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Abstract

In this work, we measure the impact of af-
fixal negation on modern English large lan-
guage models (LLMs). In affixal negation, the
negated meaning is expressed through a nega-
tive morpheme, which is potentially challeng-
ing for LLMs as their tokenizers are often not
morphologically plausible. We conduct exten-
sive experiments using LLMs with different
subword tokenization methods, which lead to
several insights on the interaction between tok-
enization performance and negation sensitivity.
Despite some interesting mismatches between
tokenization accuracy and negation detection
performance, we show that models can, on the
whole, reliably recognize the meaning of affixal
negation.

1 Introduction

Negation is central to language understanding but
is not properly captured by modern NLP methods
(Hossain et al., 2022; Truong et al., 2023, inter
alia). While state-of-the-art large language models
(LLMs) have improved negation-related capabili-
ties, challenges remain, such as the ability to cor-
rectly determine the enclosed scope of negation, or
when negation interacts with other linguistic con-
structions like quantifiers (She et al., 2023; Truong
et al., 2023). Negations in common English NLP
benchmarks are typically marked by separate nega-
tion cues such as not or no. However, in practice,
negation can also be expressed through morphemes
(or affixes) of words, i.e. by negative prefixes or
suffixes such as in uninteresting or effortless.

While humans can identify affixal negation by
leveraging morphological cues, NLP systems only
rarely consider word-internal structure, beyond nor-
malizing syntactic variation (Liu et al., 2012). Mod-
ern NLP methods such as language models employ
subword tokenization, in which words are broken
down into smaller units. This has an advantage
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The word inconclusive contains
negation. True or False? Answer:

GPT-4: True {in, con, clusive}

LLaMa-2: False {incon, clusive}

Flan-T5: True {in, con, clu, s, ive}

The word inhibited contains
negation. True or False? Answer:

GPT-4: True {in, hibited}

LLaMa-2: True {in, hib, ited}

Flan-T5: True {inhibit, e, d

Figure 1: Example of our affixal negation prediction
task, with the tokenization output for each model.

of reducing vocabulary size, as well as learning
shared representation between words with similar
subwords. The intent to improve such representa-
tion by making tokenization methods more linguis-
tically sound has driven the invention of several
morphology segmentation methods, such as Mor-
fessor (Grönroos et al., 2014). However, these have
not been broadly adopted in modern LLMs as they
do not scale well.

We hypothesize that current subword tokeniza-
tion methods could lead to sub-optimal perfor-
mance on language understanding tasks involv-
ing negation, because they do not correctly break
words down morphologically. For instance, Table 1
demonstrates how different models employing dif-
ferent subword tokenization methods tokenize the
word anticlinal. Another known challenge which
could affect models is the high false positive rate in
detecting affixal negations (Blanco and Moldovan,
2011), for example misinterpreting de in deserve
as a negative affix, where in practice the de prefix
derives from the Latin root deservire and should
not be interpreted as negating serve.

In this work, we analyze the impact of affixal
negations on transformer-based language models,
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Model Type Variant Data source Vocab. size Output NegMorph

BERT BPE WordPiece books, wiki 30K {anti, clin, al } Correct
RoBERTa BPE Byte-level BPE books, wiki 50K {antic, l, inal } Under-segmented
XLNet ULM SentencePiece book, wiki, web text 32K {anti, clin, al } Correct
AlBERT ULM SentencePiece book, wiki 32K {anti, clin, al } Correct
T5 BPE SentencePiece web text 32K {anti, clin, al } Correct
Llama-2 BPE SentencePiece web text, code, books,

wiki, scientific publica-
tions

32K {ant, ic, l, inal } Over-segmented

GPT-2 BPE Byte-level BPE web text 50K {antic, l, inal } Under-segmented
GPT-4 BPE Byte-level BPE undisclosed 100K {antic, l, inal } Under-segmented

Table 1: Summary of different tokenizers used in our experiments. Output are tokenized version of the word
anticlinal (model-specific special tokenization characters are removed for clarity purposes). All models are the base
version unless otherwise specified.

where two main tokenization methods are em-
ployed, namely: byte-pair encoding (Gage, 1994;
Sennrich et al., 2016) and unigram language model
(Kudo, 2018). We consider three research ques-
tions:

RQ1: Are current subword tokenization meth-
ods able to preserve negative affixes? We an-
alyzed the performance of various subword tok-
enization methods used in modern LMs. We find
that most do not effectively produce the correct
negative affixes.

RQ2: Are modern LMs aware of the presence
of negation in affixal negations? We design a
negation prediction task to probe models’ aware-
ness of affixal negation. We find that despite not
performing well on the tokenization task, current
LLMs can reliably infer the negated meaning of
words with negative affixes. For this task, there is
only a weak positive correlation between tokenizer
and classifier performance.

RQ3: What are the impacts of affixal negation
on downstream tasks? As negation and senti-
ment are closely related, we measure the impact on
a downstream sentiment analysis task by looking at
samples containing affixal negations from common
datasets. Results show that models perform well on
those samples, implying that the impact of affixal
negation is minimal. However, there exists a bias in
predicting negative sentiment for affixal negations.

2 Related work

There are two popular ways of constructing the
vocabulary for LMs using subword tokenization
methods: byte-pair encoding (“BPE”: Sennrich
et al. (2016)) and unigram language model (“Un-
igram LM”: Kudo (2018)). BPE starts from a

base character set, then merges those characters
based on bigram frequency to form subword units
(bottom-up), whereas unigram language models
start from a large subword vocabulary, which is
then reduced based on a regularization method (top-
down). There are multiple variants of BPE, differ-
ing in how the base vocabulary is represented and
how the merging is done. WordPiece (Schuster
and Nakajima, 2012) uses characters to represent
the base vocabulary, then selects pairs that max-
imize the likelihood of training data, Byte-level
BPE uses bytes instead of Unicode to represent
the base vocabulary; the merging is done based on
the frequency count of bigrams. In contrast, the
unigram language model starts from a large base
vocabulary and iteratively trims down tokens based
on unigram LM perplexity until a target vocabulary
size is reached.

Both methods assume that the input text uses
spaces to separate words, which is not true for lan-
guages such as Chinese or Vietnamese. Therefore,
a word segmentation step must be performed in
advance. SentencePiece (Kudo and Richardson,
2018) was introduced to solve this problem by con-
sidering whitespace as part of words, essentially
treating the whole input stream as the smallest unit
to perform tokenization on. Then, either BPE or
unigram LM can be applied to construct the vocab-
ulary. Regardless of method, they purely rely on
statistical information and thus are not expected to
produce morphologically-aligned subword tokens.

There have been efforts to build linguistically-
sound word tokenization methods, most notably
Morfessor and its variants (Grönroos et al., 2014,
2020). Building morphology-aligned segmentation
methods, especially in a multilingual setting, is an
active line of research through recent SIGMOR-
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Figure 2: Negative affix-preserving segmentation performance on the set of affixal negations (van Son et al., 2016).

PHON shared tasks (Batsuren et al., 2022). These
methods outperform general tokenizers in pro-
ducing morphologically-aligned tokens, but their
benefit on downstream tasks is often negligible
(Domingo et al., 2019; Saleva and Lignos, 2021).
In this work, we examine if morphologically cor-
rect tokenization is important for LLMs to deal
with negation.

BERT and its variants have been shown to be
insensitive to negation (Kassner and Schütze, 2020;
Ettinger, 2020), affecting many downstream NLP
tasks such as sentiment analysis, NLI, or QA (Hos-
sain et al., 2020, 2022; Ravichander et al., 2022;
Truong et al., 2022). Compared to previous mod-
els, current LLMs have improved negation han-
dling ability, but still struggle with some unconven-
tional types of negation and linguistic constructions
(Truong et al., 2023). Here, we investigate the treat-
ment of affixal negation in modern LMs, with the
intuition that subword tokenization methods that
don’t appropriately reflect this morphology will
lead to misinterpretation of their semantics.

3 Experimental settings

We focus our analysis particularly on how af-
fixal negations are represented in modern LLMs,
designing probing tasks to test their aware-
ness of negation, and the effect on downstream
tasks. All code for the experiments is avail-
able at https://github.com/joey234/
affixal-negation.

3.1 A lexicon of affixal negation

We use the lexicon created in van Son et al. (2016).
The dataset contains a list of affixal negation and
their non-negated counterparts (e.g. unintended–
intended). For each affixal negation, the corre-
sponding negative affix is also annotated. In total,
there are 2089 affixal negations, and 2055 non-
negated words which are antonyms of the negations.
These numbers are not equal because one word can
have multiple corresponding negated counterparts,
e.g. intrusive–{extrusive, unintrusive}.

3.2 Tokenization methods

For each tokenizer type (along with their variants),
we consider the most representative models that use
them, based on their popularity. Although some
models use the exact same tokenizer, it is worth in-
vestigating them as differences in training corpora
can lead to differences in tokenization results.

BPE We consider models using different flavors
of BPE. For WordPiece, we consider BERT (De-
vlin et al., 2019), ELECTRA (Clark et al., 2020);
for Byte-level BPE, we consider RoBERTa (Liu
et al., 2019), and GPT-family models including
GPT-2 (Radford et al., 2019) and GPT-4 (OpenAI,
2023); and for SentencePiece, we examine Flan-T5
(Chung et al., 2022) and LLaMA-2 (Touvron et al.,
2023).

Unigram LM Models using unigram LM tok-
enization methods considered in this work are al-
ways used in combination with SentencePiece: XL-
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Net (Yang et al., 2019) and AlBERT (Lan et al.,
2020).

3.3 Negative affix-preserving segmentation

We consider a segmentation of an affixal negation
to be “affix preserving” (Correct) only if the nega-
tive affix matches with one of the produced tokens
(e.g. anticlimatic → anti, clima, tic). Otherwise, it
is either Under-segmented if the negative affix is
a substring of one of the produced tokens (e.g. an-
ticlima, tic), or Over-segmented (e.g. ant, i, clima,
tic). Formally, given an affixal negation word w
having the negative affix a, if w is tokenized into
Tk = {ti, ti+1, ..., tn} under tokenizer k then we
define NegMorphk(w) as follows:

NegMorphk(w) =





Correct if a ∈ Tk.
Under-
segmented

if a is a sub-
string of any
ti ∈ Tk.

Over-
segmented otherwise

4 Findings

4.1 Current subword tokenization methods
are not negative affix-preserving

As shown in Figure 2a, T5 has the best perfor-
mance in producing negative affix-preserving to-
kens, while for the remaining, models employing
the unigram LM method outperform those using
BPE. This is in line with previous findings that
the unigram LM produces subword units that align
with morphology better than BPE (Bostrom and
Durrett, 2020). Moreover, models that employ Sen-
tencePiece (T5, ALBERT, XLNet, LLaMA-2) out-
perform those that don’t (BERT, RoBERTa, GPT-
2). However, the best-performing models are only
up to 75% correct relative to NegMorph, with con-
siderable room for improvement. Most failed cases
relate to under-segmentation.

An analysis of what types of negative affix are
hard to tokenize is provided in Figure 2b, and their
most frequent incorrect tokenizations are shown in
Figure 3. Some common affixes that are incorrectly
tokenized are il → ill (illicit, illogical), ir → irre
(irresolute, irreponsibly, irregular), a → as (asym-
metric), and a → at (atypically). Overall, we see
that some affixes can be wrongly tokenized in a
wide range of ways (represented by the large num-
ber of substacks), showing that current tokenization
methods are inefficient. Overcoming this problem
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Figure 3: Top 10 most frequent affixes in the dataset
and the distribution of tokens that they are wrongly
tokenized into. Each substack denotes the percentage
that the corresponding token is accounted for. Yellow
bar denotes Under-segmented, while Red bar denotes
Over-segmented.

could result in embeddings that better encapsulate
word morphology.

4.2 Negative affixes signify negation, but word
knowledge is essential

We design a binary classification task on the lexi-
con described in Section 3.1 to probe the ability of
models to understand affixal negation, denoted Af-
fix. First, for smaller models (<1B parameters), we
conducted a fully fine-tuned setting with a 80/20
split and see that they achieve good results on the
test set (>93% accuracy), showing that models can
learn the patterns of negative prefixes and suffixes
with enough supervision.

For larger models, we evaluate three state-of-the-
art LLMs in a zero- and few-shot manner. The
prompts are presented in Figures 5 and 6, respec-
tively.

For the few-shot prompt, we provide explicit
instructions to explain what negation means in this
context, as well as two demonstrating samples, to
avoid ambiguity (such as confusion with negative
sentiment).

Results are summarized in Figure 7 (full numeri-
cal results, including in the fine-tuned setting, are
in Table 4). Overall, we find that the performance
on Neg (the subset containing only affixal negation)
is much lower compared to its Non-neg counter-
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Figure 4: Ratio of correct/incorrect prediction on the Affix (fewshot) task, breakdown by affixes. The left greyed-out
side of each subplot corresponds to wrong predictions.

Affix (zero-shot)

The word {word} contains negation. True or
False?
Answer:

Figure 5: Zero-shot prompt

part, where the best models achieve near-perfect
performance.

For the zero-shot setting, surprisingly, Flan-T5
outperforms both LLaMA-2 and GPT-4, despite be-
ing the smallest in size. After adding more explicit
instructions and examples (Affix (few-shot)), we
observe large increases in performance for GPT-4
and LLaMA-2, and little to no difference for Flan-
T5. For the non-negated subset, on the other hand,
all models have near-perfect performance, with
GPT-4 slightly outperforming Flan-T5. LLaMA-2
performance for this task is much lower than the
other two.

We further break down the results based on af-
fixes. Figure 4 illustrates the percentage of cor-
rect/incorrect prediction for each affix, divided by
NegMorph categories. Compared to the relatively
high results for Neg in Table 4, we have a clearer
view on the actual performance of models. On av-
erage, we see that models made errors equally as
likely for all affixes (as shown by the last Overall
bar, where the percentages of incorrect and cor-
rect predictions are roughly 50%). From the figure,

Affix (few-shot)

A word contains negation if it has a negated
meaning, usually expressed through a negative
prefix (such as un, in) or suffix (such as
less).

The word decentralize contains negation. True
or False?
Answer: True
Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?
Answer: False
Explanation: deserve just coincidentally starts
with de.

The word {word} contains negation. True or
False?
Answer:

Figure 6: Few-shot prompt

Zero-shot Few-shot
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1.0

A
cc
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Neg

Llama-2-13B
Flan-T5-xxl
GPT-4

Zero-shot Few-shot

Non-neg

Figure 7: Zero- and Few-shot results on the affixal nega-
tion prediction task.

we can also observe that the correct/incorrect pre-
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Error type Example Ratio

Reversal of action divest, diverge, detach 0.213
Reversal of direc-
tion

outdoors, descending,
downstairs

0.204

Insufficiency hypoglycemia, inferior,
underpay

0.132

Positive sentiment fearless, indispensable,
unselfishly

0.081

Wrongness infamy, malignant, mis-
construction

0.047

Rare words asyndetic, abactinal,
syncategorem

0.047

Noise (annotation
errors)

uncle, intense, incre-
ment

0.106

Other (normal af-
fixal negation)

illicit, immortal, infor-
mality

0.17

Table 2: Error analysis of the 235 errors made by GPT-4
on Affix (few-shot).

diction distribution is similar across models (espe-
cially between GPT-4 and Flan-T5), showing that
they tend to make the same errors. In general, we
see a larger portion of correct segmentation when
models predict negation correctly, and more under-
segmentation when models predict non-negation,
while over-segmentation appears equally likely re-
gardless of prediction. We also attempted to calcu-
late the Pearson’s coefficient between NegMorph
and Accuracy on the Neg set but did not yield any
statistically significant correlation.

Error analysis We inspect the errors made by
GPT-4 in the Affix (few-shot) setting to perform a
qualitative analysis. We adopt the classification in-
troduced in Joshi (2012) and summarize in Table 2.

In total the model made 235 errors. Aside from
the errors on normal affixal negation where the neg-
ative suffix can be replaced by not without chang-
ing the word’s meaning (uncritically, infinitely),
the bulk of the errors were caused by cases where
the affix has more complex semantics. The most
common source of errors is from affixes which
show the reversal of action (e.g. diverge, detach),
or the reversal of direction (e.g. descending, down-
stairs). In addition, a large proportion of errors
come from affixes that negate reaching some nor-
mal or default state (e.g. hypoglycemia, inferior,
underpay). Another interesting pattern is caused by
words with positive sentiment (e.g. fearless, incred-
ibly, infallibility) showing that models are confused
between negation and negative sentiment, likely
due to over-exposure to sentiment analysis data. In
addition, some errors are attributed to words where
the negative affix has an additional sentiment of

Few-shot Few-shot Hyphen
0.6

0.7

0.8

0.9

1.0

Va
lu

e

Neg

Llama-2-13B
Flan-T5-xxl
GPT-4

Figure 8: Results of Few-shot and Few-shot Hyphen
on the affixal negation prediction task. Bars denote the
accuracy on the prediction task , while Dots denote the
Correct NegMorph scores for the segmentation task.

“wrongness” (e.g. malignant, misconstruction). The
remaining errors are attributed to rare words and
noise in annotation.

Hyphenated words To make sure that the nega-
tive affix is not further broken down by tokenizers,
we convert words into their “hyphenated” form (e.g.
unintended → un-intended). From Figure 8, we
see that this greatly increases the performance of
different tokenizers on the NegMorph metric (by
as much as 32%). Compared to the normal setting,
the accuracy of all models also increases on the Af-
fix task, suggesting a positive correlation between
NegMorph and Accuracy. LLaMA-2 benefited the
most from this setting, having the largest increases
in both Accuracy and NegMorph.

Nonce words Nonce words are words that look
and sound like real words, but are created for a
single-purpose use and not recognized as words
within a language (e.g. roagly). To measure the
effect of negative affix on word semantics, we con-
struct a list of “affixal nonce words” by prepending
or appending negative affixes to a list of nonce
words. We collect a list of adjective nonce words
from Cremers (2022) . For affixes, we used the
list of 40 negative affixes provided in van Son et al.
(2016) and collected 40 non-negative affixes (e.g.
auto-, bi-, -ism, -ful).1 For each nonce word, we
prepend (or append) the affixes to form an “af-
fixal nonce word”. In total, the set consists of 11
nonce words × 80 affixes = 880 samples, evenly
distributed between negated (e.g. dis-roagly) and
non-negated (e.g. auto-roagly). We adopt the Affix

1We collected the affixes from https://litinfocus.com/

120-root-words-prefixes-and-suffixes-pdf-list/
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Figure 9: Accuracy on the affixal nonce words predic-
tion task.

(few-shot) prompt and add an instruction to prevent
models from refusing to answer the questions be-
cause of invalid words (full prompt in Appendix B).
Similarly, we also report the results of two subsets
of negative affixes (Neg) and non-negative affixes
(Non-neg) in Figure 9. For the Neg set, we find
that the performance of all models is relatively low,
despite them being able to correctly tokenize the
negative affixes. Whereas for the Non-neg set, per-
formance is near-perfect for all models, similar to
the previous Affix-Hyphen task. Looking at the
results, however, we found that most errors made
by the models are when the negative affixes are
ambiguous, i.e. their meaning depends on which
words they are attached to (e.g. a-, di-, ef-, para-,
re-). This reveals an important insight that whether
something is considered to be a negation should be
judged with context (which is parametric knowl-
edge about words in this case).

Non-negated words with tokens homonymous
with negative affixes To explore the false posi-
tive problem i.e., words coincidentally contain neg-
ative affixes, we collect words from the Non-neg
subset and WordNet (Miller, 1995) which do not
have negated meaning, but have a negative pre-
fix/suffix as the first/last subword token. We tok-
enize WordNet using the T5 tokenizer and select all
words that start/end with a negative prefix/suffix,
then subtract all words in the list of affixal nega-
tions. We manually go through the extracted list
again to remove errors, resulting in a set of 330
words.2 Following the same affixal negation pre-
diction task, we find that Flan-T5 has very good
performance (0.958 accuracy), showing that it can
synthesize information from all subword tokens in-

2We didn’t consider other models as this list of words
would be different between models.

stead of only relying on the negative affixes. Most
errors come from the uni- cases, where the model
tokenizes them as un- (e.g. unidirectional, univa-
lent).

4.3 Impact on downstream tasks
One main drawback of our probing task is that
the words lack context. Negation is a context-
dependant concept, that is, what is considered nega-
tion can differ depending on the context of use.
Investigating the impact of affixal negation in the
context of downstream tasks is thus an essential
component of this work.

4.3.1 Sentiment analysis
Previous work has shown that negation is a strong
indicator of negative sentiment (Wiegand et al.,
2010). Furthermore, the fact that sentiment analy-
sis is part of many NLP benchmarks could create
a bias in models, leading to negation being con-
flated with negative sentiment, which is not always
the case. For instance, the word incredible is con-
structed by prepending the root word credible with
the negative affix in-, meaning “not credible” but
used to express a positive meaning. This inspired
us to extend our analysis to a downstream senti-
ment analysis task. We evaluate the few-shot per-
formance of LLMs in two settings of word- and
sentence-level sentiment analysis (full prompts in
Appendix C).

Word-level sentiment We first use SentiWord-
Net 3.0 (Baccianella et al., 2010) to automatically
assign a sentiment label for the lexicon of affixal
negation described in Section 3.1. After that, two
graduate researchers went over the list to determine
the final labels (positive, negative, or neutral). In
general, we find that GPT-4 outperforms Flan-T5
and LLaMA-2 on this word-level task. As seen in
Figure 10, all models have almost perfect perfor-
mance at predicting negative words, but struggle
with the other two classes. In particular, we find
Flan-T5 and LLaMA-2 overpredict Negative for
Neutral words, while GPT-4 often mistakes Posi-
tive for Neutral.

Sentence-level sentiment For this task, we
look at common sentence-level sentiment analy-
sis datasets including SST-2 (Socher et al., 2013),
and Rotten Tomatoes (RT) (Pang and Lee, 2005).
One drawback of this evaluation is that samples
tend to contain many sentiment signals, making it
hard to gauge the effect of affixal negations.
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We consider 3 settings: (1) Affix = only sam-
ples containing affixal negation; (2) Non affix =
only samples without affixal negation; and (3) Re-
place affix = similar to Affix, but we replace all
instances of affixal negations with equivalent syn-
tactic negations, i.e. not + word (uninteresting
→ not interesting). We present the results in Fig-
ure 11. While it is true that replacing negative
affixes with not does not always result in a direct
paraphrase, we argue that the change in meaning is
minimal, and that samples will likely preserve the
sentiment. Furthermore, we mostly find adjectives
in the datasets rather than nouns, which ensures
that the sentences are grammatically correct after
replacement. Overall, we can conclude that affixal
negation is a strong signal to guide model predic-
tion. We observe good performance for Affix in
both datasets, where the accuracy are comparable
to Non Affix in SST-2 and higher in RT. Attempt-
ing to replace affixal negations slightly decreases
the performance of models in both datasets. This
suggests that affixal negation is actually a stronger
sentiment cue compared to syntactic negation. We
further report class-wise performance of the Affix

RT SST-2
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0.90

0.95

1.00
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cy

Affix
Subset

Neg
Pos

Figure 12: Accuracy of Neg/Pos class of the Affix set.
Results are averaged across 3 models.

set in Figure 12. Accuracy on samples with Nega-
tive sentiment is higher than Positive, once again
showing that affixal negation is a strong cue for
predicting negative sentiment.

5 A look into token attribution

We perform an interpretation analysis to attain in-
sights into what drives model predictions. For this
analysis, we use the Flan-T5-xxl model, as we
could not obtain probabilities (logprobs) from GPT-
4. We calculate the attribution for each token cor-
responding to the predictions using the Integrated
Gradient method (Sundararajan et al., 2017), with
probability as the scoring function, implemented
in Inseq (Sarti et al., 2023). Overall, we observe
high attribution scores from relevant tokens, such
as the subword tokens of the target words, showing
that models know where to pay attention to when
performing inference.

Negative affixes have flipping sentiment effect
In Section 4.3.1, we see that models tend to overpre-
dict negative sentiment on the list of affixal nega-
tions. Through the saliency heatmap in Figure 13,
we can see high token attributions for the negative
affixes that change the sentiment of the root words
(either positive or neutral) into negative. This is in
line with previous findings that negation flips the
polarity of sentiment (Tigges et al., 2023). This
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Figure 13: Token attribution of selected samples on the
word-level sentiment prediction task. Only parts of the
prompts are shown for clarity purposes.

effect could be the main cause for the low perfor-
mance on the Neutral class observed in our word-
level sentiment analysis task (Section 4.3.1). When
applied to the negation prediction task, however,
we did not observe a similar effect and did not see
any clear pattern for token attribution.

Correct tokenization is not essential for nega-
tion awareness Through many experiments, we
have shown that overall, correct tokenization leads
to better awareness of models to the presence of
negation. This effect, however is not significant.
By comparing token attributions between 3 cases
of NegMorph (Figure 14), we saw that models are
able to combine information from relevant subword
tokens corresponding to a word to make the correct
inference.

6 Conclusion

In this work, we conducted an in-depth analysis
into how well modern LLMs handle affixal nega-
tion, a type of negation where morphology is es-
sential to understanding word semantics. We have
shown that there is significant room for improve-
ment in current tokenization methods in terms of
producing negative affix-preserving tokens. De-
spite that, the effect of morphologically incorrect
tokenization on the ability of models to understand
word meaning in downstream tasks, including sen-
timent analysis, is minimal. Regardless, design-

Figure 14: Token attribution of selected sample samples
on the negation prediction task. The three subplots
correspond to Correct, Under-segmented, and Over-
segmented case respectively. Only parts of the prompts
are shown for clarity purposes.

ing better subword tokenization methods may have
many immediate benefits such as reducing vocabu-
lary size, learning better word representations, and
improving model interpretability.

7 Limitations

Prompting As this work involves experiments
with LLMs, there is always a possibility that the
prompts we used are not optimal (and also, the
problem of reproducibility). We attempted to reuse
prompt templates from existing work where possi-
ble, and strove to design prompts that are intuitive
and specific otherwise.

Multilinguality Morphology is a language-
dependent problem. We recognize that the lack
of investigation in other languages other than En-
glish is a drawback of this work.

Broader impact Given that our focus is on pre-
senting and analysing the problem of poor treat-
ment of affixal negation in LLMs, we did not pro-
pose any immediate solutions to improve the status
quo. The finding on the impact on downstream
tasks could be limited by the lack of samples (both
in size and meaningful patterns) in the test data.
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A Model endpoints

• GPT-4: We accessed GPT-4 through the offi-
cal API with the name gpt-4. Note that this
is different from the GPT-4 turbo model with
the name gpt-4-1106-preview.

• LLaMA-2-13B: We used the official instruc-
tion fine-tuned LLaMA-2-13B available
on the HuggingFace hub with the name:
meta-llama/LLaMA-2-13b-chat-hf.

• Flan-T5-xxl: We used the official xxl ver-
sion (11.3B) of the Flan-T5 model avail-
able on the HuggingFace hub with the name:
google/flan-t5-xxl.

B Details of Affixal Nonce word
prediction task

List of nonce words roagly, vibble, drok, scrop,
plard, hif, tepable, plawic, bluth, sprat, flurf

List of non-negative affixes Prefix: ambi-, aqu-,
ast-, aud-, auto-, bi-, bio-, cent-, circum-, co-, cred-,
cycl-, dec-, dia-, equ-, geo-, grad-, hydro-, inter-,
medi-, mega-, min-, micro-, pan-, semi-, tele-, uni-,
tri-. Suffix: -able, -al, -ance, -ful, -ian, -ic, -tic, -ile,
-ism, -ist, -junct, -ly

Nonce

A nonce word is a word occurring, invented,
or used just for a particular occasion, or a
word with a special meaning used for a special
occasion. Infer whether the given nonce word
contains negation or not.

A word contains negation if it has a negated
meaning, usually expressed through a negative
prefix (such as un, in) or suffix (such as
less).

The word decentralize contains negation. True
or False?
Answer: True
Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?
Answer: False
Explanation: deserve just coincidentally starts
with de.

The word {word} contains negation. True or
False?
Answer:

C Prompts for sentiment analysis

Word-level sentiment

{Few-shot samples}

The sentiment of the word {word} is positive,
negative, or neutral.

Answer:

Sentence-level sentiment

{Few-shot samples}

{sentence}
Question: Is this sentence positive or
negative?

Answer:

D Full results

Model Neg.
Nonce

Non-neg.
Nonce

All

GPT-4 0.434 1 0.717
LLaMA-2-13B 0.575 0.991 0.783

Flan-T5-xxl 0.627 0.964 0.795

Table 3: Affixal nonce word prediction task
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Model Accuracy NegMorph
Neg Non-neg All Correct

Affix (fine-tuned)

BERT 0.940 0.959 0.949 0.516
RoBERTa 0.931 0.964 0.947 0.614

AlBERT 0.933 0.956 0.945 0.737
XLNet 0.950 0.915 0.932 0.707
GPT-2 0.928 0.949 0.938 0.614

Affix (zero-shot)

GPT-4 0.783 0.994 0.888 0.671
LLaMA-2-13B 0.707 0.770 0.738 0.658

Flan-T5-xxl 0.867 0.976 0.921 0.751

Affix (fewshot)

GPT-4 0.890 (+0.107) 0.997 (+0.003) 0.943 (+0.055) 0.670
LLaMA-2-13B 0.767 (+0.060) 0.938 (+0.168) 0.852 (+0.114) 0.658

Flan-T5-xxl 0.855 (-0.012) 0.993 (+0.017) 0.924 (+0.003) 0.750

Affix (fewshot)-Hyphen

GPT-4 0.916 (+0.133) - - 0.929 (+0.258)
LLaMA-2-13B 0.956 (+0.249) - - 0.984 (+0.326)

Flan-T5-xxl 0.948 (+0.081) - - 0.968 (+0.217)

Table 4: Results of our affixal negation prediction task. (+/- denote the change compared to the Affix (zero-shot)
setting
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