are not
restricted to the extremes of 0 or 1; instead, they
can assume any continuous value within this range.
If the learned attention parameter, α, leans closer
to 1, it signals a predominant influence from the
task weight compared to the pretrained counterpart
and vice versa. Thus, α serves as a mechanism that
allows a flexible transition from the discrete child
network selection to a continuous scale. In particu-
lar, α is designed to regulate the balance between
the pretrained and task weights in the computation
of the resultant weight.

4938

Learn optimal attention parameter (α)

Stage-I (lower-level) on training set Stage-II (upper-level) on validation set

Bilevel optimization

Learn optimal task weights (W)

Figure 1: An overview of our proposed method: learning the task weights W and the attention parameter α in a
bilevel optimization framework. The final network weight W̃ is a combination of the pretrained weight W0 and the
task weight W via the learned attention parameter α.

3.2 Learning task weight and attention
parameter via bi-level optimization

With continuous relaxation, the task of child net-
work selection without using FIM morphs into
determining attention parameters. Consequently,
the task weights become dependent on these at-
tention parameters, i.e. the chosen child network.
However, in a reciprocal relationship, task weights
should be considered while learning the attention
parameters. This is because the attention parame-
ters aim to ascertain an optimal blend of pretrained
and task weights in the resultant weight computa-
tion, engendering a mutual dependency.

Navigating this intricate interdependency calls
for a nuanced approach. Our approach to optimiz-
ing task weights W and attention parameters α
leverages a BLO framework composed of two in-
terdependent learning stages. In the first stage, the
finetuning of task weights occurs, driven by the
minimization of the training loss. Subsequently, in
the second stage, the attention weights are updated
to minimize the model’s validation loss. Given
the optimal task weights W ∗ on the training set
in the first stage, the goal of BLO is to learn the
optimal attention parameters α∗ that determines
the right mix of W ∗ and W0 in the resultant weight
estimation by minimizing the validation loss.

To facilitate this, we partition the original train-
ing dataset, represented as Dtr, into two subsets of
80% and 20% split. 50%-50% split setting was
explored however 80%-20% split gave better em-
pirical results (more insights in Appendix D). The
first subset, the BLO training dataset (DB-tr), is uti-
lized in the first stage. The second subset, the BLO
validation dataset (DB-val), is used in the second
stage. While this two-stage optimization process
unfolds, we freeze the pretrained weights. By do-
ing so, our approach provides finer control over
network optimization and capitalizes on the poten-
tial of pretrained weights. This phase to learn the
parameter importance and the model parameters is

termed the “search phase.” This phase is followed
by the “finetune phase” that further learns W with
the learned α fixed on the entire training dataset.

Stage I - learning W In this stage, we solve for
the optimal task weights on BLO training dataset
DB-tr. The task weights W are learned by mini-
mizing the training loss. As explained above, each
weight of the PLM is represented as an interpo-
lation of the task weight W and the pretrained
weight W0 weighted by an attention parameter
α, αij ∈ [0, 1], ∀i, j. The following optimization
problem is solved at this level,

W ∗(α) = argmin
W

L(g(W,α,W0);DB-tr)+λ1 ∥W∥2F (1)

where L(·) is the cross-entropy loss, α denotes the
attention parameter, λ1 is the weight decay of W ,
and ∥·∥F is the Frobenius norm. Weight decay is
commonly used while finetuning PLMs and we too
introduce a weight decay term on the task weights
W . The optimal task weights, denoted by W ∗(α),
are a function of α. This dependency is enforced
because the optimal weights are learned by mini-
mizing the loss in Equation 1 on DB-tr, which is
a function of α. The attention parameter α is not
learned in this stage else a complex solution will
be learned that overfits the BLO training dataset.

Stage II - learning α In this stage, the atten-
tion parameters are learned on the BLO valida-
tion dataset DB-val, given the optimal task weights
learned in the previous stage. The model W ∗(α)
is evaluated on DB-val. The model’s validation loss
is a function of α. The attention parameters are
learned by minimizing the validation loss (a func-
tion of α). The following optimization problem is
solved at this stage,

min
α

L(g(W ∗(α), α,W0);DB-val) + λ2 ∥α∥2F (2)

where λ2 is the weight decay of α. Weight decay
on α encourages the values of α to be close to 0 en-

4939

couraging a higher contribution from the pretrained
weights in the resultant weight estimation.

Low-rank approximation of α Since we mainly
target the low-resource domain, we use a low-rank
approximation of α ∈ [0, 1]N×M to mitigate over-
fitting (Hu et al., 2021). Specifically, we express
the α matrix as the product of two matrices with
lower ranks (of rank r):

α =
1

r
⊙F(α1, α2) (3)

where F(·, ·) denotes matrix multiplication, and
both α1 ∈ RN×r and α2 ∈ Rr×M have a rank of
r. We restrict {α1}ij ∈ [0, 1],∀i, j and {α2}ij ∈
[0, 1], ∀i, j. The normalization constant r in Eq. 3
can ensure the entries of α are in [0,1]. We use the
following weight formulation that proves to have
better performance empirically after rank decom-
position:

g(W,α,W0) = F(α1, α2)⊙W +F(1−α1, 1−α2)⊙W0

Our bi-level optimization framework Follow-
ing BLO is formulated,

min
α

L(g(W ∗(α), α,W0);DB-val) + λ2 ∥α∥2F
s.t. W ∗(α) = argmin

W

[
L(g(W,α,W0);DB-tr)

+λ1 ∥W∥2F
]

(4)

There are two optimization problems each corre-
sponding to a learning stage. From bottom to top,
each learning stage corresponds to stage I and stage
II that are dependent on each other via the loss
function. Both learning stages are performed in
an end-to-end fashion. The optimal task weights
W ∗(α) are learned by minimizing the loss func-
tion defined on DB-tr. The optimal task weights
are a function of attention parameters α because
the training loss is dependent on α via the resul-
tant weight definition defined above. In the second
stage, attention parameters α are learned by min-
imizing the validation loss on DB-val. This would
influence the training loss in stage I, which influ-
ences the solution W ∗(α).

Optimization algorithm Our approach consists
of two phases, shown in Algorithm 1. (I) Search
phase: The optimal attention parameters are es-
timated in this phase posed as a BLO (4). We
calculate the gradient of Eq.1 with respect to W
and approximately update W ∗(α) using one-step
gradient descent. Similarly, we update α using

one-step gradient descent of Eq.2; however, we en-
counter a hessian-vector product while estimating
the gradient due to the chain rule, which is compu-
tationally expensive to calculate. This is approxi-
mated using finite-difference approximation (Liu
et al., 2018), as described in detail in Appendix A.
The algorithm learns α′ ≈ α∗. (II) Finetune phase:
In this phase, we further finetune the task weights
on entire training dataset (Dtr) using the estimated
attention parameters α′.

4 Experiments

4.1 Datasets

We conduct experiments on various datasets from
the GLUE benchmark (Warstadt et al., 2018; Wang
et al., 2018) following Xu et al. (2021); Zhang et al.
(2022). The datasets we have chosen for our eval-
uation cover an extensive range of linguistic tasks.
These include sentiment classification (SST-2), nat-
ural language inference (RTE, QNLI, MNLI), para-
phrasing and similarity assessment (MRPC, STS-B,
QQP), and finally, the evaluation of linguistic ac-
ceptability (CoLA). We finetune the models on the
training set for each of the mentioned datasets and
evaluated its performance on the original develop-
ment set using the checkpoint obtained at the end
of training following Xu et al. (2021); Zhang et al.
(2022). More information about each of the chosen
datasets can be found in Appendix B.

4.2 Experimental setup

We use the PLM codes provided by Hugging-
face (Wolf et al., 2020) and follow their default
settings unless specifically mentioned. Rank
of α, r is set to 1 in this work. More detailed
information about the hyperparameters settings
in the search and the finetune phase, such as
batch size, training steps, for BERTLARGE (De-
vlin et al., 2018), RoBERTaLARGE (Liu et al.,
2019), BARTLARGE (Lewis et al., 2019),
DeBERTaLARGE (He et al., 2020), and
XLNetLARGE (Yang et al., 2019) can be found in
Appendix D. The averaged results over ten random
seeds are reported in the paper. In this work, we
primarily compare with CHILD-TUNINGD (Xu
et al., 2021) and DPS dense (Zhang et al., 2022),
as these methods share a similar motivation to ours:
improving performance on small downstream
tasks by finetuning on a strategically chosen
sub-network.

4940

Training split Vanilla CHILD-TUNINGD DPS Dense Ours

300 62.54 ± 6.57 62.47 ± 5.5 61.69 ± 5.62 68.97 ± 3.09
500 65.85 ± 4.57 68.35 ± 4.36 68.99 ± 2.92 72.42 ± 2.14
1000 73.19 ± 2.62 74.07 ± 2.75 75.00 ± 1.61 76.68 ± 1.58

Table 1: We compare our method with Vanilla, CHILD-TUNINGD, and DPS dense method using BERTLARGE (Lee
et al., 2019) across 300, 500, and 1000 training data splits. Reported results are the averaged evaluation metrics over
all eight GLUE datasets for each training data split. Due to space constraints, detailed results for each of the eight
datasets can be found in Table 8. The highest performance in each row is indicated in bold.

50

55

60

65

70

75

Vanilla Prompt Tuning Prefix-Tuning LoRA Ours

500 1000

Figure 2: Averaged performance across CoLA, RTE,
STSB, and MRPC datasets for Vanilla, Prompt Tuning,
Prefix-Tuning, LoRA, and our method in low-resource
scenarios with 500 and 1000 training instances. Results
on each dataset are presented in Table 9.

4.3 Performance on low-resource scenarios

In this experiment, we investigate the effective-
ness of our proposed method for finetuning PLMs
on extremely small datasets. Specifically, we
downsample 8 GLUE datasets by randomly se-
lecting 300, 500 and 1K training examples follow-
ing Zhang et al. (2022). 2 Table 1 summarizes our
results. Comparing our approach to DPS dense
and CHILD-TUNINGD, we observe substantial
improvements in average scores. On average, our
method outperforms the best baseline by 6.43%,
3.43%, and 1.68% on 300, 500, and 1K training
samples scenarios, respectively.

The superior performance of our method can
be attributed to two key designs in our frame-
work. First, our method employs continuous
weight mixup, assigning attention parameters to
each pretrained weight. This allows for a more
adaptable and dynamic determination of the impor-
tance of pretrained weight during finetuning. Sec-
ond, our BLO framework strengthens our method
by optimizing task weights and attention param-
eters on two distinct splits of the training dataset.
This strategy effectively combats overfitting and
ensures that attention parameters are learned based

2Consistent with prior methods (Xu et al., 2021; Zhang
et al., 2022), a random subset is chosen from entire training
dataset based on a seed, to avoid bias towards any specific
subset. Evaluation is performed over ten random seeds.

on validation performance, leading to improved
generalization on unseen test data. To summarize,
our method shows strong potential for improving
performance on low-resource NLP tasks.

4.4 Comparison with parameter efficient
finetuning methods

In this section, we compare our method with pop-
ular parameter-efficient finetuning (PEFT) tech-
niques, including Prompt Tuning (Lester et al.,
2021), Prefix-Tuning (Li and Liang, 2021), and
LoRA (Hu et al., 2021). Our experiments were con-
ducted on MRPC, STSB, CoLA, and RTE datasets
under two low-resource settings with 500 and 1,000
data points, respectively. As shown in Figure 2, our
method consistently outperforms these baselines.
Considering performance on each dataset (Table 9),
LoRA lags behind vanilla finetuning on all datasets
except CoLA. Prefix-Tuning underperforms com-
pared to both vanilla finetuning and LoRA in most
scenarios. The deteriorated performance of Prefix-
Tuning is also observed in other low-resource set-
tings (Hu et al., 2021). Besides, Prompt Tuning
falls behind vanilla finetuning on all datasets (Ta-
ble 9). On average, as depicted in Figure 2, Prompt
Tuning trails vanilla finetuning by a significant mar-
gin. The low performance of Prompt Tuning is
particularly evident in models with fewer than 10
billion parameters (Lester et al., 2021).

It is worth noting that the primary aim of these
PEFT methods is not necessarily to outperform
vanilla finetuning in low-resource settings. Instead,
they seek to deliver competitive performance with-
out intensive resource utilization. Such methods
are especially valuable when finetuning large mod-
els like GPT-2 (Radford et al., 2019) (774M) and
GPT-3 (Brown et al., 2020) (175B). They finetune
a few additional parameters while preserving the
primary model backbone. In contrast, our method
draws inspiration from regularization techniques
such as CHILD-TUNINGD and DPS dense, specif-
ically designed to reduce overfitting and improve

4941

Models Methods CoLA MRPC RTE STSB Average
Mean Std Mean Std Mean Std Mean Std Mean Std

BERT Vanilla 64.11 1.33 90.80 1.77 70.69 2.83 89.92 0.61 78.88 1.64
Ours 66.07 1.35 91.84 0.37 73.43 1.52 90.34 0.48 80.42(+1.54) 0.93(-0.71)

BART Vanilla 58.54 1.41 92.03 0.73 81.84 1.41 91.54 0.40 80.99 0.99
Ours 60.15 0.81 92.33 0.40 84.26 0.54 92.20 0.09 82.23(+1.24) 0.46(-0.53)

RoBERTa Vanilla 66.06 2.07 92.25 0.57 78.52 13.01 91.89 0.31 82.18 3.99
Ours 66.52 1.45 92.58 0.48 84.22 1.44 92.21 0.08 83.88(+1.70) 0.86(-3.13)

DeBERTa Vanilla 63.74 1.34 92.31 0.37 85.59 1.58 91.74 0.17 83.34 0.86
Ours 65.96 1.15 92.32 0.28 86.17 1.47 91.99 0.15 84.11(+0.77) 0.76(-0.10)

XLNet Vanilla 40.93 27.28 91.83 0.91 71.17 14.40 91.68 0.19 73.90 10.69
Ours 61.66 1.95 92.19 0.38 83.54 1.44 92.12 0.08 82.38(+8.48) 0.96(-9.73)

Table 2: Comparison of our method and vanilla finetuning on five popular PLMs. We evaluated the models using ten
runs with different random seeds and reported the results in terms of mean and standard deviation. Average score
represents the average performance across four datasets, and the best scores are highlighted in bold. The underlined
values indicate occurrences of degenerate seeds.

Methods CoLA MRPC RTE STSB Average
Mean Std Mean Std Mean Std Mean Std Mean Std

Vanilla 64.11 1.33 90.80 1.77 70.69 2.83 89.92 0.61 78.88 1.64
Mixout 64.42 1.51 91.31 1.08 72.05 1.67 90.39 0.57 79.54 1.21
R3F 64.62 1.38 91.63 0.93 70.75 1.76 89.92 0.61 79.23 1.17
R-Dropout 64.14 1.58 91.87 0.78 70.24 2.83 90.25 0.49 79.13 1.42
CHILD-TUNINGD 64.85 1.32 91.52 0.81 71.69 1.95 90.42 0.44 79.62 1.13
Re-init 64.24 2.03 91.61 0.80 72.44 1.74 90.71 0.14 79.75 1.18
DPS Dense 64.98 1.08 91.50 0.83 73.14 1.97 90.51 0.55 80.03 1.11
DPS Dense (Our run) 64.08 1.50 90.25 2.21 71.92 1.45 90.20 0.47 79.11 1.41

Ours 66.07 1.35 91.84 0.37 73.43 1.52 90.34 0.48 80.42 0.93

Table 3: Comparison of our method with other finetuning methods on four small datasets (CoLA, RTE, MRPC,
STSB), known for causing instability in BERTLARGE (Lee et al., 2019). The baseline results are taken from the DPS
dense paper (Zhang et al., 2022). The mean and standard deviation (std) of ten random seeds are reported for each
method. We utilize the vanilla results on STS-B for R3F since it cannot be applied to the regression task of STS-B.
Bold indicates the best performance. Double-sided t-tests were performed between our method and the vanilla
method. The p-values are less than 0.05, indicating statistically significant performance improvement over vanilla.

performance in low-resource finetuning scenarios.
Our proposed method further improves the perfor-
mance over these prior methods by addressing the
challenges associated with FIM-based discrete sub-
network selection by employing continuous opti-
mization through attention-guided weight mixup.

4.5 Performance on different PLMs
In this experiment, we investigate the effective-
ness of our method when applied to various PLMs
across different architectures compared to vanilla
finetuning. We perform experiments using four
GLUE tasks, chosen particularly due to their small
training dataset sizes, on the language models men-
tioned in Section 4.2. The results of these experi-
ments are presented in Table 2.

Apart from BERT, our method consistently
achieves better results on RoBERTa, which is
trained on a larger pretraining corpus and employs
more advanced self-supervised pretraining tasks.
Notably, on the RTE dataset, the vanilla method

yielded degenerate results for two random seeds,
leading to poor performance and high standard de-
viation. This issue has been attributed to the van-
ishing gradients problem occurring for certain ini-
tialization (Mosbach et al., 2020). However, using
the same initialization and settings, our method
showed better results, and the degenerate results
were not observed. Similar results were observed
with XLNet. We observe a notable gain of 8.48%
over vanilla, along with a substantial decrease in
the standard deviation by 9.73. Furthermore, we
observe performance improvements on DeBERTa,
a model with relative position encoding, and BART,
an encoder-decoder-based model. These findings
suggest that our method can effectively utilize the
potential of pretrained weights, irrespective of the
underlying model architecture, leading to enhanced
finetuning performance across a variety of PLMs.

4942

4.6 A comparison of previous techniques on
few-sample BERT finetuning

We compare our method to prior regularization-
based approaches, namely Mixout (Lee et al.,
2019), R3F (Aghajanyan et al., 2020), R-
Dropout (Wu et al., 2021), Re-init (Zhang et al.,
2020), CHILD-TUNINGD (Xu et al., 2021), and
DPS dense (Zhang et al., 2022), following Zhang
et al. (2022); Xu et al. (2021). We specifically em-
ploy CoLA, RTE, MRPC, and STSB datasets for
this evaluation, as finetuning BERTLARGE model
on these small datasets cause instability (Lee et al.,
2019). Table 3 summarizes our results.

Our method surpasses all other baselines in
terms of average scores, with a particularly notable
improvement on the CoLA dataset over baselines,
illustrating the effectiveness of our approach. Ad-
ditionally, our method has the smallest standard
deviation averaged over the datasets, indicating in-
creased stability. In summary, our attention-guided
weight mixup approach improves stability and per-
formance on small datasets over baselines.

4.7 Ablation studies

Joint-training We conduct an ablation study con-
trasting our method with “Joint Training”, a tech-
nique where the W and α parameters are jointly
optimized by minimizing the loss on the whole
training set rather than using our proposed BLO
framework. The results are summarized in Table 4.
The results underscore the superior performance of
our method across all datasets, yielding a higher
average score and a reduced standard deviation.
Notably, on the MRPC dataset (Table 11), Joint-
Training performs worse than the vanilla baseline.
This outcome suggests a potential pitfall of Joint-
Training: the simultaneous learning of both W and
α parameters on the training dataset can lead to
overfitting and result in a model that lacks gen-
eralizability on unseen test data. Conversely, our
proposed approach, which uses a BLO framework
to learn W and α on two different splits of the
training dataset, effectively mitigates overfitting,
leading to better generalization on the test set, and
enhancing overall performance.

Randomly fixed α We investigate the impact
of randomly initializing the α parameters in the
network and keeping them fixed throughout the
optimization. We sample α1 and α2 parameters
from a Gaussian distribution, {α1}ij , {α2}ij ∈
N (µα, σα), and fix them during finetuning, de-

Method Mean Std

Ours 80.42 0.93
Vanilla 78.88 1.64
Joint Training 78.86 1.48

Randomα

σα = 0.005 79.36 1.03
σα = 0.1 78.32 2.27
σα = 0.45 69.29 5.44

Table 4: Averaged performance across CoLA, RTE,
STSB, and MRPC datasets for Vanilla, Joint-training
and Randomα by varying σα. Results on each dataset
is presented in Table 11.

noted as Randomα. The Gaussian distribution has
a mean of µα = 1 and standard deviations σα =
{0.005, 0.1, 0.45}. After sampling from this distri-
bution, we clip the α values to lie within the range
of 0 to 1. The results in Table 4 show that our
method with learnable α outperforms the model
with randomly initialized α, which underscores the
importance of learning the attention parameters for
child network selection.

5 Computational costs and trade-offs

Our method introduces attention-guided weights
mixup through a BLO framework, leading to ad-
ditional computational demands summarized in
Table 5, a characteristic shared with FIM-based
strategies such as CHILD-TUNINGD and DPS.
Despite requiring comparable computation as cur-
rent state-of-the-art techniques, our method offers
performance improvements over several baselines,
justifying the computational overhead. In terms of
training efficiency, our method, in the worst-case
scenario, requires a maximum of four times more
training time than the vanilla method. However, in
the best-case scenario, it is just 1.8 times the vanilla
method. It is determined by the hyperparameter
‘K’. This increase is relatively small given the in-
herently smaller size of the low-resource datasets
we focus on. On the other hand, it is pertinent to
note that the inference time complexity remains
consistent with other established methods.

We compare the training costs of PEFT methods
with our approach. Prompt Tuning necessitates ap-
proximately 0.2 times the training cost of vanilla
fine-tuning, utilizing only 0.0067% of the total pa-
rameters as trainable. In contrast, Prefix-Tuning
and LoRA require about 0.4× and 0.3× the train-
ing cost of vanilla fine-tuning, respectively, with
Prefix-Tuning utilizing 0.294% and LoRA 0.236%

4943

Method Vanilla R3F R-Dropout CHILD-TUNINGD DPS Ours
Time usage ×1 ×1.64 ×1.64 ×3.13 ×1.12 ×(1 + 0.8K)

Table 5: Comparison of time usage for different regularization based methods, where K is a hyperparameter chosen
using grid-search in K = {1, 2, 5}. Although we choose K = 5 in all of our experiments, K = 2 yields slightly
worse but comparable performance and saves computational time.

of the total parameters as trainable. For additional
information, please refer to Appendix F. Despite
our method’s higher training cost compared to the
PEFT methods, as detailed in Section 4.4, it consis-
tently surpasses vanilla fine-tuning in performance,
whereas the PEFT methods generally fall short in
most scenarios.

6 Conclusions and future works

In this work, we propose an attention-guided
weight mixup mechanism to address issues in fine-
tuning PLMs on low-resource datasets. Specifi-
cally, we represent each weight as a linear interpola-
tion of the task weights and the pretrained weights,
controlled by an attention parameter. Capitalizing
on the inherent structure of this representation, we
utilize a BLO framework to learn task weights and
attention parameters on two different splits of train-
ing dataset. Our method demonstrated its effec-
tiveness across several challenging datasets from
the GLUE benchmark, outperforming baselines in
low-resource scenarios. It also shows improved
stability across different PLM architectures. More-
over, through ablation studies, we highlighted the
importance of learning attention parameters contin-
uously and the benefits of our BLO framework over
the straightforward joint-training of model weights
and attention parameters.

We believe our method has the potential to be
applied to other important areas, such as lifelong
learning (Parisi et al., 2019). A common challenge
in lifelong learning is retaining knowledge from
previous tasks while adapting to new ones. Explor-
ing our attention-guided weights mixup, optimized
using BLO, for this application presents a promis-
ing avenue for future work.

7 Limitations

Our method improves the finetuning of PLMs
but adds computational overhead, similar to
CHILD-TUNINGD and DPS dense, mainly due to
calculating attention parameters in the BLO frame-
work, akin to the computational demands of esti-
mating and updating FIM in prior methods. How-

ever, its substantial performance gains over vari-
ous baselines justify this extra cost. In pursuit of
minimizing this computational overhead, we con-
template an approach where the α parameters are
intermittently updated, specifically every T itera-
tions. We believe this strategy will strike a balance
between efficiency and performance. Delving into
this modification poses an exciting avenue for sub-
sequent research. It would also be insightful to
extend our method to multi-language tasks to un-
derstand its adaptability and broader applicability
in varying linguistic contexts.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representational
collapse. arXiv preprint arXiv:2008.03156.

Atilim Gunes Baydin, Robert Cornish, David Martinez
Rubio, Mark Schmidt, and Frank Wood. 2017. On-
line learning rate adaptation with hypergradient de-
scent. arXiv preprint arXiv:1703.04782.

Yonatan Belinkov, James Henderson, et al. 2020. Vari-
ational information bottleneck for effective low-
resource fine-tuning. In International Conference
on Learning Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

4944

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651.

Sang Keun Choe, Willie Neiswanger, Pengtao Xie, and
Eric Xing. 2022. Betty: An automatic differentiation
library for multilevel optimization. arXiv preprint
arXiv:2207.02849.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment: First
PASCAL Machine Learning Challenges Workshop,
MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, pages 177–190. Springer.

Hal Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Matthias Feurer, Jost Springenberg, and Frank Hutter.
2015. Initializing bayesian hyperparameter optimiza-
tion via meta-learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022a. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak
Gadre, Shuran Song, Hannaneh Hajishirzi, Simon
Kornblith, Ali Farhadi, and Ludwig Schmidt. 2022b.
Patching open-vocabulary models by interpolating
weights. arXiv preprint arXiv:2208.05592.

Kun Kuang, Hengtao Zhang, Runze Wu, Fei Wu, Yuet-
ing Zhuang, and Aijun Zhang. 2021. Balance-
subsampled stable prediction across unknown test
data. ACM Transactions on Knowledge Discovery
from Data (TKDD), 16(3):1–21.

Frederik Kunstner, Philipp Hennig, and Lukas Balles.
2019. Limitations of the empirical fisher approxima-
tion for natural gradient descent. Advances in neural
information processing systems, 32.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2019. Mixout: Effective regularization to fine-
tune large-scale pretrained language models. arXiv
preprint arXiv:1909.11299.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018.
Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jonathan Lorraine, Paul Vicol, and David Duvenaud.
2020. Optimizing millions of hyperparameters by
implicit differentiation. In International conference
on artificial intelligence and statistics, pages 1540–
1552. PMLR.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

4945

https://proceedings.mlr.press/v97/houlsby19a.html
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural networks, 113:54–71.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade,
and Sergey Levine. 2019. Meta-learning with im-
plicit gradients. Advances in neural information pro-
cessing systems, 32.

Zhongzheng Ren, Raymond Yeh, and Alexander
Schwing. 2020. Not all unlabeled data are equal:
Learning to weight data in semi-supervised learning.
Advances in Neural Information Processing Systems,
33:21786–21797.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. 2019. Meta-weight-
net: Learning an explicit mapping for sample weight-
ing. Advances in neural information processing sys-
tems, 32.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2017.
A review on bilevel optimization: From classi-
cal to evolutionary approaches and applications.
IEEE Transactions on Evolutionary Computation,
22(2):276–295.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Alexander Soen and Ke Sun. 2021. On the variance of
the fisher information for deep learning. Advances
in Neural Information Processing Systems, 34:5708–
5719.

Shoujie Tong, Heming Xia, Damai Dai, Tianyu Liu,
Binghuai Lin, Yunbo Cao, and Zhifang Sui. 2023.
Bi-drop: Generalizable fine-tuning for pre-trained
language models via adaptive subnetwork optimiza-
tion. arXiv preprint arXiv:2305.14760.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang.
2020. Meta-semi: A meta-learning approach
for semi-supervised learning. arXiv preprint
arXiv:2007.02394.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational Conference on Machine Learning, pages
23965–23998. PMLR.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop:
Regularized dropout for neural networks. Advances
in Neural Information Processing Systems, 34:10890–
10905.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

4946

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu,
and Zhi Jin. 2022. Fine-tuning pre-trained language
models effectively by optimizing subnetworks adap-
tively. arXiv preprint arXiv:2211.01642.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987.

Yftah Ziser and Roi Reichart. 2019. Task refinement
learning for improved accuracy and stability of un-
supervised domain adaptation. In proceedings of the
57th annual meeting of the Association for Computa-
tional Linguistics, pages 5895–5906.

A Optimization algorithm

To the best of our knowledge, our work is the first
to employ BLO for selecting child network to pre-
vent overfitting during the finetuning of large pre-
trained models. In this section, we dwell into the
algorithm used to solve the proposed mathemati-
cal framework. Various algorithms have been pro-
posed to (approximately) solve a BLO problem.
These can be broadly classified into two categories
based on their approach to calculating upper-level
gradients: implicit differentiation methods (such
as Finite Difference (Liu et al., 2018), Neumann
Series (Lorraine et al., 2020), and Conjugate Gra-
dient (Rajeswaran et al., 2019)) and iterative dif-
ferentiation methods (including Reverse-mode Au-
tomatic Differentiation (Finn et al., 2017)). Choe
et al. (2022) empirically show that the Finite Differ-
ence method (Liu et al., 2018) has the best perfor-
mance among these methods. Thus, we adopt this
algorithm (Liu et al., 2018) to solve our BLO (4)
in the search phase. One-step gradient descent is
used to approximate W .

W ∗(α) ≈ W ′ = W − ηw∇W [L(g(W,α,W0);DB-tr)
+λ1 ∥W∥2F]

(5)
For ease of notation, we denote

G(W,α;DB-tr,W0) = L(g(W,α,W0);DB-tr) + λ1 ∥W∥2F

W ′ is plugged into the objective function of stage
II. The gradient of the objective function in stage
II with respect to α is computed to update α:

α∗ ≈ α′ = α− ηα∇α[L(g(W ′, α,W0);DB-val)

+ λ2 ∥α∥2F]
(6)

Equation 6 can be further reduced as follows. The
chain rule is applied to estimate the gradient of the
loss function in stage II with respect to α. W ′ is an
implicit on α as discussed above. The first part of
the gradients can be decomposed as follows,

Algorithm 1 Optimization algorithm
Training dataset - Dtr, BLO training dataset - DB-tr,
BLO validation dataset - DB-val.

Search phase
while not converged do

Update task weights W using Equation (5)
on DB-tr

Update attention parameter α using Equation
(6) on DB-val

end while

Finetune phase
Using the learned α′, finetune the task weights
further on Dtr until convergence.

∇αL(g(W ′, α,W0);DB-val)
= ∇αL(g(W − ηw∇WG(W,α;DB-tr,W0), α,W0);DB-val)
= ∇αL(g(W ′, α,W0);DB-val)− ηw×
∇2

α,WG(W,α;DB-tr,W0)∇W ′L(g(W ′, α,W0);DB-val)

The above gradient estimation contains an expen-
sive matrix-vector product that can be reduced us-
ing finite difference approximation:

∇2
α,WG(W,α;DB-tr,W0)∇W ′L(W ′, α;DB-val,W0) =

∇αG(W+, α;DB-tr,W0)−∇αG(W−, α;DB-tr,W0)

2ϵ
,

where

W± = W ± ϵ∇W ′L(W ′, α;DB-val,W0),

ϵ =
0.01

∥∇W ′L(W ′, α;DB-val,W0)∥2
.

The algorithm is run iteratively until convergence
to estimate α∗ ≈ α′. Finetuning phase is further
conducted on Dtr with the learned attention param-
eter α′.

We analyze the loss curves of both the inner and
outer optimization processes in our algorithm to de-
termine the optimal hyperparameter choices. Given
that our task involves solving a bilevel optimiza-
tion problem, and considering the significance of
the model’s performance on DB-val (which pertains
to the outer problem), we regard the convergence
of the outer loss as a crucial criterion for overall
convergence.

B Datasets

We evaluated our method on various datasets from
the GLUE benchmark (Warstadt et al., 2018; Wang
et al., 2018). In this section, we describe each of

4947

Dataset RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
Train Examples 2.5k 3.7k 5.7k 8.5k 67k 105k 364k 393k
Dev Examples 277 408 1.5k 1.0k 872 5.5k 40k 4.8k
Metrics Acc F1 SCC MCC Acc Acc Acc Acc

Table 6: The table details the eight datasets utilized in this study, sourced from the GLUE benchmark. Here, Acc
denotes Accuracy, SCC refers to the Spearman Correlation Coefficient, and MCC signifies the Matthews Correlation
Coefficient.

Models Datasets Batch Size Learning Rate Epochs/Steps Warmup Ratio/Steps Weight Decay
BERT all 16 2e-5 3 epochs 10% 0.01

RoBERTa

RTE 16 2e-5 2036 steps 122 steps 0.1
MPRC 16 1e-5 2296 steps 137 steps 0.1
STS-B 16 2e-5 3598 steps 214 steps 0.1
CoLA 16 1e-5 5336 steps 320 steps 0.1

DeBERTa

RTE 32 1e-5 6 epochs 50 steps 0.01
MPRC 32 1e-5 6 epochs 50 steps 0.01
STS-B 32 7e-6 4 epochs 100 steps 0.01
CoLA 32 7e-6 6 epochs 100 steps 0.01

BART

RTE 32 1e-5 1018 steps 61 steps 0.01
MPRC 64 2e-5 1148 steps 68 steps 0.01
STS-B 32 2e-5 1799 steps 107 steps 0.01
CoLA 64 2e-5 1334 steps 80 steps 0.01

XLNet

RTE 32 2e-5 3000 steps 500 steps 0.01
MPRC 32 2e-5 800 steps 200 steps 0.01
STS-B 32 2e-5 800 steps 200 steps 0.01
CoLA 32 2e-5 3000 steps 500 steps 0.01

Table 7: Hyperparameter settings, as reported in their official repository, for all the different PLMs used in this work.
For the learning rates, as an example, 2e-5 means 2× 10−5.

the datasets used in this work. Table 6 summarizes
the split statistics and the evaluation metric for each
dataset. The CoLA dataset (Warstadt et al., 2018),
known as the Corpus of Linguistic Acceptability,
serves as a benchmark to assess the natural lan-
guage processing model’s capacity to comprehend
and predict the acceptability of English sentences.
On the other hand, the RTE dataset (Dagan et al.,
2006) focuses on determining the logical entail-
ment between sentences. QNLI dataset (Devlin
et al., 2018) originates from the Stanford Ques-
tion Answering Dataset (SQuAD) and aims to eval-
uate the model’s competence in comprehending
and inferring information from questions and cor-
responding contextual paragraphs. MNLI dataset’s
objective involves classifying sentence relation-
ships as entailment, contradiction, or neutral, and it
encompasses diverse genres and domains, provid-
ing a more comprehensive and challenging assess-
ment of models’ inference abilities in varied con-
texts (Williams et al., 2018). Lastly, MRPC (Dolan
and Brockett, 2005), STS-B (Cer et al., 2017), and
QQP datasets (Wang et al., 2018) are employed to
tackle paraphrase identification, semantic textual
similarity, and question pair similarity tasks, respec-
tively. The Stanford Sentiment Treebank (SST-2)

dataset (Socher et al., 2013) is a sentiment classifi-
cation task on sentences from movie reviews.

C More about related works

Prior finetuning regularization-based ap-
proaches We compare our method with several
baselines on BERTLARGE model (Devlin et al.,
2018). It’s worthwhile to note that this is a
challenging task. Various methods are proposed
to tackle this challenge. Mixout (Lee et al.,
2019) stochastically replaces model parameters
with pretrained parameters (with probability p)
to mitigate catastrophic forgetting issue. R3F
(Aghajanyan et al., 2020) introduces parametric
noise into input sentence embeddings for robust-
ness. R-Dropout (Wu et al., 2021) mitigates
the two-directional KL divergence by assessing
the output distributions of two submodels, each
independently generated via Dropout. In Re-init
(Zhang et al., 2020), the pooler and top K BERT
transformer layers are reinitialized from the
distribution N (0, 0.022), which is the original
BERT initialization. CHILD-TUNINGD (Xu
et al., 2021) proposes to finetune a child network
selected using FIM, constructed from the gradients
of the training dataset, with the non-child network

4948

Datasets Vanilla DPS Dense Child Tuning Ours

CoLA 24.07 ± 17.04 23.85 ± 16.12 23.47 ± 14.48 41.81 ± 5.57
RTE 58.09 ± 2.64 55.19 ± 4.54 58.77 ± 3.07 60.54 ± 2.59
STSB 78.08 ± 3.21 74.07 ± 5.94 79.62 ± 2.14 82.09 ± 4.88
SST-2 80.52 ± 12.87 82.79 ± 4.06 77.67 ± 7.63 89.52 ± 0.78
MRPC 80.57 ± 1.23 81.66 ± 0.53 81.09 ± 1.25 80.63 ± 1.47
QQP 67.73 ± 3.95 67.14 ± 3.59 68.45 ± 4.46 72.54 ± 1.67
QNLI 71.03 ± 8.92 68.79 ± 7.79 70.84 ± 8.42 76.16 ± 2.77
MNLI 40.19 ± 2.67 40.04 ± 2.42 39.85 ± 2.55 48.44 ± 5.01
AVG 62.54 ± 6.57 61.69 ± 5.62 62.47 ± 5.5 68.97 ± 3.09

(a) Results for 300 training samples.

Datasets Vanilla DPS Dense Child Tuning Ours

CoLA 26.01 ± 13.2 39.42 ± 11.8 38.15 ± 14.10 49.35 ± 1.71
RTE 58.30 ± 4.90 58.34 ± 2.90 59.78 ± 5.02 62.96 ± 4.40
STSB 81.77 ± 2.69 83.38 ± 1.55 80.87 ± 3.97 86.85 ± 0.52
SST-2 86.51 ± 6.48 89.38 ± 0.52 89.04 ± 1.34 88.98 ± 0.91
MRPC 82.96 ± 0.84 83.29 ± 0.78 81.42 ± 1.88 83.21 ± 2.30
QQP 71.68 ± 1.90 74.43 ± 1.35 74.53 ± 1.45 74.80 ± 0.58
QNLI 76.82 ± 2.09 77.09 ± 1.75 76.73 ± 3.19 79.78 ± 1.83
MNLI 42.81 ± 4.49 46.61 ± 2.70 46.33 ± 3.96 53.41 ± 4.84
AVG 65.85 ± 4.57 68.99 ± 2.92 68.35 ± 4.36 72.42 ± 2.14

(b) Results for 500 training samples.

Datasets Vanilla DPS Dense Child Tuning Ours

CoLA 47.97 ± 5.62 52.89 ± 2.50 51.69 ± 2.81 54.19 ± 1.77
RTE 62.60 ± 3.46 64.44 ± 1.76 63.93 ± 5.15 67.62 ± 2.53
STSB 85.86 ± 1.34 87.15 ± 1.77 87.08 ± 0.79 88.31 ± 0.78
SST-2 90.28 ± 0.55 90.92 ± 0.64 89.92 ± 2.95 90.46 ± 0.66
MRPC 85.34 ± 1.30 85.90 ± 0.86 84.81 ± 1.81 87.03 ± 1.76
QQP 76.96 ± 1.50 77.81 ± 0.57 76.22 ± 2.60 77.81 ± 0.67
QNLI 81.61 ± 1.32 82.58 ± 1.19 82.42 ± 1.18 82.94 ± 1.02
MNLI 54.93 ± 5.94 58.33 ± 3.56 56.56 ± 4.99 65.07 ± 3.48
AVG 73.19 ± 2.62 75.00 ± 1.61 74.07 ± 2.75 76.68 ± 1.58

(c) Results for 1000 training samples.

Table 8: We present a comparison of our method, Vanilla, DPS dense, and CHILD-TUNINGD method on
BERTLARGE (Lee et al., 2019) across various low-resource scenarios. We report the mean and standard devi-
ation of ten random seeds. Bold indicates the best performance. On average, our method outperforms the best
baseline by 6.43 points in the setting with 300 training samples, by 3.43 points in the setting with 500 training
samples, and outperforms it by 1.68 points for 1000 training samples.

frozen to pretrained weights. DPS dense (Zhang
et al., 2022) provides an alternative technique for
selecting child networks, utilizing a two-stage
update algorithm. The initial stage involves the
computation of a Gradient Accumulation Matrix
(GAM), which estimates empirical FIM, for all
parameters within the model. Following that, in the
second stage, a child network is selected according
to the GAM, after which its corresponding weights
undergo modification.

Very recent work by Tong et al. (2023) has in-
troduced a novel approach to select optimal sub-
networks. Drawing inspiration from Wu et al.
(2021), their method selects sub-networks leverag-
ing gradient from sub-models generated by dropout,
sidestepping the Fisher information matrix. Nev-

ertheless, they still retain a thresholding approach
for sub-network selection based on mini-batch gra-
dients, akin to FIM-based approaches, which is
sub-optimal. In contrast, our methodology diverges
from a discrete sub-network selection, opting for a
bi-level continuous optimization strategy tailored to
improve performance on a downstream task. Since
their code is not available in their linked GitHub
repository, by comparing our results against those
of Tong et al. (2023) directly, the benefits of our
methodology become evident. Evaluating on vari-
ous settings using the BERTLARGE model, we ob-
served the following: On low-resource settings,
for 500 samples, our method scores an average of
72.42, outperforming their 71.06 (as seen in Ta-
ble 1); With 1000 samples, we achieve an average

4949

score of 76.68, superior to their 76.21 (Table 1). On
few-sample BERT finetuning, our average score
stands at 80.42 compared to their 80.26 (Table 3).

Weight space manipulations Task vectors in
weight space (Ilharco et al., 2022a), which rep-
resent the difference between task and pretrained
weights in a model, can be manipulated through
arithmetic operations to guide a model towards spe-
cific tasks. Ilharco et al. (2022b) introduces PAINT,
a model patching method for open-vocabulary mod-
els like CLIP, which employs a convex combina-
tion of task and pretrained weights to adapt to new
tasks to be patched while preserving accuracy on
previous tasks, the mixing coefficient is manually
assigned. In contrast to these works, our approach
presents a regularization technique where resultant
weights are represented as a weighted summation
of task and pretrained weights controlled by the
attention parameter, specifically aiming to mitigate
issues in finetuning pretrained language models
on small downstream datasets. We learn the at-
tention parameters and task weights using BLO
framework.

D Hyperparameters settings

We evaluate our method on different
PLM’s including BERTLARGE (Devlin
et al., 2018), RoBERTaLARGE (Liu et al.,
2019), BARTLARGE (Lewis et al., 2019),
DeBERTaLARGE (He et al., 2020), and
XLNetLARGE (Yang et al., 2019).

For the experimental results presented in Sec-
tions 4.6, 4.3, G, and 4.7, we employed the
BERTLARGE model, following Xu et al. (2021);
Zhang et al. (2022). Our algorithm consists of two
phases, 1) Search phase and 2) Finetune phase. We
report the hyperparameters used for each phase
and grid search for the best hyperparameter set-
tings for a task on a split of the training set follow-
ing Xu et al. (2021); Zhang et al. (2022) for the
BERTLARGE model.

Consistent with prior works in low-resource set-
tings, such as those in our baseline methods (Xu
et al., 2021; Zhang et al., 2022), we randomly select
a subset of the specified size (300, 500, or 1000)
from the entire dataset based on a seed. This ap-
proach is commonly adopted in this field to avoid
bias towards any specific fixed subset. We then
report the mean and standard deviation of the eval-
uation metric across multiple seeds for all methods.

We partition Dtr into two subsets of DB-tr and

DB-val. We conducted experiments with different
data ratios for DB-tr and DB-val, including 50%-50%
and 80%-20%. Empirically, we observed that the
80%-20% split performs better in low-resource set-
tings compared to a 50%-50% split. This is likely
because allocating more training data points to the
inner optimization of task weights is advantageous,
especially given the greater number of parameters
(task weights) at the inner optimization level.

D.1 Search phase
The weights mixup is applied to all the parameters
with “nn.Linear layers”. The learning rate of W is
set to 2 × 10−5. The weight decay is set to 0.01.
The warmup ratio is 10%. The batch size is set to
16. AdamW (Loshchilov and Hutter, 2017) opti-
mizer is used for W . We initialize the α values by
sampling the entries of α1 and α2 from a Gaussian
distribution with mean of 1 and standard deviation
of 0.005. The learning rate of α is set to 2× 10−3.
In this work, the warmup ratio for α is set equal
to the warmup ratio of W which is 10%. We use
an AdamW optimizer with β1 = 0.9, β2 = 0.999, ϵ
= 10−8, and weight decay of 0.01. Since it is an
optimization problem, we search for the hyperpa-
rameters that lead to a smooth reduction in the loss
curves. We grid search for the number of epochs
in {1,2,3,5}. The maximum sequence length is
128. We partition the original training dataset, rep-
resented as Dtr, into two subsets of 80% and 20%
split randomly to perform the search phase. To fur-
ther mitigate overfitting, we perform this random
sampling K times to produce K different sets of
DB-tr and DB-val.

We then perform the search phase K times to
get K different learned parameters. We average
them to obtain optimal learned parameters of the
search phase. We search in K = {1,2,5}. Though
K = 5 gave best results, K = 2 saves computation
time and gives slightly less but comparative results.
For instance, in the evaluation of the CoLA dataset
presented in Table 3, setting K to 5 yielded an
average score of 66.07, whereas setting K to 2
resulted in a score of 65.10. Both configurations
outperformed the vanilla model, which achieved a
score of 64.11.

We use a low-rank approximation of α for esti-
mating the child net structure. Since we are mainly
targeting the low-resource domain, the low-rank
approximation of α mitigates overfitting. In our
experimental setup, we consider the rank values of
{1, 2, 8} for the dimensionality reduction of α, se-

4950

lecting the best performing value empirically. We
found that a rank of r = 1 consistently produced
superior results, thus, this rank is adopted across
all experimental trials. We didn’t try an even larger
rank or full rank of α as a full rank of α is also
computationally heavy to perform.

We initialize the α1 and α2 parameters using a
Gaussian distribution. The mean of this distribution
is set to 1, and we use a standard deviation of 0.005.
We clip the initial alphas to [0, 1] to ensure they
are valid attention parameters. This initialization
strategy is designed to provide a balanced starting
point for the optimization process.

In addition, we have conducted experiments on
our method both with and without weight decay for
α parameters. Based on our empirical findings, we
observed that employing weight decay yields better
results compared to not using it. The likely reason
for this improvement is that weight decay encour-
ages the α values to be closer to 0. This inclination
towards lower values results in a higher contribu-
tion from the pretrained weights in the resultant
weight estimation, which in turn aids in regulariz-
ing the network. Such regularization appears to be
beneficial for the overall performance and stability
of the model in our experiments.

D.2 Finetune phase
With the optimal α∗ in search phase, we further
finetune for W on entire training dataset. We use
the default hyperparameter settings for W follow-
ing Devlin et al. (2018). The number of epochs is
searched in {1,3} and learning rate is searched in
{2× 10−5, 3× 10−6}.

For different PLMs in Section 4.5, we use the
default settings for W in their official repository
for both the search and the finetune phase, without
exhaustive hyperparameter sweep. The number
of training steps/epochs, warm-up steps and batch
size for the finetuning phase are given in Table 7.
For learning α in search phase, we use α learning
rate 2 × 10−3, the α warmup ratio is set roughly
the same as the warmup ratio of W for each of the
different PLM, i.e., warmup ratio for RoBERTa is
0.06, DeBERTa is 0.06, XLNet is 0.17, and BART
is 0.1. For α, we use an AdamW optimizer with β1
= 0.9, β2 = 0.999, ϵ = 10−8 and the weight decay
is 0.01.

D.3 Baselines
For the baselines, the following hyperparameter
search space is used following their respective orig-

inal papers:

• Mixout: Mixout probability p ∈ {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8}.

• R3F: Noise types ∈ {N ,U}, σ ∈ {10−5},
λ ∈ {0.1, 0.5, 1, 5}.

• Re-init: L ∈ {1, 2, 3, 4, 5, 6, 7}.

• CHILD-TUNINGD: pD ∈ {0.1, 0.2, 0.3},
learning rate in {2 × 10−5, 4 × 10−5, 6 ×
10−5, 8× 10−5, 10−4}.

• R-Dropout: p ∈ {0.1} and α ∈
{0.1, 0.5, 1, 3, 5}.

• DPS dense: p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and
update ratio ur ∈ {0.05, 0.1, 0.2}.

We use a single A100 GPU machine for our experi-
ments. The mean and the standard deviation on the
original development set over ten random seeds are
reported following Xu et al. (2021); Zhang et al.
(2022).

E Performance on low-resource scenarios

Due to space constraints, we only present the aver-
age scores across datasets in Table 1. The results
on each of the eight datasets across 300, 500, 1K
training data splits are presented in Table 8. We
report both the mean and the standard deviation of
the metric, evaluated on the test set for each dataset,
across ten random seeds. On average, our method
outperforms the best baseline by 6.43 points in the
setting with 300 training samples, by 3.43 points in
the setting with 500 training samples, and outper-
forms it by 1.68 points for 1000 training samples.

F Comparison with parameter efficient
finetuning methods

Similarly, due to space constraints, we only present
the average scores across datasets in Figure 2. The
results on each datasets across 500, 1K training
data splits are presented in Table 9. We report both
the mean and the standard deviation of the metric,
evaluated on the test set for each dataset, across ten
random seeds.

We implemented the PEFT baselines using the
PEFT library (Mangrulkar et al., 2022). In con-
ducting our hyperparameter search, we adhered to
the hyperparameter settings provided in their re-
spective original papers and the examples from the
PEFT library. For LoRA, we set the rank r to 8,

4951

Vanilla CHILD-TUNINGD DPS Dense Ours
91.5

92.0

92.5

93.0

93.5

94.0

94.5
Ac

cu
ra

cy
 (%

)

92.43 92.21
92.32

92.55

92.91 92.91 93.04 93.12

QNLI
SST-2

Figure 3: Comparison of our method with Vanilla,
CHILD-TUNINGD, and DPS dense method on the
QNLI and SST-2 datasets with sufficient training ex-
amples. The bar plots represent the mean accuracy from
ten random seeds, and error bars denote the standard
deviation.

the scaling factor α to 16, and included a dropout
of 0.1. Consequently, LoRA has 788,482 trainable
parameters (0.236% of total). In the case of Prefix-
Tuning, we set the number of virtual tokens to 20.
It has 985,090 trainable parameters (0.294% of to-
tal). For Prompt Tuning, we set the prompt length
to 20. It has 22,530 trainable parameters (0.0067%
of the total). In terms of time complexity, assuming
vanilla is x1, Prompt Tuning is 0.2x, Prefix tuning
is 0.4x and LoRA is 0.3x.

G Performance on sufficient samples

We investigate whether our method can also im-
prove accuracy on larger training datasets. To this
end, we train BERTLARGE on SST-2 and QNLI
datasets, both of which have over 50K training
examples. We compare our method to the base-
lines CHILD-TUNINGD and DPS dense. The
results are presented in Fig 3, respectively. On
the QNLI dataset, both CHILD-TUNINGD and
DPS dense perform worse than the vanilla method.
However, our method yields a small accuracy im-
provement over the vanilla method. The small
gaps between the performance of these methods
are reasonable, because as the number of training
instances increases, the impact of regularization
reduces, leading to non-significant improvements
with regularization-based methods in large sample
settings.

H Comparison with model soup

In this section, we compare our method against a
baseline method inspired from the uniform model

soup approach (Wortsman et al., 2022) in the low-
resource settings. We average over five models,
each trained using vanilla finetuning on the train-
ing dataset adhering to the optimal hyperparameter
configuration as detailed in Devlin et al. (2018)
and initialized with a different random seed. The
performance of this averaged model is then evalu-
ated on an unseen test dataset. This entire process
is repeated ten times to obtain the mean and the
standard deviation.

Our observations, summarized in Table 10, in-
dicate that the model soup approach yields mixed
results over vanilla finetuning in low-resource set-
tings. Conversely, our method demonstrates con-
sistent superiority over model soup. Our method
leverages an attention-guided weight mixup, opti-
mized through BLO across two distinct splits of
the training dataset, resulting in more pronounced
performance improvements.

4952

Datasets Vanilla Prompt Tuning Prefix-Tuning LoRA Ours

CoLA 26.01 ± 13.2 13.41 ± 9.95 42.96 ± 4.96 47.26 ± 2.57 49.35 ± 1.71
RTE 58.30 ± 4.90 56.28 ± 2.16 55.77 ± 2.63 57.15 ± 1.87 62.96 ± 4.40
STSB 81.77 ± 2.69 58.38 ± 16.52 74.44 ± 4.99 80.22 ± 2.93 86.85 ± 0.52
MRPC 82.96 ± 0.84 81.85 ± 0.3 78.63 ± 2.31 79.88 ± 1.53 83.21 ± 2.30
AVG 62.26 ± 5.41 52.48 ± 7.23 62.95 ± 3.72 66.13 ± 2.22 70.59 ± 2.23

(a) Results for 500 training samples.

Datasets Vanilla Prompt Tuning Prefix-Tuning LoRA Ours

CoLA 47.97 ± 5.62 23.69 ± 12.24 44.11 ± 14.79 51.46 ± 1.72 54.19 ± 1.77
RTE 62.60 ± 3.46 57.44 ± 0.91 59.21 ± 4.80 60.50 ± 2.79 67.62 ± 2.53
STSB 85.86 ± 1.34 69.29 ± 10.22 80.13 ± 1.58 83.57 ± 1.41 88.31 ± 0.78
MRPC 85.34 ± 1.30 81.99 ± 0.43 83.70 ± 2.09 83.98 ± 2.09 87.03 ± 1.76
AVG 70.44 ± 2.93 58.1 ± 5.95 66.79 ± 5.82 69.88 ± 2 74.29 ± 1.71

(b) Results for 1000 training samples.

Table 9: We present a comparison of our method with Vanilla, Prompt Tuning, Prefix-Tuning, and LoRA finetuning
approaches on CoLA, RTE, STSB, and MRPC datasets in low-resource scenarios with 500 and 1000 training
instances. We report both mean and standard deviation, each over ten runs. The bold values represent the highest
performance in each scenario.

500 1K
Datasets Vanilla Model Soup Ours Vanilla Model Soup Ours
CoLA 26.01 ± 13.2 26.33 ± 18.5 49.35 ± 1.71 47.97 ± 5.62 43.69 ± 12.51 54.19 ± 1.77
RTE 58.30 ± 4.90 58.56 ± 4.96 62.96 ± 4.40 62.60 ± 3.46 63.93 ± 5.15 67.62 ± 2.53
STSB 81.77 ± 2.69 82.75 ± 0.71 86.85 ± 0.52 85.86 ± 1.34 85.85 ± 0.72 88.31 ± 0.78

MRPC 82.96 ± 0.84 81.53 ± 0.84 83.21 ± 2.3 85.34 ± 1.3 83.40 ± 1.20 87.03 ± 1.76

Table 10: We present a comparison of our method, Vanilla, and model soup on RTE, MRPC, STSB, and CoLA. The
reported results are mean and standard deviation of the evaluation metrics over ten random seeds for each dataset at
the 500 and 1K training instances. Bold indicates the highest performance in each row.

Datasets Ours Vanilla Joint
Training Randomα

σα = 0.005 σα = 0.1 σα = 0.45
mean std mean std mean std mean std mean std mean std

CoLA 66.07 1.35 64.11 1.33 64.18 1.19 64.03 1.96 64.37 1.00 47.52 16.02
MRPC 91.84 0.37 90.80 1.77 89.77 2.91 91.37 0.66 90.65 0.82 85.42 2.94
RTE 73.43 1.52 70.69 2.83 71.48 1.39 72.20 0.97 68.30 6.76 55.85 2.64
STSB 90.34 0.48 89.92 0.61 90.03 0.42 89.85 0.54 89.97 0.52 88.38 0.18
AVG 80.42 0.93 78.88 1.64 78.86 1.48 79.36 1.03 78.32 2.27 69.29 5.44

Table 11: Comparision of our method with Vanilla, Joint-training and Randomα by varying σα to understand the
effectiveness of the attention-based weights mixup and the need to learn α using a BLO framework.

4953

