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Abstract

Large-scale pretraining followed by task-
specific finetuning has achieved great success
in various NLP tasks. Since finetuning all pa-
rameters of large pretrained models poses sub-
stantial computational and memory challenges,
several efficient finetuning methods have been
developed. Among them, low-rank adapta-
tion (LoRA), which finetunes low-rank incre-
mental update matrices on top of frozen pre-
trained weights, has proven particularly effec-
tive. Nonetheless, LoRA’s uniform rank assign-
ment across all layers, along with its reliance
on an exhaustive search to find the best rank,
leads to high computation costs and subopti-
mal finetuning performance. To address these
limitations, we introduce AutoLoRA, a meta
learning based framework for automatically
identifying the optimal rank of each LoRA
layer. AutoLoRA associates each rank-1 ma-
trix in a low-rank update matrix with a selection
variable, which determines whether the rank-1
matrix should be discarded. A meta learning
based method is developed to learn these se-
lection variables. The optimal rank is deter-
mined by thresholding the values of these vari-
ables. Our comprehensive experiments on nat-
ural language understanding, generation, and
sequence labeling demonstrate the effective-
ness of AutoLoRA. The code is publicly avail-
able at https://github.com/ruz048/
AutoLoRA

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020) have demonstrated state-
of-the-art performance across a variety of NLP
tasks, spanning from Natural Language Under-
standing (NLU) (Wang et al., 2018) to Natural Lan-
guage Generation (NLG) (Radev et al., 2020), a
trajectory highlighted by the success of models like
ChatGPT (OpenAI, 2023). Their success largely

*Equal contribution.

stems from a two-stage process: initial pretrain-
ing on vast amounts of unlabeled texts, followed
by finetuning on specific downstream tasks. How-
ever, as models scale up, for instance transition-
ing from RoBERTa-large’s 355 million parame-
ters (Liu et al., 2019) to GPT-3’s staggering 175
billion parameters (Brown et al., 2020), finetuning
becomes highly expensive in computation.

To address this challenge, many efficient finetun-
ing methods (Houlsby et al., 2019) have been devel-
oped. For instance, the Adapters method (Houlsby
et al., 2019) inserts lightweight layers (called
adapters) into pretrained networks. During fine-
tuning, only these adapters are updated while the
pretrained layers are kept frozen. One limitation
of this method is that the adapters incur addi-
tional computation overhead during inference. An-
other approach, prefix tuning (Lester et al., 2021),
introduces trainable prefix parameters which are
prepended to the input sequence while making the
pretrained model parameters frozen. Nevertheless,
determining the optimal length of the prefix can
be tricky. A prefix that is too short cannot capture
enough information, while an overlong prefix may
largely reduce the maximum length of the input
sequence. To address these limitations, LoRA (Hu
et al., 2022) proposes to add low-rank incremental
update matrices to pretrained weight matrices. Dur-
ing finetuning, only the incremental matrices are
trained while the pretrained ones are frozen. The
low-rank parameterization significantly reduces the
number of finetuning parameters.

While achieving parameter-efficient finetuning
without increasing inference costs, LoRA has two
limitations. First, the update matrices at differ-
ent layers share the same rank, without consid-
ering the varying properties across layers. Dif-
ferent layers in a pretrained model have varying
importance to a downstream task and should be
adapted differently, which requires the number
of trainable parameters to be layer-specific. Em-
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Figure 1: An overview of AutoLoRA. In the meta learning process, AutoLoRA learns selection variables with
two iterative steps. Firstly, the weights in the update matrices are optimized on the training dataset. Secondly, the
selection variables are updated on the validation dataset. These two steps are iterated until convergence is achieved.
Upon acquiring the optimal values of the selection variables, AutoLoRA determines the optimal matrix ranks by
thresholding these values. Subsequently, the ranks of update matrices in the LoRA layers are set to the learned
optimal ranks and retrained on the combination of training and validation data.

ploying a uniform rank across all layers compro-
mises this purpose, which renders some layers to
be under-parameterized (leading to suboptimal fine-
tuning performance) while others unnecessarily
over-parameterized (leading to computation inef-
ficiency). Second, obtaining the optimal rank in
LoRA typically involves an extensive manual hy-
perparameter search, which is time-consuming and
poses scalability issues.

To address the aforementioned limitations of
LoRA, we introduce the AutoLoRA framework to
automatically determine the optimal rank for each
LoRA layer. In AutoLoRA, we first decompose
an update matrix into the product of two low-rank
matrices (with rank k), in alignment with the LoRA
methodology. This product can be expressed as the
summation of k rank-1 matrices. For each rank-1
matrix, we assign a continuous trainable selection
variable α ∈ [0, 1] indicating the matrix’s relative
importance in the summation. After learning, if α
is close to zero, the corresponding rank-1 matrix
is removed from the summation. These selection
variables effectively control the rank of an update
matrix. Learning α directly on a training dataset
together with the update matrices can result in over-
fitting, and the network learned in this way lacks
generalization ability. To mitigate this problem, we
formulate the search process of α as a meta learn-
ing (Finn et al., 2017) problem. First, we finetune
the weights in the rank-1 matrices on a training
dataset. Second, we optimize the α values by mini-

mizing the loss on a validation dataset. These two
steps iterate until convergence. Subsequently, we
derive the optimal rank of each LoRA layer by
thresholding the learned α values. Once the opti-
mal rank is identified for each layer, the weights in
the low-rank update matrices are retrained on the
combination of training and validation data. An
overview of our proposed method is illustrated in
Figure 1.

The major contributions of this paper are sum-
marized as follows.

• We propose AutoLoRA, a meta learning based
approach that can automatically determine the
optimal and layer-specific ranks of update ma-
trices, alleviating the burden of manually tun-
ing them as in LoRA.

• Extensive experiments on natural language un-
derstanding and generation tasks demonstrate
the effectiveness of AutoLoRA.

2 Related Works

2.1 Parameter Efficient Finetuning Methods

Various methods have been developed for effi-
ciently finetuning pretrained models. These meth-
ods update only a small subset of the weights in
large pretrained models, leaving the majority of the
parameters frozen. According to Aghajanyan et al.
(2021), weight matrices in large pretrained models
tend to have a small intrinsic dimension, offering
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theoretical intuitions for finetuning pretrained mod-
els with low-dimensional reparameterization. Im-
pressively, these methods can sometimes surpass
the performance of full finetuning, particularly in
downstream tasks with limited training data.

Some efficient finetuning methods finetune the
pretrained model by updating trainable prompts
while leaving its pretrained parameters frozen. For
example, Prompt-tuning (Lester et al., 2021) learns
“soft prompts” for language models to perform
specific downstream tasks. Prefix-tuning (Li and
Liang, 2021) optimizes a sequence of continuous
task-specific vectors for natural language genera-
tion tasks. P-tuning (Liu et al., 2023) optimizes a
small neural network which generates continuous
prompt embeddings to finetune GPT models for
natural language understanding tasks. LLaMA-
Adapter (Zhang et al., 2023b) learns trainable
prompts for the LLaMA (Touvron et al., 2023a)
model. However, selecting appropriate prompt
length can be challenging, as short prompts can-
not capture sufficient information while overlong
prompts significantly reduce the input sequences’
length.

Another line of research involves finetun-
ing the pretrained model by inserting train-
able modules into the model while keeping pre-
trained parameters frozen. For example, Adapter
(Houlsby et al., 2019) proposes to inject addi-
tional trainable adapter layers into pretrained Trans-
former (Vaswani et al., 2017) models. IA3 (Liu
et al., 2022) multiplies the output of activation func-
tions in the pretrained model with trainable vectors.
Compacter (mahabadi et al., 2021) inserts hyper-
complex multiplication layers (Zhang et al., 2021)
to the pretrained model, offering more efficiency
than those in Adapters. These methods incur ad-
ditional inference overhead due to computing the
inserted modules.

AdaLoRA (Zhang et al., 2023a) aims to over-
come the problem that LoRA evenly distributes
the budget of updates across all LoRA layers by
adaptively allocating the budget according to their
importance scores. However, since both the impor-
tance score and update matrices are learned on the
same training dataset, there is an increased risk of
overfitting.

2.2 Meta Learning

Various meta learning methods have been pro-
posed for better adaptation of models to new tasks

with minimal training data. For instance, Model-
Agnostic Meta-Learning (MAML) (Finn et al.,
2017) is a gradient based meta learning method,
aiming to train model weights for fast adaptation
to new tasks with small amounts of data in a few
gradient descent steps. Meta-SGD is an extension
of MAML (Li et al., 2018). It not only learns
model weights, but also optimizes learning rates
for fast adaptation to new tasks. Reptile (Nichol
et al., 2018) is a first-order meta learning algorithm,
which serves as a simpler alternative to MAML.
Reptile repeatedly moves the initialization of meta
parameters towards the model weights trained on
a specific task, sidestepping second-order gradient
computation. Orthogonal to these previous meth-
ods, our meta learning based method is used for
tuning matrix ranks in LoRA.

3 Preliminaries

In LoRA (Hu et al., 2022), a weight matrix Wl ∈
Rml×nl at layer l in a downstream model is param-
eterized as Wl = W̃l +∆l, where W̃l is the weight
matrix at layer l in a pretrained model and ∆l is an
incremental update matrix. ∆l is parameterized as
the product of two low-rank matrices: ∆l = UlVl,
where Ul ∈ Rml×kl and Vl ∈ Rkl×nl . kl, which
is much smaller than ml and nl, is the rank of ∆l.
Equivalently, ∆l can be written as the summation
of kl rank-1 matrices:

∆l =

kl∑

j=1

∆j
l , (1)

where ∆j
l is the outer-product between the j-th

column of Ul and the j-th row of Vl.

4 Method

4.1 Overview
In AutoLoRA, we aim to automatically determine
the rank kl in Eq.(1), instead of manually specify-
ing it as in LoRA. To achieve this goal, we associate
each rank-1 matrix in an update matrix with a selec-
tion variable and reparameterize the update matrix
as a weighted sum of rank-1 matrices. A meta
learning based approach is developed to learn these
selection variables. After learning, if the value of a
selection variable is close to zero, its correspond-
ing rank-1 matrix is removed. In this way, we can
determine the optimal rank for each update matrix
based on the selection variables. An overview of
the AutoLoRA algorithm is shown in Algorithm 1.
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Algorithm 1 AutoLoRA: Automatically Search for Optimal Rank

Initialize selection variables A = {αl}1≤l≤M and update matrices {∆l =
∑kl

j=1 α
j
l∆

j
l }1≤l≤M

while not converged do
1. Update weight parameters W by descending ∇WLtr(W,Dtr).
2. Update selection variables A by descending ∇ALval(W − η∇WLtr(W,Dtr), Dval).

end while
Derive the best rank k∗l = |{α∗

l,j |1 ≤ j ≤ kl, α
∗
l,j ≥ λ}| for LoRA layer l from optimal values α∗

l .

4.2 Reparameterize Update Matrices
We associate each rank-1 matrix ∆j

l in Eq.(1) with
a selection variable αj

l ∈ [0, 1] and reparameterize
∆l as a weighted sum of rank-1 matrices:

∆l =

kl∑

j=1

αj
l∆

j
l . (2)

αj
l can be interpreted as the importance of ∆j

l . If αj
l

is close to 0, ∆j
l will be removed from ∆l, which

effectively reduces the rank of ∆l by one. In other
words, the rank of ∆l is equivalent to the number
of non-zero values in {αj

l }
kl
j=1. By learning these

selection variables based on their fitness to data,
we can automatically determine the rank of ∆l. We
add a constraint that the sum of {αj

l }
kl
j=1 is equal

to one:
∑kl

j=1 α
j
l = 1. This constraint renders the

optimization of {αj
l }

kl
j=1 difficult. To address this

problem, instead of optimizing {αj
l }

kl
j=1 directly,

we parameterize them using softmax:

αj
l =

exp(βj
l )∑kl

i=1 exp(β
i
l )
, (3)

and learn the unconstrained variables {βj
l }

kl
j=1.

4.3 Learn Selection Variables
Let A = {αj

l |1 ≤ j ≤ kl, 1 ≤ l ≤ M} denote
all selection variables, where M is the number of
layers in the pretrained model. We propose a meta
learning based approach to learn A. Let Ltr denote
the downstream task’s training loss defined on a
training dataset Dtr. Given the weight parameters
Wl = W̃l +∆l at layer l in the downstream model,
we first perform a one-step gradient descent update
of Wl:

Ŵl = Wl − η∇Wl
Ltr({Wl}Ml=1, Dtr), (4)

where η is a learning rate. Then we evaluate
{Ŵl}Ml=1 on a validation dataset Dval. The vali-
dation loss Lval({Ŵl}Ml=1, Dval) is a function of A

since Lval depends on {Ŵl}Ml=1 which depends on
A. We optimize A by minimizing the validation
loss:

minA Lval({Ŵl}Ml=1, Dval). (5)

We use an approximate gradient-based algo-
rithm (Choe et al., 2023) to solve this problem.
The updates of W and A in Eq.(4) and Eq.(5) are
iteratively performed until convergence.

4.4 Determine Matrix Rank

Given the optimally learned selection variables A∗,
we determine the rank of each update matrix based
on A∗. For each layer l, we count the number of
entries in {αj

l }
kl
j=1 that satisfy αj

l ≥ λ, where λ
denotes a threshold. This number would be the
optimal rank for ∆l. We set λ to be λ = 1/kl. This
threshold guarantees the automatically determined
rank is at least one.

4.5 Retrain Update Matrices

The thresholding operations in Section 4.4 incurs
a discrepancy: when training the update matri-
ces in Section 4.3, all rank-1 matrices are used
to make predictions; however, after thresholding,
some rank-1 matrices are dropped, which may hurt
performance. To bridge this discrepancy, we re-
train the update matrices. Specifically, for each
update matrix, we set its rank to be the optimal
value determined in Section 4.4, then train them by
minimizing the finetuning loss on the combination
of training and validation datasets.

5 Experiments

5.1 Experimental Setup

The baseline methods used in this work include
Adapter (Houlsby et al., 2019), LoRA (Hu et al.,
2022), and AdaLoRA (Zhang et al., 2023a).

We examine the efficacy of AutoLoRA by fine-
tuning a RoBERTa-base model (Liu et al., 2019),
a RoBERTa-large model, and a GPT2-medium
model (Radford et al., 2019) on natural language
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Method Params CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B Avg.

Full FT 125.0M 61.6 94.8 89.3 90.3 86.7 92.8 76.9 91.2 85.5

Adapter 0.9M 58.8 94.0 88.4 89.1 86.5 92.5 71.2 89.9 83.8
LoRA 0.3M 59.0 94.5 89.1 89.6 86.9 92.9 75.8 91.1 84.9
AdaLoRA 0.3M 58.8 94.0 89.4 89.9 87.0 93.0 75.9 90.6 85.0
AutoLoRA 0.3M 61.3 94.9 89.4 90.3 87.0 92.9 77.0 90.8 85.5

Table 1: Performance and the number of parameters (Params) of AutoLoRA and baseline methods for finetuning
RoBERTa-base on the GLUE benchmark. Higher value is better for all metrics. The best results are shown in bold.
We also provide the performance of full finetuning (Full FT) for reference.

Figure 2: Results of finetuning the RoBERTa-large
model on the MRPC, QQP, and SST-2 datasets. Y-axis
represents accuracy on GLUE development sets.

understanding (NLU), natural language generation
(NLG), and sequence labeling datasets. We include
detailed comparison of these two pretrained models
in Appendix B.

A Transformer (Vaswani et al., 2017) model con-
sists of several stacked Transformer blocks (lay-
ers), and each block contains a multi-head atten-
tion (MHA) module and a fully-connected neural
network. Each head in an MHA module includes a
query projection layer, a key projection layer, and
a value projection layer. In adherence to the stan-
dard setting in LoRA, we select only the query and
value projection layers as trainable LoRA layers,
leaving other layers frozen. Both RoBERTa-base
and GPT2-medium possess 12 Transformer lay-
ers, which results in 24 trainable LoRA layers. The
RoBERTa-large model, with 24 Transformer layers,
has 48 trainable LoRA layers.

We set the initial dimension of selection vari-
ables αl to be 8 at each layer, i.e., kl = 8. The rank
for each layer in LoRA baselines is set as 4, result-
ing in a similar number of trainable parameters as
that in AutoLoRA. We use AdamW (Loshchilov
and Hutter, 2019) as the optimizer for both Au-
toLoRA and baseline methods. We set the batch

size as 16 for NLU and NLG tasks, and 32 for
the sequence labeling task. We set the learning
rate for optimizing weight parameters W in Eq.(4)
to be 1e − 4, and the learning rate for optimiz-
ing selection variables A in Eq.(5) to be 1e − 3.
All experiments were conducted on NVIDIA A100
GPUs. Our implementation is based on Pytorch
(Paszke et al., 2019), HuggingFace Transformers
(Wolf et al., 2020), and the Betty library (Choe
et al., 2023).

5.2 Experiments on Natural Language
Understanding Tasks

We conduct extensive experiments on eight datasets
from the General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) to eval-
uate the performance of AutoLoRA on NLU tasks.
The GLUE benchmark contains single sentence
classification, sentence pair classification, and re-
gression tasks for language acceptability evalua-
tion, sentiment analysis, sentence similarity mea-
surement, and natural language inference. We use
accuracy as the evaluation metrics for the SST-2,
MRPC, QQP, MNLI, QNLI, and RTE tasks. We
use Matthew’s correlation for the CoLA task and
Spearman’s correlation for the STS-B task. Since
the test sets of the GLUE benchmark are not pub-
licly available, following previous studies (Zhang
et al., 2022), we use the AutoLoRA framework
to finetune a RoBERTa-base model on the GLUE
training set and evaluate it on the GLUE develop-
ment set. We split the original training set into a
new training set and a validation set with a ratio
of 1:1, which are used as Dtr and Dval in Eq.(4)
and Eq.(5) respectively. Please note that baselines
methods are trained on the original training set and
our method does not unfairly use more data than
baselines.

Table 1 shows the performance of AutoLoRA
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E2E WebNLG
Method Param BLEU NIST MET ROUGE-L CIDEr BLEU MET TER

Full FT 354.9M 68.0 8.61 46.1 69.0 2.38 46.5 38.0 0.53

Adapter 11.1M 67.0 8.50 45.2 66.9 2.31 50.2 38.0 0.46
LoRA 0.3M 67.1 8.54 45.7 68.0 2.33 50.7 39.5 0.46
AdaLoRA 0.3M 67.0 8.55 45.5 68.1 2.32 50.6 39.4 0.44
AutoLoRA 0.3M 67.9 8.68 46.0 68.9 2.37 50.8 39.6 0.44

Table 2: Performance and the number of parameters of AutoLoRA and baseline methods for finetuning GPT-
medium on the E2E and WebNLG datasets. Higher value is better for all metrics except TER. Lower TER value
indicates better performance.

on the GLUE development sets, compared with
baseline methods. AutoLoRA achieves the best
performance on 6 out of 8 datasets, and obtains
an average performance of 85.5, outperforming
all baseline methods. As AutoLoRA outperforms
LoRA on average, we can conclude that the opti-
mal ranks learned by AutoLoRA are better than the
manually tuned ranks in LoRA. The reasons are
two-fold. First, AutoLoRA allows different layers
to have distinct ranks, sufficiently accounting for
the fact that different layers have varying proper-
ties and need to have layer-specific amounts of tun-
able parameters. In contrast, LoRA uniformly uses
the same rank for all layers, without considering
the difference across layers. Second, AutoLoRA
learns the continuous selection variables (which
determine the ranks) by maximizing the finetun-
ing performance on validation data via gradient
descent. The search space is continuous, which
allows more comprehensive exploration of rank
configurations. In contrast, LoRA performs man-
ual tuning of ranks in a discrete space, where the
number of rank configurations is relatively limited.

Furthermore, AutoLoRA outperforms the
AdaLoRA baseline on average. The reason is that
AdaLoRA uses a single dataset to simultaneously
learn rank-1 matrices and their importance scores,
which can easily lead to overfitting. In contrast, our
method splits the training dataset into two disjoint
sets, learns rank-1 matrices on one set, and opti-
mizes selection variables on the other set, which is
more resilient to overfitting.

In addition, we present the results of fully fine-
tuning a RoBERTa-base model. Results indicate
that AutoLoRA attains performance on par with the
full finetuning method, while utilizing significantly
fewer parameters.

We further examine the efficacy of AutoLoRA
with larger pretrained models. Specifically, we

applied AutoLoRA to finetune a RoBERTa-large
model (Liu et al., 2019) on the MRPC, QQP, and
SST-2 datasets. The RoBERTa-large model com-
prises 355 million parameters, in contrast to the
RoBERTa-base, which only contains 125 million.
As shown in Figure 2, the performance of Au-
toLoRA surpasses both baseline methods across
all three datasets, demonstrating AutoLoRA’s ro-
bust effectiveness in finetuning pretrained models
with various sizes.

5.3 Experiments on Natural Language
Generation Tasks

In addition to NLU tasks, we also evaluate the
effectiveness of AutoLoRA in NLG tasks. The ex-
periments were conducted on two datasets: E2E
(Novikova et al., 2017) and WebNLG (Gardent
et al., 2017). The E2E dataset contains around
50,000 data-sentence pairs in the restaurant domain.
Given the data record of a restaurant, the task is to
generate a text description for the restaurant. The
WebNLG dataset contains more than 10,000 data-
sentence pairs extracted from DBpedia. The data
contains triples with a format of (subject, prop-
erty, object), and the task is to generate a text as a
verbalisation of these triples. We use BLEU (Pa-
pineni et al., 2002), NIST (Lin and Och, 2004),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin and Hovy, 2004), and CIDEr (Vedantam
et al., 2015) as evaluation metrics for the E2E
dataset. For the WebNLG dataset, we use BLEU,
METEOR, and TER (Snover et al., 2006) as evalu-
ation metrics. AutoLoRA was applied to finetune a
GPT-medium model.

Table 2 shows the performance of AutoLoRA on
the E2E test set and WebNLG test set. AutoLoRA
achieves the best performance in terms of all five
metrics on the E2E dataset. It outperforms or is on
par with baseline methods on the WebNLG dataset
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Method Param Precision F1

Full FT 125.0M 70.3 74.9

Adapter 0.9M 66.9 71.3
LoRA 0.3M 68.5 72.2
AdaLoRA 0.3M 69.4 73.0
AutoLoRA 0.3M 70.1 74.2

Table 3: Performance and the number of parameters
of AutoLoRA and baseline methods for finetuning a
RoBERTa-base model on the BioNLP dataset.

in terms of all three metrics. This demonstrates
AutoLoRA’s effectiveness in finetuning pretrained
models for NLG tasks. The analysis of reasons
that AutoLoRA outperforms LoRA and AdaLoRA
is similar to that in Section 5.2. Moreover, the
performance of AutoLoRA is on par with that of
the full finetuning method, while the number of
parameters in AutoLoRA is substantially less.

5.4 Experiments on Sequence Labeling

In this section, we evaluate AutoLoRA on a se-
quence labeling task. Different from the GLUE
tasks which perform classification on an entire sen-
tence (focusing on capturing global semantics), se-
quence labeling performs classification on each
token in a sentence (emphasizing capturing local
context). The experiments were conducted on the
BioNLP (Collier and Kim, 2004) dataset, which
is a Named Entity Recognition dataset containing
biological entities such as DNA, RNA, and protein.
F1 is used as the evaluation metric. AutoLoRA was
applied to finetune a RoBERTa-base model for this
task.

Table 3 shows the performance of AutoLoRA on
the BioNLP test set, compared with baseline meth-
ods. AutoLoRA outperforms all baseline methods
in terms of F1 score. The analysis of reasons is sim-
ilar to that in Section 5.2. In line with our previous
findings on NLU and NLG tasks, AutoLoRA can
effectively finetune pretrained models for sequence
labeling.

5.5 Ablation Studies

In this section, we perform ablation studies to in-
vestigate the effectiveness of individual modules
in our method. The studies were performed on the
GLUE benchmark.

No Constraints. We examine the effectiveness of
the sum-to-one constraint in Section 4.2 by remov-

ing the constraints from AutoLoRA. Specifically,
we directly use a threshold λ =

∑kl
j=1 α

j
l /kl to

obtain the optimal discrete ranks without any con-
straints in the meta learning process (AutoLoRA
w/o cst.). Results in Table 4 show that AutoLoRA
outperforms this ablation setting on average, in-
dicating the effectiveness of this sum-to-one con-
straint. The reason is that adding such a constraint
can make the selection variables better represent
the relative importance of rank-1 matrices, which
facilitate accurate pruning of less important rank-1
matrices.

Element-wise Sigmoid. We further examine the
effectiveness of the sum-to-one constraint in Sec-
tion 4.2 by comparing AutoLoRA with an ablation
setting that applies element-wise sigmoid opera-
tions on selection variables. Specifically, for each
αj
l , we use sigmoid to constrain its value into [0, 1]

in the meta learning process, and a threshold of
0.5 is used to obtain discrete ranks (AutoLoRA
sigmoid). Results in Table 4 show that AutoLoRA
outperforms this ablation setting on average. In
this ablation setting, αj

l no longer directly indicates
the relative importance of rank-1 matrices, making
it challenging to select an appropriate threshold.

Meta Learning. We examine the effectiveness
of the meta learning framework by setting η = 0
in Algorithm 1. This ablation setting can be in-
terpreted as an alternative learning method where
two optimization steps are carried out alternatively
on two different splits of the training dataset. Re-
sults in Table 4 show that AutoLoRA outperforms
AutoLoRA (η = 0) on average, demonstrating the
efficacy of the meta learning strategy.

5.6 Qualitative Analysis

Figure 3 presents the optimal rank determined by
AutoLoRA for the QQP, MNLI, and E2E datasets.
For the QQP and MNLI datasets, we utilized a
RoBERTa-base backbone, while a GPT2-medium
backbone was employed for the E2E dataset. In
this figure, column i corresponds to the i-th Trans-
former block in the pretrained model. Each row
corresponds to a dataset and a layer type (query pro-
jection and value projection layer). As can be seen,
the optimal ranks learned by AutoLoRA for differ-
ent layers have varying values. This is aligned with
the hypothesis discussed in Section 1 that different
layers need different matrix ranks. Vanilla LoRA
ignores this difference and uniformly uses the same
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Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B Avg.

AutoLoRA (w/o cst.) 61.0 93.7 88.5 90.0 87.2 92.1 77.5 90.5 85.1
AutoLoRA (sigmoid) 59.7 94.1 88.3 89.8 86.9 92.6 75.7 90.7 84.7
AutoLoRA (η = 0) 61.2 94.8 89.3 90.1 87.1 92.8 77.3 90.5 85.2
AutoLoRA 61.3 94.9 89.4 90.3 87.0 92.9 77.0 90.8 85.5

Table 4: Ablation studies. Performance comparison of AutoLoRA, AutoLoRA without constraint (AutoLoRA w/o
cst.), AutoLoRA with element-wise sigmoid (AutoLoRA sigmoid), and AutoLoRA with η = 0. We evaluated all
methods on the development sets of the GLUE benchmark.

Figure 3: Optimal ranks of the LoRA layers obtained by AutoLoRA on the QQP, MNLI, and E2E datasets. We
finetuned RoBERTa-base on QQP and MNLI, and GPT2-medium on E2E. Both RoBERTa-base and GPT2-medium
consist of 12 Transformer layers. We only search for the ranks in the query and value projection layers.

Method AdaLoRA LoRA+Grid Search AutoLoRA

Cost x1 x14.29 x1.91

Table 5: Comparison of average training cost between
AutoLoRA and baseline methods on the SST-2, MNLI,
and QQP datasets. We normalize the average training
time of AdaLoRA as 1.

rank across layers, which leads to inferior perfor-
mance. Our method provides a computationally
efficient mechanism to learn these layer-specific
ranks, which takes much less time than grid search
(as shown in Section 5.7).

5.7 Computation Costs
Table 5 shows the average training cost of Au-
toLoRA and two baseline methods on the SST-
2, MNLI, and QQP datasets. We normalize the
average training time of AdaLoRA as 1 for ref-
erence. In LoRA, we use grid search to tune the
ranks, with 16 configurations. As can be seen, our
method is much more efficient than performing
grid search of ranks in LoRA. Grid search is con-
ducted in a discrete space. For each configuration
of ranks, LoRA needs to run from scratch, which
is very time-consuming. In contrast, our method
performs the search in a continuous space via gra-

dient method, which can efficiently explore many
configurations without restarting. Compared with
AdaLoRA, our method has significantly better per-
formance as shown in Tables 1, 2, and 3, without
substantially increasing the computation costs.

6 Discussion

In this section, we discuss the potential issue of
overfitting associated with AutoLoRA. In contrast
to AdaLoRA (Zhang et al., 2023a), our approach
demonstrates enhanced resilience against overfit-
ting by learning rank-1 matrices and selection vari-
ables across two separate sub-datasets, thereby re-
ducing the likelihood of overfitting to any single
dataset. As shown in Table 1, the robust perfor-
mance of AutoLoRA on smaller datasets like RTE
demonstrates that our method is less prone to over-
fitting. Nonetheless, if both sub-datasets used are
exceedingly small, there exists an increased risk of
AutoLoRA overfitting to these datasets.

As shown in Bao et al. (2021), bi-level optimiza-
tion (BLO) based hyperparameter searching meth-
ods, such as AutoLoRA, are more likely to achieve
a lower empirical risk on the validation dataset,
compared to cross validation based methods. It
gives a theoretical proof that the generalization
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bound of BLO method is O(C1
m ), while the gener-

alization bound of cross validation is O(C2

√
1
m),

where m is the size of the validation dataset and
C1, C2 are other factors in the hyperparameter op-
timization framework which do not depend on m.
As C1 is much larger than C2, BLO based methods
are more likely to suffer from the overfitting issue
when m is relatively small. However, when the size
of the validation dataset m is relatively large, BLO
based hyperparameter optimization methods like
AutoLoRA can better prevent overfitting compared
with cross validation.

7 Conclusions and Future Work

In this paper, we introduce AutoLoRA, a meta
learning based framework designed to automati-
cally search for the optimal ranks for LoRA lay-
ers. Our method associates each rank-1 matrix in
LoRA updates with a selection variable and for-
mulates the rank-tuning problem as optimizing the
selection variables via meta learning. Threshold-
ing is applied to derive discrete rank values from
continuous selection variables and retraining is per-
formed to bridge the gap incurred by thresholding.
Comprehensive experiments show the efficacy of
AutoLoRA across various NLP tasks.

Similar to the LoRA method, the LoRA layers
in AutoLoRA are manually specified, which may
be suboptimal. As a future work, we will investi-
gate how to automatically select LoRA layers, by
developing a meta learning framework similar to
that in Eq.(5).

8 Limitations

In comparison to other rank search techniques like
AdaLoRA, our method does introduce some addi-
tional computational and memory overhead. How-
ever, as shown in Table 5, the increase of training
cost is relatively modest. Another limitation is that
we did not evaluate our method on more recent
large language models (LLMs), such as LLaMA
(Touvron et al., 2023a) and LLaMA-2 (Touvron
et al., 2023b). It is promising to apply AutoLoRA
on these LLMs as they are more powerful com-
pared with previous ones. We did not evaluate our
method on LLMs pretrained on non-English texts
either. We aim to address these limitations in our
future research.
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A Datasets

Table 6 shows the statistics of the GLUE datasets.

B Pretrained Models

RoBERTa pretrains a Transformer encoder, which
is the same as that in BERT (Devlin et al., 2019).
The GPT2 model pretrains a Transformer decoder.
The RoBERTa model is pretrained via masked to-
ken prediction. The GPT2 model is pretrained via
language modeling. RoBERTa is commonly used
for natural language understanding (NLU) tasks
while GPT2 is often used for natural language gen-
eration (NLG) tasks.

C Hyperparameter Optimization

Adequate hyperparameter configuration is crucial
for machine learning algorithms to achieve top per-
formance. Compared with grid search and sim-
ple random search, Bayesian Optimization (BO)
(Lindauer et al., 2022) and gradient-based hyperpa-
rameter optimization (Maclaurin et al., 2015) have
been widely used because of their sample efficiency.
For example, SMAC (Hutter et al., 2011) builds a
probabilistic model to estimate the performance of
different hyperparameter configurations. It sequen-
tially chooses the next set of hyperparameters to
evaluate, with an predefined acquisition function to
balance exploration with exploitation in the hyper-
parameter space. SMAC3 (Lindauer et al., 2022)
improves SMAC by evaluating less promising hy-
perparameters configurations with fewer instances.
c-TPE (Watanabe and Hutter, 2023) proposes a con-
strained tree-structured Parzen estimator to handle
constraints such as memory consumption and infer-
ence latency of a configuration of hyperparameters.
PED-ANOVA (Watanabe et al., 2023) highlights
the role of good hyperparameter search space in hy-
perparameter optimization. It derives a algorithm
to compute hyperparameter importance with Pear-
son divergence. On the other hand, Maclaurin et al.
(2015) computes the gradients with respect to hy-
perparameters, and proposes an efficient method to
store related information.
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CoLA RTE QNLI STS-B MRPC WNLI SST-2 MNLI
(m/mm) QQP

Train 8551 2490 104743 5749 3668 635 67349 392702 363871
Dev 1043 277 5463 1500 408 71 872 9815/9832 40432

Table 6: GLUE dataset statistics.
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