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Abstract

We train models to answer the question, Where
are you from? and show how such models
can be repurposed for language identification
(LID). To our knowledge, this paper is the first
to introduce data sources, methods and models
to tackle the task of geolocation of speech at
a global scale, and the first to explore using
geolocation as a proxy-task for LID. Specifi-
cally, we explore whether radio broadcasts with
known origin can be used to train regression
and classification-based models for geolocat-
ing speech. We build models on top of self-
supervised pretrained models, using attention
pooling to qualitatively verify that the model
geolocates the speech itself, and not other chan-
nel artifacts. The best geolocation models lo-
calize speaker origin to around 650km. We
confirm the value of speech geolocation as a
proxy task by using speech geolocation mod-
els for zero-shot LID. Finally, we show that
fine-tuning geolocation models for LID outper-
forms fine-tuning pretrained Wav2Vec2.0 mod-
els, and achieves state-of-the-art performance
on the FLEURS benchmark.

1 Introduction

Language identification (LID) is a critical compo-
nent in many modern multilingual speech technolo-
gies (Barrault et al., 2023). As a result, tasks aimed
at producing these class labels have been exten-
sively explored (Zissman, 1996; Chen et al., 2023;
Watanabe et al., 2017; Alumäe et al.) and state-
of-the-art systems perform remarkably well on
common benchmarks, including on the FLEURS
(Conneau et al., 2023) and VoxLingua (Valk and
Alumäe, 2021) corpora.

While these corpora cover ∼100 languages,
there are orders of magnitudes more accents and di-
alects and annotating all of them is intractable. To
address this problem Pratap et al. (2023), proposed

∗ equal contribution

to scale speech technologies to thousands of lan-
guages and dialects by relying primarily on record-
ings of religious texts. The primary challenge of
that effort was to see whether models trained on
clean, single speaker recordings with known lan-
guage labels would generalize to out-of-domain
data. In contrast, we demonstrate that models can
be trained on widely available heterogenous data
collected from radio with soft language labels in
the form of geolocations. To our knowledge, we
are the first to demonstrate geolocation of speech
on a global scale and the first to apply it to LID.

Geolocation of speech may also be preferable to
LID in many circumstances. For instance, a code-
switched Hindi-English utterance or a conversation
between receptive English-Spanish bilinguals in
the United States may cause problems for LID sys-
tems, but they still likely occurred, respectively, in
India and in the United States. These phenomena*

not only challenge LID systems, but also the notion
of using categorical labels for a phenomenon that
occurs on a continuum (Haugen, 1966).

Furthermore, audio can be approximately geolo-
cated for free: the current location of a cell phone
can be passed as metadata along with any audio
recordings on that device; IP addresses can be re-
solved to 100-200 kilometers (Li et al., 2012). We
investigate whether these data can serve as soft la-
bels for language, dialect, and accent. In this work,
we use audio from FM radio broadcasts, that are
simultaneous streamed on the web. The key as-
sumption† used in this work is that because FM
radio travels only up to about 70 km (FCC), on
average, the speech heard on FM stations is at least
understood by most people within a 70 km radius
of the station, and possibly even representative of
the local vernacular.

*receptive bilingualism, symmetric and asymmetric mu-
tual intelligibility of languages, accent and dialect

†Rebroadcasts, speakers of various origins, and foreign
language broadcasting break this assumption.
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Figure 1: The geolocation model described in this paper.
See Section 2 for more details. x is the input utterance.
eloc is a trained embedding representing the geoloca-
tion task. h is the sequence of extracted embeddings.
In the attention block, eloc is the query, and outputs
of the pretrained model are the keys, k, and values,
v. Linear∠, transforms pooled representations into
Cartesian coordinates (in red), which are projected onto
the surface of the earth (gray). Error from the ground-
truth (green), is measured by θ. Alternatively, Linear
xent, produces scores, {s1, . . . , sL}, for L locations.

1.1 Related Work

Van Leeuwen and Orr (2016) first proposed the
task of accent location in the context of identifying
Dutch accents in the Sprekend Nederland corpus
and presented various formulations for describing a
person’s linguistic origins. Lohfink (2017) used re-
gression and classification-based approaches to lo-
cate accent from i-vectors (Dehak et al., 2010). To
our knowledge this is the only other work on geolo-
cation of the speech signal, i.e., not the background
noise, channel (Kumar et al., 2016), or extracted
text (Bell et al., 2015), which, on the other hand,
has been previously explored. Plchot et al. (2009)
and (Sikasote et al., 2023) mined radio broadcasts
to support language identification and ASR, respec-
tively, but did not explore speech geolocation.

Prior work (Ye et al., 2016) has shown that ge-
olocation can be used to improve ASR systems,
as geolocation tends to be correlated with accent
and also device preference. A similar line of work
(Xiao et al., 2018) described how geolocation can
be used in language modeling to bias ASR predic-
tions towards locally relevant lexical items.

A key challenge we address is how to train neu-
ral networks to produce points on a sphere. This
problem has been previously addressed in Perotin
et al. (2019), for instance, who examined whether
regression based, or classification approaches were
best suited for localization of audio sources.

Our contributions are: (i) We demonstrate that
geolocation associated with data collected from ra-
dio stations, can be used to train models that predict
where people speak particular languages / dialects,
or with specific accents. (ii) We propose classifica-
tion and regression-based approaches built on top
of self-supervised models for speech geolocation.
Our use of an interpretable attention pooling mech-
anism indicates that predictions appear informed
primarily by phonetics and accent and not spurious
channel artifacts. (iii) We demonstrate that geolo-
cation models can be repurposed for zero-shot LID.
(iv) We show that fine-tuning speech geolocation
models for LID out-performs fine-tuning the origi-
nal pretrained models on the FLEURS benchmark.

2 Method

2.1 The Task of Speech Geolocation
Van Leeuwen and Orr (2016) proposed a proba-
bilistic formulation of the speech geolocation task.
Let x be an input audio sample spoken by a sin-
gle speaker and let y be a point estimate of that
speaker’s origin. Then the task of speech geoloca-
tion is to estimate the distribution,

p (y|x) . (1)

Given a model, q (y|x), and the ground truth
distribution over locations, p (y|x), one can use
point estimates,

y∗ = Ep(y|x) [y] (2)

y = Eq(y|x) [y] , (3)

of the ground-truth and predicted locations respec-
tively to evaluate model quality. The angular dis-
tance between points can be used to this end.*
Note that we have not specified a coordinate sys-
tem for y. As a convention in this paper, y rep-
resents Cartesian coordinates of a point using a
spherical approximation of the Earth with radius,
ρ = 6378.1 km. Approximating the shape of the

*The spherical law of cosines formulation suffers from
loss of precision at small distances (∼1 km). The Haversine
formulation does not. Both versions seemed to work equally
well. We do not currently need this level of precision.
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earth as a sphere incurs minor errors in location
(< 30 km) which we consider negligible for our
purposes. Let Θ = (ϕ, λ) be the corresponding
point on a sphere specified by latitude, ϕ, and lon-
gitude, λ. Then the angular distance between two
points is

dθ (Θ,Θ∗) = arccos{sinϕ sinϕ∗

+ cosϕ cosϕ∗ cos (λ− λ∗)}. (4)

The corpus error, D (·, ·), between a set of N paired
predictions, ΘN

1 , and targets, Θ∗N
1 , can be evalu-

ated by the average great-cirle distance,

D
(
ΘN

1 ,Θ∗N
1

)
=

ρ

N

N∑

i=1

dθ (Θi,Θ
∗
i) . (5)

Given the near impossibility of labeling speech
with all perceptible origins of influence, this is
likely the only realistic evaluation metric for this
task. However, in some circumstances, modeling a
speaker’s origins with a single point is insufficient:
the speech of bilingual speakers will likely reflect
two disparate origins; an audio sample may contain
more than one speaker; a person’s speech is likely
influenced by two parents.

Therefore, we extend the formulation in (van
Leeuwen and Orr, 2016) to include the possibility
of multiple points of origin. We achieve this by
specifying a closed set of locations, S, e.g., a list
of cities with population > p, or in our case, the
set of locations broadcasting radio stations. The
problem is then to estimate the subset, S (x) ⊆ S,
of locations associated with speech, x, i.e., we want
to estimate the distribution,

p (S (x) |x) , (6)

over these locations. Unfortunately, to our knowl-
edge, there exist no data in sufficient quantities and
annotated in any consistent way with this informa-
tion, so evaluating such models requires default-
ing to Eq. 5. Point estimates from p (S (x) |x)
can be estimated by averaging over the locations
y ∈ S (x). Note that we want the spherical mean,

ȳ =

∑
y∈S(x) y

∥∑y∈S(x) y∥
, (7)

i.e., the MLE estimate of the Von Mises distribution
mean parameter.

2.2 Model
Our model is depicted in Figure 1. We describe the
depicted components below.

2.2.1 Speech representations
The only prior work on geolocation from audio (Lo-
hfink, 2017), relied on i-vectors to contain all neces-
sary information for predicting geographic location.
More recently, self-supervised representations have
become the state-of-the-art representation used in
speaker identification. Therefore, we build our
geolocation models from various pretrained mod-
els. We limited ourselves to the multilingually pre-
trained XLSR-53 (Conneau et al., 2020), XLS-R
(Babu et al., 2021), and MMS (Pratap et al., 2023)
versions of Wav2Vec 2.0 (Baevski et al., 2020).

2.2.2 Interpretable Pooling
Once a sequence of embeddings, h, has been ex-
tracted from a pretrained model, those representa-
tions need to be pooled to produce a single class
label. While average pooling is commonplace, we
take inspiration from (Girdhar and Ramanan, 2017),
and use an attention based pooling mechanism to
let the model learn which embeddings are relevant
for geolocation. The advantage of this approach
is its interpretability – high attention weights on
regions of silence indicate that the model is cuing
on channel artifacts, while high weights on frames
corresponding to specific phonemes, or phoneme
sequences indicate that the model is geolocating
audio using lingustic information.

To this end, we train a task-specific embedding
vector, eloc, that encodes the task of geolocat-
ing audio. This vector is treated as a query, q,
against which keys, k, are compared. For this task,
we use single-headed, scaled-dot-product attention
(Vaswani et al., 2017). The attention weights are
used to select the embeddings, i.e., the values, v, to
pool for prediction of location. We use h̄ to denote
the pooled representation.

2.2.3 Regression-based Prediction
As discussed in Section 2.1, a practical evaluation
metric is the average angular distance. We there-
fore explore training models to produce single point
estimates for the origin of x. We use a linear re-
gressor, Linear∠, to convert the pooled represen-
tation, h̄, into 3-dimensional Cartesian coordinates,
z ∈ R1×3. Since we are predicting points on the
surface of the Earth, we then project (i.e., normal-
ize) z onto the unit-sphere representing the Earth
and denote this quantity as

y =



x
y
z


 .
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We also experimented with directly producing
latitude and longitude. However, the results were
not substantially different, except for the the train-
ing was less stable and appeared more sensitive to
the learning rate. We train using the angular dis-
tance as the objective function, L∠ (y,y∗), where
Cartesian coordinates, y, are converted into spheri-
cal coordinates Θ as

Θ =

[
ϕ
λ

]
=

[
arctan y

x
arcsin z

]
. (8)

2.2.4 Classification-based Prediction
Rather than directly producing a point estimate, we
can estimate the posterior distribution, p (y|x), by
training a classifier, Linear xent, to produce a
vector of scores, s, for each location in our set S.
For S , we use the set of all locations in the training
data. We use as a loss function, Lce (s, s

∗), which
in this case is the cross-entropy,

Lce (s, s
∗) = H (Softmax (s) , s∗) , (9)

between predicted locations and the one-hot
ground-truth location s∗.

2.3 Multi-label Binary Classification
In the event that multiple ground truth locations,
S (x)∗, exist, we can train using the binary cross-
entropy between s and S (x). In other words, we
assume that the prediction for each location is made
independently. In practice, no available data are
labeled with multiple ground-truth locations. We
nonetheless experiment with the multi-label loss.

To induce multiple ground-truth locations from
our labels, we pick the top-k closest locations to
the ground-truth and include those as additional
ground-truth locations. This may regularize the
model as in densely populated regions, i.e., where
there are many radio stations, the top-k locations
will cover a narrow region, whereas the top-k lo-
cations will cover a broad area in regions where
radio stations are sparse and the model should not
over-fit to any specific location.

Whether the model is trained to produce one
or more labels, point estimates of speaker origin
can be computed by Eq. 7, possibly restricting the
summation to the top-k most probable locations.

3 Data

3.1 Training
As previously mentioned, we rely on data col-
lected from radio broadcasts to train our net-
works. Streams were recorded using an API to

the radio.garden aggregator which provides user-
submitted geographic coordinates for radio stations.
Two separate sets of data were used. The first set
consists of ∼400 hours of speech collected August
9, 2023 to August 13, 2023. The second set con-
sists of ∼4000 hours of speech collected between
September 27, 2023 to October 1, 2023. Stations
were randomly sampled from the aggregator and
recorded for 30 seconds.

To sample radio stations, we evenly distribute
k points on a sphere, each corresponding to the
center of a region from which we sample radio
stations to record. Specifying evenly spaced points
on a sphere has no analytical solution for all k,
but can be efficiently approximated by mapping
the Fibonacci lattice to points on the sphere. Each
possible radio station is mapped to the closest such
point according to the angular distance.

When recording radio stations, each point on
the Fibonacci lattice is sampled proportionally to
the language density of that region. We used the
set of languages and their coordinates list in the
Phoible database to this end (Moran and Mc-
Cloy, 2019). Specifically, the Gaussian kernel us-
ing the angular distance is used to compute scores
for each language-lattice point pair, (l, fi), where
l ∈ L, is a language in the set of languages, L,
from Phoible, and fi is the ith Fibonacci lattice
point. The sum of scores across all languages de-
termines the weight of that Fibonacci lattice point.
Here, l is represented by the canonical longitude,
latitude coordinates for that language. Formally,
weights are given by

wi =
∑

l∈L
e−

dθ(l,fi)
2

σ2 . (10)

This heavily biases samples toward south-east
Asia, Africa, and North and South America. Un-
fortunately, many of the radio stations in Australia,
North America, and South America, are not broad-
casting the indigenous languages responsible for
the high linguistic density in these regions. This
likely leads to more English, Spanish, and Por-
tuguese than desired. The first set of recordings
were sampled uniformly at random among all possi-
ble station locations. During the second collection,
data were sampled from regions proportional to
their estimated linguistic diversity since the pri-
mary application of this method is to support LID.

Recorded chunks were then segmented and
labeled using the inaSpeechSegmenter
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(Doukhan et al., 2018) as “male”, “female”,
“music”, or “NoEnergy” as done in (Pratap et al.,
2023). Segments which were primarily labeled
as “male” or “female” were kept, converted to
the FLAC files and re-sampled to 16kHz. The
other segments were discarded. On a subset of
1000 manually annotated samples the precision
of this speech detection system was 95%. In
total, 3748 hrs of audio remained after discarding
music and keeping only the subsegments that the
inaSegmenter labeled as speech. Figure 3
in Appendix A shows the global distribution of
collected samples.

3.2 Evaluation

We used 2 different datasets for evaluation.
Radio Valid: We held-out all segments from

50 randomly selected radio stations among the col-
lected data. Segments shorter than 2 seconds were
discarded leaving 4.47 hrs of audio. Holding out
broadcasts reduces the risk of speaker overlap be-
tween the train and test sets. These data were only
used for evaluation of speech geolocation. This
set was also used as a development set on which
geolocation model parameters were tuned.

We note that treating these data as ground-truth
technically corresponds to the slightly different,
and more challenging task, of predicting the broad-
cast location of radio, rather than predicting a
speaker’s origin. However, we assume in this pa-
per, that the speakers in the broadcast are indeed
representative of speakers from the ground-truth
location. In this sense the labels are noisy. While,
we do not have ground-truth annotations for speak-
ers, the ground-truth locations of the radio stations
appear to generally be trust-worthy, i.e., the prob-
lem of rebroadcasts is relatively minor. In addition
to rebroadcasts, a multitude of speakers of some-
times disparate origins can sometimes speak during
broadcasts, e.g., an American may regularly speak
on an Australian news program. Furthermore, some
expatriate and immigrant communities also have
broadcasts in certain cities.

From the perspective of the speech geolocation
task, i.e., not the broadcast localization task, these
situations result in erroneous labels of the speech
segments and artificially inflates model error (in
km) on this task. The error metric on this dataset
is, however, representative of performance on the
task of predicting broadcast location, but we have
not explicitly attempted to address that task here.

FLEURS: We use the FLEURS corpus (Con-
neau et al., 2023) to evaluate both LID and ge-
olocation. While, the FLEURS utterances are not
annotated with geolocation, they are labeled with
language and speakers are L1 speakers.

Since L1-language is itself a label on a speaker’s
origin, we create a simulated geolocation evalua-
tion set by assigning a point location to each lan-
guage and using that as ground-truth. We use the
language locations from the Phoible (Moran and
McCloy, 2019) database where applicable. For US
English, Brazilian Portuguese, and Russian, which
had no entries in the database, we use the approxi-
mate population centers of the respective countries
where those languages are spoken. In the case of
Latin American Spanish, a single point in Peru
was chosen as an approximate geographic center of
Latin American Spanish. We focused primarily on
a subset of 11 FLEURS languages: US English,
Latin American Spanish, Brazilian Portuguese,
French, Polish, Macedonian, Russian, Malayalam,
Hong Kong Yue, Filipino, and Japanese. We refer
to this subset as FLEURS 11.

4 Experiments

4.1 Geolocation
4.1.1 Pretrained Models
We first ran experiments to determine the sensi-
tivity of the geolocation model to the underlying
pretrained model. We train models using 3 differ-
ent 300M parameter Wav2Vec2.0 models (Baevski
et al., 2020): XLSR-53 (Conneau et al., 2020),
XLS-R (Babu et al., 2021), and the 300M param-
eter MMS model (Pratap et al., 2023). They are
all of the same size and architecture, but trained on
increasing amounts of multilingual data. We also
compare to the 1B parameter MMS model.

For these experiments we trained on 4 A100
GPUs using a batch size of 400s of audio for
the 300M parameter models, and 200s of audio
for the 1B parameter models. All radio segments
longer than 10s were cut into 10s windows, and any
chunks shorter than 2s were discarded. We used
the Radio Valid set to determine when the model
had converged. We trained using a learning rate of
3 × 10−6. We updated all parameters except for
the convolutional layers of the pretrained base, as
in Baevski et al. (2020).

We froze the entire pretrained model for the first
1000 steps, training only the attention pooling mod-
ule and classifiers using a fixed learning rate of

5118



Figure 2: The geolocation model predictions (MMS-1b in Table 1) on FLEURS 11 Dev. Large circles are the
ground-truth locations for each language, each point represents an utterance. The color shows the language.

1× 10−5. Then we use the OneCycle (Smith and
Topin, 2019) learning-rate schedule, warming up
the learning rate for the first 8% of steps. Models
were trained for up to 800000 steps, but in practice
they converged around 136000 steps, which is the
checkpoint used to report results. Subsequently,
we trained the 1-billion parameter model using the
best configuration and fewer total steps (140000).

Pretrained Model Radio Valid FLEURS 11 Dev FLEURS 11 Test

Random Sphere‡ 10019 km 10019 km 10019 km
Random Train§ 8624 km 8624 km 8624 km

(1) XLSR-53 3248 km 2345 km 2253 km
(2) XLS-R 2893 km 2576 km 2509 km
(3) MMS 2614 km 774 km 741 km
(4) MMS avg 2895 km 927 km 853 km
(5) MMS post avg 2555 km 987 km 909 km

(6) MMS-1B 2355 km 684 km 627 km

Table 1: Average prediction error (km) from ground-
truth locations of geolocation models built starting from
different pretrained models.

Table 1 shows the effect of the pretrained model
on the geolocation performance. Bolded values
are the best among the 300M parameter models,
while bolded and underlined values indicate the
best overall scores. To contextualize the perfor-
mance we compare to a theoretical and a simulated
random baseline, Random Sphere, and Random
Train. All trained models significantly outperform
these random baselines.

Among trained models, we see that the MMS
model was responsible for all of the best results

‡Theoretical result: The average distance between two
randomly sampled points on a sphere is ρπ

2
, where ρ is the

radius of the sphere.
§Simulated result: The average distance between and two

randomly selected points from the training data.

on the three test conditions, outperforming both
the XLSR-53 and XLS-R models by a wide mar-
gin. Somewhat surprisingly, the XLSR-53 model
slightly outperformed the XLS-R model as seen
comparing rows 1, and 2 of Table 1, despite being
trained on significantly fewer data. Since the XLS-
R model is trained primarily on European Parlia-
mentary speech from the VoxPopuli corpus (Wang
et al., 2021), it may be better suited for European
languages, or biased towards that channel.

The MMS model, is very similar to the XLS-R
model, except for it was additionally trained on
55k hrs of audio in 1,362 languages. This language
coverage appears to play an important role in im-
proving geolocation performance. The attention
pooling mechanism seems to help performance
slightly compared to average-pooling of embed-
dings (avg), or pooling of the output predictions
(post avg). The 1-billion parameter model outper-
forms the smaller, 300-million parameter model.
A further advantage of the pooling mechanism is
that we can use it verify the model is focusing on
regions of speech in the audio signal (See Figure
6a of Appendix A for an example).

Finally, while quantitative analysis of the ge-
olocation task is difficult, it is very amenable to
qualitative analysis. Figure 2 shows the geoloca-
tion predictions for speech from the FLEURS 11
dev set. These unseen utterances are well-localized,
which indicates that these languages were present
in the radio training data and corroborates that the
geolocation predictions are based on language or
accent and not content or channel artifacts.

5119



4.1.2 Objective Functions
We then explored training using different objec-
tive functions. We used the best 300M parameter
training configuration from the pretrained model
experiments and swapped out objective functions.
We trained using cross-entropy (CE) and a sin-
gle ground-truth location, and using binary cross-
entropy (BCE) where either the 1, 3, or 10 closest
neighbors were considered to be the ground truth
locations. The classifier produced one or more of
9449 unique locations.

During inference we averaged the top-k most
probable locations to create a point-estimate of the
distribution used for model comparison. We swept
this parameter on the Radio Valid and FLEURS 11
dev sets to determine the optimal parameter. Figure
4 shows the results of this experiment. Using the
top-100 candidates gave the best results so that is
what we used on the FLEURS 11 test set.

Radio Valid FLEURS 11 Dev FLEURS 11 Test

CE 3720 km 1982 km 1848 km
BCE (1) 3792 km 1959 km 1913 km
BCE (10) 3289 km 1483 km 1427 km
BCE (3) 3285 km 1286 km 1278 km
BCE (3) avg 3056 km 932 km 919 km
∠ dist 2614 km 774 km 741 km

Table 2: Error of models trained with different objective
functions. CE is cross-entropy, BCE (k) is binary cross-
entropy, using the k nearest locations as targets. ∠ dist
is regression using the angular distance. For the BCE
(3) avg model, point estimates are the average of the
top-100 predictions.

Table 2 shows the effect of training with various
objective functions on model performance. The
rows are ordered by performance. First, looking
at the top row, we see that cross-entropy (CE) and
binary cross-entropy (BCE) using a single ground-
truth location were the worst performing models.
We noticed that model training was somewhat un-
stable, and we hypothesized that this may be due
to the difficulty of distinguishing between nearby
locations with nearly identical linguistic profiles.
There is likely little signal in the audio that could
differentiate between two such areas.

Training using multiple ground truth locations
(10) and (3) appears to help. Finally producing
a point estimate by averaging the most likely 100
locations improves over the single mostly likely lo-
cation, but does not outperform the best regression-
based approach (bottom row). An example visual-
ization of the multi-label predictions can be seen in
6b (see Appendix B).

y∗ µgeo µh̄

Lang P R F P R F P R F

en_us 93 57.7 71.2 93.7 58.7 72.2 96.0 48.3 64.3
es_419 99.2 95 97.1 99.1 97.0 98.0 92.7 98.5 95.5
pt_br 94.8 84 89.1 96.3 86.7 91.2 95.4 88.4 91.8
fr_fr 68 75.6 71.6 52.2 91.0 66.3 51.9 90.7 66.0
pl_pl 56.2 31.7 40.5 45.0 44.9 44.9 37.9 38.3 38.1
mk_mk 44.6 45 44.8 58.3 30.3 39.9 58.6 20.3 30.2
ru_ru 42 93.9 58.0 74.1 77.3 75.7 62.3 77.8 69.2
ml_in 77.7 98.7 87.0 82.9 98.4 90.0 82.2 98.5 89.6
yue_hk 78.7 98 87.3 83.2 99.2 90.5 84.9 99.2 91.5
fil_ph 98.5 80.3 88.5 97.9 87.3 92.3 96.1 90.9 93.4
ja_jp 52.5 3.2 6.0 23.2 24.9 24.0 27.6 27.1 27.3

avg 73.2 69.4 71.2 72.3 72.3 72.3 71.4 70.7 71.0

Table 3: Precision (P), recall (R), and F-score (F), of
Language ID on the subset of the FLEURS languages
when using the geographical means (Geo-mean) and
Calibrating Embeding. The best F-scores for each lan-
guage are in bold.

4.2 Zero-shot Language Identification

A potential use for geolocation models is as a
strong initialization for LID models and we ran sev-
eral experiments exploring this use-case. To first
ascertain how well location on its own is predictive
of language, we ran two simple experiments using
the FLEURS 11 subset and a fine-tuned XLSR-53
model which we had previously trained on the first
data collection (∼ 400 hr see Section 3).

Our first approach was to use the point locations
for each language as fixed parameters in a near-
est neighbor classifier. We refer to this approach
as y∗. We can improve slightly on this approach
by calibrating our point locations on some small
amount of data, in this case the FLEURS 11 dev
set, and updating point estimates according to our
model’s predictions on the entire development set.
This enables us to correct any consistent biases in
location predictions. We use µgeo to denote this
approach since we are reëstimating the geographic
mean locations from data.

Finally, languages may be better separated in
our model’s latent representations, h̄, since these
ultimately have to be mapped down to the surface
of a sphere, and many languages may map to sim-
ilar locations. Therefore, we similarly estimate
language-specific mean embeddings. We use µh̄ to
denote this approach since in this case we reësti-
mate embedding means from data. If languages are
geographically localized and well-separated this
simple approach should work well.

The results of these approaches are shown in
Table 3. We compute the precision, P, recall, R,
and F-score, F, for each language using language-
specific one-versus-all binary classifiers.
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FL 11 Dev FL 11 Test FL 102 Dev FL 102 Test

(1) MMS 11 89.4 89.6 - -
(2) Geo 11 99.1 99.4 - -

(3) FS MMS 11 21.7 13.5 - -
(4) FS Geo 11 86.4 86.1 - -

(5) MMS 93.3 93.4 84.3 84.7
(6) Geo 98.1 98.3 89.4 89.8

(7) MMS 1B 99.7∗ 99.8∗ 95.9 96.1
(8) Geo 1B 99.4 99.6 96.4 96.7

(Pratap et al., 2023) - - - 96.2

Table 4: LID accuracy using geolocation based pre-
trained models. MMS is the MMS-300M model. FL
stands for FLEURS. Geo is our best performing geolo-
cation model (either 300M or 1B parameter). FS, stands
for few-shot. MMS/Geo 11 indicates that the model is
trained only on the 11 languages in the FLEURS 11 Dev
/ Test sets. ∗ denotes results that were not statistically
significant (Mcnemar’s test p > 0.05).

For some languages (Spanish, Portuguese, Fil-
ipino, Malayalam, and Hong Kong Yue) these ap-
proaches worked well. Calibrating the mean geo-
graphic location improved recall, and F-score in
most cases. These methods gave an accuracy of
∼ 70% and in the case of y∗, no training is re-
quired. In both experiments, precision and recall
for Japanese was low, possibly due to scarcity of
Japanese radio in the training data. The low preci-
sion and recall for many of the European languages
is likely due to the close proximity of these test
languages to each other which can cause false pos-
itive and negatives. Because English is a global
language, English appears in most locations in the
training data, which could explain the higher vari-
ance in model predictions. This in turn, may ex-
plain the low recall in English.

4.2.1 Geolocation as LID Pretraining
Finally, we explore using our best geolocation mod-
els as an initialization for LID systems. Table
4 shows the results of these experiments on the
FLEURS languages. We compare pairs of LID
models trained on the FLEURS training data. The
first model in each pair (MMS), initializes its en-
coder with an MMS encoder. The second model
in each pair (Geo), initializes the encoder instead
with a geolocation model.

We first trained 300-M parameter models (rows
1-6) using the same architecture as used for the
geolocation models. In rows 1 and 2, we trained
only on the FLEURS 11 training set. In all cases
we use a max learning rate of 1 × 10−5, freezing
the pretrained model for the first 1000 steps during
which we use a fixed learning rate of 1 × 10−5.
We also initialized eloc with the value from the

geolocation model where applicable. All segments
20s or longer were discarded from training.

We then trained the same models in a few-shot
scenario (rows 3, 4) on 10 minutes of randomly
selected training data per language. Rows 5, and 6
show the results of models trained on 102 FLEURS
languages. Rows 7 and 8 of Table 4 show the per-
formance of a 1B parameter model trained on all
102 FLEURS languages. For the 1B parameter
model, we roughly reïmplemented the FLEURS-
only baseline from Pratap et al. (2023), using av-
erage pooling of predictions rather than attention
pooling. We used a maximum learning rate of 5e-
06, and trained for 20k updates with 200s of speech
per mini-batch.

Convergence was slower when fine-tuning the
MMS model (row 1), and resulted in ∼90% accu-
racy on the FLEURS 11 evaluation sets. However,
when fine-tuning the geolocation model (row 2),
the model converged quickly to near 100% accu-
racy. Figure 5 demonstrates this behavior. In the
few show scenario, (rows 3, 4), the quality of the
MMS fine-tuned model deteriorated significantly.
However, fine-tuning the geolocation model per-
formed comparably to the fine-tuned MMS model
trained on all the data. Speech geolocation pretrain-
ing significantly reduced the need for labeled
data. In rows 5 and 6, we see that scaling to all
102 languages minimally degraded performance on
the 11-language subset, and in fact improved the
MMS model performance. Using the 1B parame-
ter model (rows 7, 8) improved performance. In
almost all cases initializing LID models with geolo-
cation models helped. The fine-tuned 1B parameter
geolocation is state-of-the-art.

5 Conclusions

We have demonstrated¶ that radio stations with
geolocation can be harvested and used to geolo-
cate speaker traits such as language or dialect at
a global scale. Furthermore, because geolocation
and language are so correlated, training models us-
ing geolocations can be used to initialize language
ID models, and work especially well in few-shot
settings. Future work should examine their appli-
cation to accent recognition, and integration with
multilingual ASR systems.

¶https://geolocation-from-speech-demo.
github.io
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6 Ethical Considerations and Limitations

The primary limitation of our work is the availabil-
ity of publicly accessible geolocated audio. We
resorted to using radio stations for this purpose,
but in general we cannot release the data collected
from these stations to the public as it is almost cer-
tainly copyrighted. We can, however, upon request,
make available the scripts needed to collect data
in the same manner, and potentially the radio data
used for this work if it is clearly for academic pur-
poses, but even broad release of tools designed to
record radio at scale could be construed as violating
copyright law.

As speech technologies have improved, people
and governments have recognized that recordings
of a person’s voice constitute personal data, and
the storing or release of such data in anything other
than purely academic contexts could be a violation
of various data privacy laws. It is specifically for
this reason that we hesitate to release the data even
though we believe it would be incredibly useful for
the academic community. We believe, unfortuan-
tely, that the best compromise is to describe our
data collection method in detail (as was done in
Section 3) so that others may recreate this setup.
Our goal was to work with web-scale data, but
for such data, especially audio data, it is impossi-
ble to ascertain the copyright of every recording.
We suspect that industry could benefit from ap-
proaches detailed in this work, as they do have
access to large amounts of audio labeled with ge-
olocation. We have at least described a mecha-
nism by which academic institutions can work on
industry-relevant problems. Being able to train
LID, or even accent or dialect recognition systems
with significantly smaller amounts of labeled data
would be incredibly useful for people in regions
of the world specifically addressed in this paper,
including sub-Saharan Africa, south-east Asia, and
Latin America.

Furthermore, while our work covers a large por-
tion of the world, we are ultimately limited by the
availability of radio stations and what they choose
to broadcast. We have no control over the content,
which is often religious in nature, and spoken by
men. The segmentation system used, which also
predicts gender, estimates that between 65-75%
of recordings are of male speech. These biases in
data may effect model predictions and is something
we have not studied in this paper, but that read-
ers should be aware of. However, it is a problem

also faced by similar efforts (Pratap et al., 2023) in
massively multilingual speech processing, where
a similar bias was present, and was found not to
result in gender-biased ASR performance.

While identifying an individual’s origins from
speech is an interesting linguistic question, it could
cause issues related to data privacy. Bad actors
could be tempted to use such information to infer
additional personally identifiable information about
an individual. It is therefore important to consider
and highlight this issue as it raises questions about
the security of, for instance, password recovery
questions, such as, In what city were you born?

The speech signal is deeply personal and geo-
graphic origin, accent, dialect, and language are
not only correlated with each other, as shown in
this paper, but likely also with other personal in-
formation such as political and religious beliefs,
race, and educational background. Extreme care
should be taken when deploying these models to
not reinforce existing societal biases. These mod-
els could potentially be used to circumvent anti-
discrimination practices. We note, however, that
the above problems are not unique to geolocation of
speech, but also language/dialect ID, given that spo-
ken language is clearly correlated with a speaker’s
geographic origin.

This work could also have broad applications for
social good in forensic analysis of speech in legal
settings, biometric based security, and most impor-
tantly enabling speech technologies for speakers of
under-resourced languages, unwritten languages,
non-standard dialects, and historically marginal-
ized communities.
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A Additional plots

Figure 3 shows the distribution of the 4,000 hr radio data used in most of the experiments in this paper.
Figure 4 shows the results of the hyper-parameter sweep over the number of nearest adjacent locations to
predict for models trained with cross-entropy objectives.

Figure 3: The distribution of the radio training data. Each circle represents a location with at least one training
sample. The size of the circle is proportional to the number of utterances from a particular location.
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Figure 5: Convergence of LID models. Initializing from geolocation models (Geoloc-init), helps LID models to
converge more quickly.

Figure 5 shows the language identification validation accuracy during training of models initialized
from pretrained geolocation models and MMS models.
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(a) Attention Weights
(b) Heatmap

Figure 6: (a) The attention weights for positions of an utterance from the FLEURS corpus. Note that regions of
silence before and after the utterance, but also between words, are visible and can be seen where the attention
weights are 0. (b) The binary-cross entropy geolocation model predictions on a radio station in the Radio Valid set.
The red dot marks the broadcast location.

B Qualitative Evaluation of Geolocation

B.1 Attention Pooling
An advantage of the attention pooling is that we can ensure that the geolocation model is actually focusing
on regions of speech to make predictions and not on channel artifacts, or background music. We see an
example of this in Figure 6a.

B.2 Cross-Entropy Heatmaps
One advantage of the cross-entropy based models is that they can be used to create heatmaps, which
attempt to answer the question, where are you from? This is a natural way to depict predictions for this
task. An example is shown in Figure 6b. Areas outside of North American had no probability mass for
this example and so we zoomed in on North America to make visualization easier.
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