
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5127–5149

June 16-21, 2024 ©2024 Association for Computational Linguistics

Teaching Language Models to Self-Improve through
Interactive Demonstrations

Xiao Yu† Baolin Peng‡∗ Michel Galley‡ Jianfeng Gao‡ Zhou Yu†

†Columbia University ‡Microsoft Research
{xy2437,zy2416}@columbia.edu
{mgalley,jfgao}@microsoft.com

Abstract

The self-improving ability of large language
models (LLMs), enabled by prompting them
to analyze and revise their own outputs, has
garnered significant interest in recent research.
However, this ability has been shown to be
absent and difficult to learn for smaller mod-
els, thus widening the performance gap be-
tween state-of-the-art LLMs and more cost-
effective and faster ones. To reduce this gap,
we introduce TRIPOST, a training algorithm
that endows smaller models with such self-
improvement ability, and show that our ap-
proach can improve LLaMA-7B’s performance
on math and reasoning tasks by up to 7.13%.
In contrast to prior work, we achieve this by
using the smaller model to interact with LLMs
to collect feedback and improvements on its
own generations. We then replay this experi-
ence to train the small model. Our experiments
on four math and reasoning datasets show that
the interactive experience of learning from and
correcting its own mistakes is crucial for small
models to improve their performance.

1 Introduction

Large language models (OpenAI, 2023; Ouyang
et al., 2022) together with techniques such as few-
shot prompting (Brown et al., 2020) and Chain-of-
Thought (CoT) prompting (Wei et al., 2023; Ko-
jima et al., 2023) have been shown to be effective
in achieving strong performance on various down-
stream language tasks. More recently, a new way to
adapt LLMs to downstream tasks has captured the
attention of many researchers, namely to further
enhance the LLM’s downstream task performance
by asking the LLM to provide feedback on its own
generations and then use the feedback to revise its
outputs (Bai et al., 2022; Huang et al., 2023; Peng
et al., 2023a; Shinn et al., 2023). This process is
often called “self-improvement”, and has proven to

∗Now at Tencent AI (baolinpeng@global.tencent.com).

5

0

5

 A
cc

ur
ac

y
(%

)

+2.0

-5.2 -5.1

Acc.=31.3

Acc.=16.8

Multistep Arithmetic
Codex (175B)
LLaMa (7B)

+CoT prompt

+SI. prompt
+ft (finetune)

+SI. prompt
+ft SI. demo

5
0
5

 A
cc

ur
ac

y
(%

) +4.4

-2.1
-4.1

Acc.=81.0

Acc.=45.8

Logical Deduction
Codex (175B)
LLaMa (7B)

Figure 1: Compared to LLMs, smaller models have dif-
ficulty performing self-improvement on math or logical
tasks, such as Multistep Arithmetics and Logical Deduc-
tion from the Big-Bench. +ft: finetuned on ground-
truth rationales; +SI. prompt: prompted to perform
self-improvement; +ft SI. demo further finetuned +ft
on LLM self-improvement demonstrations.

be an effective technique to make the LLM’s gener-
ations more diverse, more precise, or more faithful
to a given piece of knowledge (Schick et al., 2022;
Madaan et al., 2023; Peng et al., 2023a).

However, Saunders et al. (2022); Huang et al.
(2023) found that the ability to generate critical
feedback or to self-improve is hardly evident in
smaller models1. Similarly, Ye et al. (2023) found
that fine-tuning smaller models (e.g. 7-13B) with
self-improvement demonstrations from LLMs can
still fail on tasks such as math, reasoning, and
factuality. Following these previous works, we
performed a similar study on two math and rea-
soning tasks in Figure 1. We compared the accu-
racy of the final answer generated by prompting

1The distinction between small and large language models
is often context-dependent (Saunders et al., 2022). In this
work, we denote “small models" to those with a few billion
parameters (e.g., LLaMA-7B), and LLMs as those scaled to
hundreds of billions of parameters (e.g., ChatGPT).

5127

Method Codex (175B) LLaMA+ft (7B)

Input Q: ((4 - 0 * -1 * 8 + 6) + (0 + 4 + 9 * 5 * -2)) =

Attempt: (1) This equation can be written as "(A + B)" ... (1) This equation can be written as "(A + B)" ...
(2) Let’s calculate A=(4 - 0 * -1 * 8 + 6) (2) Let’s calculate A=(4 - 0 * -1 * 8 + 6)

=(4 - (0 * -1 * 8) + 6) =(4 - (0 * -1 * 8) + 6)
=(4 - (0 + 6)) =(4 - (0 + 8) + 6)
=(4 - 6) =(4 - 8 + 6)
=-2 =2

(3) Let’s calculate B=(0 + 4 + 9 * 5 * -2) (3) Let’s calculate B=(0 + 4 + 9 * 5 * -2)
=(0 + 4 + (9 * 5 * -2)) =(0 + (4 + (9 * 5)))
=(0 + 4 + (-90)) =(0 + (13))
=-86 =13

(4) Then, the final eq is (A + B) = (-2 + -86) = -88. (4) Then, the final eq is (A + B) = (2 + 13) = 15.
(Final response) So the answer is -88. (Final response) So the answer is 15.

Table 1: Training smaller models using self-improvement demonstrations from LLMs can be ineffective, as models
of different sizes make different types and amount of mistakes (highlighted in red). Small models can make simple
copying errors, while LLMs can make other arithmetic errors, such as not switching plus or minus signs when
adding parentheses. See Appendix B for a more quantitative analysis.

a 175B Codex (Chen et al., 2021) to self-improve,
with prompting or training a LLaMA-7B model to
self-improve using demonstrations from Codex (Ye
et al., 2023). In Figure 1, we surprisingly find that
smaller models performed worse using prior self-
improvement-related methods than simply training
on ground-truth step-by-step rationales (+ft). By
comparing the generated solutions from Codex-
175B and LLaMA-7B, we find that smaller models,
such as LLaMA-7B, not only make more mistakes,
but also different types of mistakes compared to an
LLM (Table 1 and Appendix B). Due to the smaller
model’s weaker math and reasoning ability, we
believe training on LLM self-improvement demon-
strations is less effective, as it forces the smaller
model to learn from mistakes not of its own.

Motivated by this finding, we propose TRIPOST,
a training algorithm that can more effectively train
a small model to learn from its mistakes, gen-
erate feedback, and improve its performance on
math and reasoning tasks. TRIPOST is an iter-
ative algorithm consisting of three stages: Inter-
active Trajectory Editing, Data Post-processing,
and Model Training. Similar to the exploration
stage in reinforcement learning, TRIPOST first cre-
ates improvement demonstrations using the small
model to interact with the expert LLMs or rele-
vant Python scripts. Then, TRIPOST postprocesses
the collected data by filtering out failed improve-
ment attempts, and then re-balances the dataset
to disincentivize the model from trying to self-
“improve” when it is not needed. Finally, TRIPOST
replays the post-process dataset (Andrychowicz
et al., 2018; Schaul et al., 2016), and trains the

smaller model using weighted supervised learn-
ing. TRIPOST repeats entire the process several
times. We evaluate our approach on four maths
and reasoning datasets from the BIG-Bench Hard
(Suzgun et al., 2022) collection, and find that
TRIPOST-trained models can use its learned self-
improvement ability to improve their task perfor-
mance. We also find that TRIPOST-trained models
achieve better in-domain and out-of-domain perfor-
mance than models trained using just the ground
truth step-by-step rationales and trained using di-
rect LLM demonstrations (Saunders et al., 2022;
Ye et al., 2023). This paper makes the following
contributions:

• We illustrate how prior work (Saunders et al.,
2022; Ye et al., 2023) can be ineffective in
training smaller models to self-improve their
performance on math and reasoning tasks.

• We propose TRIPOST, an iterative training
algorithm that trains a smaller language model
to learn to self-improve.

• We show that TRIPOST-trained models
achieve better performance than models
trained using ground-truth rationales or us-
ing LLM demonstrations on four math and
reasoning datasets from BIG-Bench Hard.

2 Approach

TRIPOST is an algorithm that trains a small lan-
guage model to self-improve by learning from its
own mistakes. Each iteration of TRIPOST consists
of three stages. On a high level, we first collect

5128

Feedback: The final answer is correct. [END]

Update:
(1) a = (1+2) = 3
(2) b = (4-3) = 1
(Ans) The answer is 3 * 1 = 3

Q: ((1+2) * (4-3)) = ?

repeat

weighted SL

a) interactive trajectory editing c) model training

Attempt:
(1) a = (1+2) = 3
(2) b = (4-3) = -1
(Ans) The answer is 3 * -1 = -3
Feedback: The final answer is correct. [END]

FBK

IMP

Feedback: The final answer is correct [END].
Feedback: In step (2) the part "(4-3) = -1" is
incorrect. This is an calculation error, ...

b) data post-processing

FBK

Question

Attempt:

Feedback:

Update:

Feedback:

filter

 Question
Attempt:
Feedback:
Update:

 Question
Attempt:
Feedback:

split

re-balance
ed

ite
d

tra
je

ct
or

y

Feedback: ... Update: ...Attempt ...

Feedback: ... Update:

 Question
Attempt:
Feedback:
Update:

loss weight

low

high

training data

output

pr
om

pt

Figure 2: Overview of TRIPOST algorithm. TRIPOST consists of three stages: interactive trajectory editing where
we use our FBK and IMP module to edit trajectories generated by a smaller model Mθ; data post-processing where
we filter out erroneous trajectories and create a re-balanced dataset; and model training where we train Mθ using
weighted supervised learning on the post-processed dataset.

a set of improving trajectories by using a smaller
model Mθ to interact with LLMs. We use Mθ to
generate initial attempts and then use a feedback
module FBK and an improvement module IMP
to edit parts of the Mθ generated attempts. This
creates a trajectory that includes attempts gener-
ated by the small model, with feedbacks and im-
provements tailored to the small model’s capability
(Figure 2). Next, we post-process the collected
trajectories by 1) using scripts and other heuristics
to filter out failed “improvement” attempts; and 2)
re-balancing the dataset using both directly correct
attempts and the improving trajectories. Finally, we
use weighted supervised learning to train a smaller
model Mθ using the post-processed data.

We provide an overview of our algorithm in Fig-
ure 2, and detail each of the three stages in Sec-
tion 2.2, Section 2.3, and Section 2.4, respectively.

2.1 Notation
We denote the entire attempt from a language
model to solve a given question as a trajectory x:

x = (xatt0 , xfb1 , x
att
1 , xfb2 , x

att
2 , ..., xfbm),

where xatt0 denotes the initial attempt, and xfbi , x
att
i

denotes the i-th feedback and updated attempt,
respectively. Such a trajectory ends when the
last feedback xfbm contains the phrase "the final
response is correct". Therefore, directly correct
trajectories take the form of x✓ = (xatt0 , xfb1),

and self-improving trajectories take the form of
xSI = (xatt0 , xfb1 , x

att
1 , ..., xfbm) where m > 1.

2.2 Interactive Trajectory Editing

In our prior study in Figure 1 and Table 1, we find
that it is difficult to elicit a 7B model to perform
self-improvement due to its significantly weaker
math and reasoning capability compared to LLMs.
To address this issue, we use the smaller model Mθ

to first generate an initial attempt2, and then ap-
ply a feedback module FBK and an improvement
module IMP to rewrite parts of the Mθ trajecto-
ries. Specifically, we first use FBK (prompting
text-davinci-003 or using a Python script) to gen-
erate a feedback xfb∗i based on the first error step
it identified for each incorrect attempt. After that,
we edit the trajectory by replacing the first feed-
back that Mθ and FBK disagree on with the FBK-
generated feedback, creating an edited trajectory:

(xatt0 , ..., xatti−1, x
fb∗
i).

Finally, we use our improvement module IMP
(prompting Codex) to generate an improved at-
tempt xatt∗i conditioned on the previous xatti−1 and
feedback xfb∗i , and append it to the trajectory:

xedited = (xatt0 , ..., xatti−1, x
fb∗
i , xatt∗i).

2We also allow Mθ to attempt generating feedbacks and
improvements, as self-improvement training progresses.

5129

As an example, if feedback xfb∗i identifies that the
first mistake in xatti−1 appears in step 3, then step
1-2 in xatti−1 is kept untouched, and IMP is used to
generate an improved solution by only changing
steps ≥ 3. This design is to prevent IMP from
re-writing the whole attempt from scratch (e.g.,
generating the gold solution), which would violate
our motivation to create trajectories with feedback
and improvements that are incremental and tailored
to the small model’s capability.

We repeat this process, up to a maximum num-
ber of iterations, until the last attempt in xedited is
correct. Otherwise, we discard xedited that failed
to reach the correct answer.

2.3 Data Post-processing
After the interactive trajectory editing step, we have
three types of data: 1) gold step-by-step demonstra-
tions xgold for the task, 2) directly correct trajecto-
ries x✓ generated by Mθ, and 3) edited trajectories
xedited created using Mθ,FBK, and IMP.

To make training easier, we first split all data
into triplets of single-step improvement ximp =
(xatti , xfbi , x

att
i+1) if an attempt xatti was incorrect,

or into xT = (xatt, xfb) where the attempt is cor-
rect and the trajectory ends with xfb containing the
phrase "the final response is correct". To learn from
expert’s correction, xattj and xfbj may be the edited
xatt∗j and xfb∗j , respectively (see Section 2.2). Next,
we filter out some ximp triplets that contain incor-
rect feedbacks or improvement steps using some
rules (see more in Appendix I). Then, we combine
xT and filtered ximp into a single dataset, and bal-
ance them using a hyperparameter p specifying the
proportion of ximp. We find that this parameter
is important for the model to learn to improve its
attempt only when necessary. This is because we
found that training with too many ximp can cause
the model to attempt self-improvement even when
the last attempt is already correct, thus damaging
its performance (see Section 4.2 for more details).

2.4 Model Training
Finally, we use supervised learning (SL) to train a
smaller model Mθ on the combined dataset. To pro-
mote the model to focus on learning the feedback
and improvement steps in ximp, we use a weighted
cross-entropy loss. We weight the loss for all the
tokens in xT with w = 1.0, but with w > 1.0 for
the tokens that belong to xfbi or xatti+1 in single-step
improvement triplets ximp. We note that we also ex-
perimented with masking xatti (Zheng et al., 2023),

but found it to be less effective than weighted SL
in our case. See Appendix E for more empirical
analysis and discussions on related techniques.

2.5 TRIPOST
In Figure 2 and Algorithm 1 we summarize our
TRIPOST algorithm. For each of the t iterations,
we first utilize Mθ to generate its own attempts
X , and then use FBK and IMP to generate and
create a set of edited trajectories as described in
Section 2.2. Next, we process the newly collected
trajectories and the gold task demonstrations Xgold

by first splitting them into a unified format of ximp

triplet or xT, and then filtering out erroneous ximp

data (Section 2.3). Finally, we create a training
dataset D by balancing the number of ximp and
xT using a hyperparameter p, and finetune Mθ on
D using weighted SL. Unless otherwise specified,
we repeat this procedure for t = 3 iterations, and
refer to the model trained using TRIPOST with t
iterations as TRIPOST(t).

Algorithm 1 TRIPOST Training Algorithm

Require: Generative language model Mθ

Require: FBK and IMP modules
Require: Gold task demonstrations Xgold

Require: Data buffer B
1: for t iterations do
2: // interactive trajectory editing
3: Gen. trajectories X = {X✓, X✗} with Mθ

4: Add correct trajectories X✓ to B
5: for each incorrect trajectory x✗ ∈ X✗ do
6: Use FBK to generate feedbacks xfb∗i

7: Replace feedback from x✗ with xfb∗i

8: Prompt IMP to generate xatti+i

9: Repeat until termination cond. reached
10: Add edited trajectory xedited to B
11: end for
12: // data post-processing
13: Split Xgold ∪ B into triplets ximp or xT
14: Filter ximp

15: D = {ximp, xT}, balanced using p
16: // model training
17: Train Mθ on D using weighted SL
18: end for

3 Experiments

In this section, we test if our TRIPOST can 1)
help distill self-improvement ability into a smaller
model Mθ, and 2) help Mθ improve performance
on math and reasoning tasks.

5130

Dataset Criterion Example seen subtask unseen subtask

Multistep Arithmetic nesting depth (d) and Q: ((2 * 2 + 1) + (3 * 1 - 1)) l = {3, 4} × d = {2} l = {3, 4} × d = {3} and
number of operands (l) // l = 3, d = 2 l = {5, 6} × d = {2, 3}

Word Sorting number of words to sort (l) Q: orange apple banana pear l = {2, 3, ..., 7} l = {8, 9, ..., 16}
// l = 4

Date Understanding number of steps to solve (l) Q: Today is 01/02, what’s the l = {1, 2} l ≥ 3
date yesterday? // l = 1

Logical Deduction number of options (l) Q: John runs ... Who runs fastest? l = {3, 5} l = {7}
Options: (A).. (B).. (C).. // l = 3

Table 2: Categorization of the datasets into seen and unseen tasks. seen tasks are chosen to be easier and are used
for training. Example questions are abbreviated, for complete examples please refer to Appendix A.

3.1 Dataset and Preprocessing

We utilize the BIG-Bench (Srivastava et al., 2023)
benchmark to evaluate our approach. BIG-Bench
is a collection of more than 200 text-based tasks
including categories such as traditional NLP, math-
ematics, commonsense reasoning, and more.

We perform experiments on four math and rea-
soning tasks from the challenging BIG-Bench Hard
(Suzgun et al., 2022) collection. We consider two
scriptable tasks: Multistep Arithmetic and Word
Sorting, where a step-by-step solution (rationale)
and a feedback can be generated using a script;
and two unscriptable tasks: Date Understanding
and Logical Deduction, where we prompt an LLM
(Codex/text-davinci-003) to generate feedbacks.
We prompt Codex as the IMP module for all tasks.

For each task, we first collect a set of gold step-
by-step rationales by either scripting a solution for
scriptable tasks, or using the CoT prompts from
Suzgun et al. (2022) to generate a solution using
LLMs. For those LLM-generated rationales, we
only keep the correct ones (see Appendix A for
more details) for training. Then, to better measure
a model’s generalization ability, we split each of
the 4 tasks further into seen and unseen subtasks.
We mainly categorize simpler questions as the seen
subtasks to be used for model training. We describe
our categorization method in Table 2.

3.2 Models and Baselines

Models We use LLaMA-7B as Mθ in our main
experiments in Table 3. LLaMA (Touvron et al.,
2023a) is a collection of foundation language mod-
els ranging from 7B to 65B that have shown strong
performance compared to GPT-3 (175B) on many
benchmarks (Zheng et al., 2023; Taori et al., 2023;
Peng et al., 2023b). Due to the cost of training lan-
guage models, we use the smallest 7B model. For
results with LLaMA-2 models, see Appendix D.
For training hyperparameters, see Appendix J.

Baselines We compare TRIPOST training with
three baselines: fine-tuning using self-generated,
self-consistent rationales (LMSI, Huang et al.
(2023)); fine-tuning using only ground truth ra-
tionales (ft rationale); and fine-tuning using self-
improvement demonstrations from LLMs (ft SI.
demo, similar to Ye et al. (2023)). For better perfor-
mance, we initialize with the model trained after
ft rationale for all methods. Lastly, for a fair com-
parison, we restrict iterative algorithms such as
TRIPOST to only have access to the same amount
of input prompts as used to train baselines such as
ft rationale. For more implementation details, see
Appendix G and Appendix I.

3.3 Metrics
To measure task performance, we follow prior stud-
ies on Big-Bench (Ho et al., 2023; Huang et al.,
2023) and report the accuracy of the final answer
extracted from the model’s output. For each task,
we report the accuracy on the seen subtasks and
unseen subtasks, and its overall performance. To
measure the model’s self-improvement ability, we
mainly consider two metrics: 1) how often the
model tries to self-improve (SI. Freq.), and 2)
how much those of self-improvement attempts con-
tribute to the model’s task performance (SI. Con-
trib.). We measure SI. Freq. as the number of times
the model attempted to self-improve divided by the
size of the test set, and SI. Contrib. as the num-
ber of times those improvement attempts actually
reached the correct final answer.

3.4 Main Results
Table 3 summarizes TRIPOST’s evaluation results
on the four datasets. First, we find LMSI (Huang
et al., 2023) to be roughly on-par with ft. rationale
only when the performance of the base model (i.e.,
ft. rationale) is already high on the training ques-
tions (the seen subtask). This is understandable,
as LMSI was originally designed for LLM (e.g.,

5131

Method
Multistep Arithmetic† Word Sorting† Date Understanding Logical Deduction

seen unseen total seen unseen total seen unseen total seen unseen total

LMSI 10.83 0.00 4.33 67.72 5.56 26.83 14.55 9.09 12.99 61.11 20.00 48.10
ft rationale 39.75 1.48 16.78 73.49 5.82 28.50 33.35 21.21 29.87 62.69 8.67 45.78
ft SI. demo 29.17 0.00 11.67 53.54 1.98 19.26 27.27 18.18 24.68 54.63 15.00 41.67

O
ur

s TRIPOST(t = 1) 41.67 0.84 17.17 74.02 5.16 28.23 32.73 13.64 27.27 57.88 22.00 46.52
TRIPOST(t = 2) 49.58 1.39 20.67 74.02 7.14 29.55 35.46 25.00 32.47 58.80 18.00 45.25
TRIPOST(t = 3) 52.50 2.50 22.50 77.17 5.95 29.82 40.00 29.55 37.01 63.89 15.00 48.42

Table 3: Overall performance of TRIPOST on four BIG-Bench hard datasets. For each dataset, we train our models
on the seen tasks, and evaluate their performance on both seen and unseen tasks. For all TRIPOST runs, we use the
same hyperparameters (e.g., p = 0.43). Total accuracy (total) is accuracy weighted based on the number of test
samples. † denotes that the task uses scripted rationale/feedback. Results are averaged over three runs.

Dataset
SI. Contrib.

Directly Correct Total Acc.
seen unseen total

Multistep Arithmetic 1.39 0.28 1.67 20.83 22.50
Word Sorting 1.85 0.52 2.37 27.44 29.82

Date Understanding 1.95 1.29 3.25 33.76 37.01
Logical Deduction 8.23 0.63 8.86 39.56 48.52

Table 4: Analyzing how TRIPOST-trained models improved the overall task performance. Total accuracy is first
decomposed into attempts that are directly correct (Directly Correct) and attempts with self-improvement (SI.
Contrib.). SI. Contrib. is then further decomposed into its accuracy contribution on the seen and unseen subtasks.

PaLM-540B) to improve on tasks where it can al-
ready achieve a reasonable performance. Next, we
find ft SI. demo to slightly degrade the model’s
performance across all tasks, which we believe is
due to the capability mismatch between the LLM
demonstrator and the small LM learner (Section 1).
This forces the small LM to learn from “advanced”
errors not from its own (Table 1 and Appendix B).
Finally, we see that in all tasks, TRIPOST-trained
models performs the best in all metrics. In general,
we also observe improvement in the performance
of TRIPOST-trained models as the number of it-
erations t increases.3 We believe this is because,
during the process of learning to self-improve, the
model also learns to better understand the tasks
by learning from its own mistakes (Zhang et al.,
2023; Andrychowicz et al., 2018; Lightman et al.,
2023). This enables the model to not only gen-
erate better initial attempts, but also improve its
self-improvement ability.

In Table 4, we further explore the contribution of
Mθ’s self-improvement ability by describing how
its overall performance improved. We find that in
two out of the four datasets, TRIPOST-trained mod-
els generate an more accurate initial attempt than
the baselines (denoted as Directly Correct), and in

3For a comparison against LMSI with more than t = 1
iteration, please see Appendix H.

all cases, TRIPOST-trained models had measurable
self-improvement contributions in both seen and
unseen tasks (cf. Figure 1 and Table A4). This sug-
gests that TRIPOST-training can 1) help the model
better understand the tasks and generate better ini-
tial attempts, and 2) help distill self-improving abil-
ity into the model. We believe that the combination
of both factors improve the model’s overall perfor-
mance in Table 3.

3.5 TRIPOST-auto

In Table 5, we explore another way of training Mθ

with TRIPOST. Instead of re-balancing the training
dataset using a fixed p as in Section 3.4, we can
simply include all the edited improvement tuples
ximp and the directly correct attempts xT generated
by Mθ. We denote this method as TRIPOST-auto,
as it automatically “balances” its training data to
be proportional to its current performance, because
p can be interpreted as how often the model’s at-
tempts were incorrect and needed editing. TRI-
POST-auto training included no less ximp com-
pared to TRIPOST (but generally more xT, result-
ing in p < 0.43), and we find that the model now
rarely attempts to self-improve. However, this un-
expectedly leads to even better overall performance,
especially on unscriptable tasks. We believe this
indicates that 1) learning to always generate a use-
ful feedback and the corresponding improvement is

5132

Method
Multistep Arithmetic† Word Sorting† Date Understanding Logical Deduction

SI. Freq SI. Cont. total SI. Freq SI. Cont. total SI. Freq SI. Cont. total SI. Freq SI. Cont. total

TRIPOST(t = 1) 0.00 0.00 17.17 1.58 0.52 28.23 0.00 0.00 27.27 8.86 2.85 46.52
TRIPOST(t = 2) 1.33 1.11 20.67 2.90 0.52 29.55 1.94 0.65 32.47 29.72 11.39 45.25
TRIPOST(t = 3) 3.67 1.67 22.50 4.38 2.37 29.82 10.38 3.25 37.01 23.42 8.86 48.42

TRIPOST-auto(t = 1) 0.00 0.00 20.00 0.00 0.00 30.34 0.00 0.00 32.47 1.90 0.63 51.27
TRIPOST-auto(t = 2) 0.00 0.00 23.33 0.00 0.00 29.55 0.00 0.00 56.82 0.63 0.00 55.06
TRIPOST-auto(t = 3) 0.00 0.00 24.33 0.00 0.00 30.34 0.00 0.00 68.83 0.63 0.63 56.96

Table 5: Overall performance of TRIPOST without explicit re-balancing. TRIPOST-auto uses the same training
procedure as TRIPOST, except that the proportion of ximp used for training is determined automatically using the
model’s current task performance.

Method
Multistep Arithmetic Logical Deduction

SI. Contrib. Total Acc. SI. Contrib. Total Acc.

TRIPOST 1.67 22.50 8.86 48.42
-interaction 0.28 11.67 0.00 41.67
-filtering 0.33 20.67 7.59 48.27
+auto-balance 0.00 24.33 0.63 56.96
-weighed SL 0.00 21.33 1.90 43.67

Table 6: TRIPOST ablation studies.

Dataset p
Self-Improvement

Total Acc.
Freq. Contrib.

Multistep Arithmetic

0.05 0.00 0.00 23.17
0.20 0.00 0.00 24.33
0.43 3.67 1.67 22.50
0.56 8.61 2.50 20.00
0.70 18.88 3.61 18.67

Logical Deduction

0.05 0.00 0.00 49.37
0.20 0.63 0.00 52.63
0.43 23.42 8.86 48.42
0.56 20.25 7.59 45.57
0.70 59.49 31.64 45.57

Table 7: Varying the proportion of xSI used during
TRIPOST training.

harder than learning to directly generate a correct
attempt, and 2) using LLM-generated feedbacks,
which covers more error cases than a Python script,
is effective in improving a model’s performance.

4 Analysis

To investigate the factors that can influence how
TRIPOST-trained models learned to attempt self-
improvement, we focus our analysis on the Mul-
tistep Arithmetic and Logical Deduction datatset.
We also mainly study TRIPOST with p = 0.43,
which has both a measurable self-improvement con-
tribution and improvement in its task performance
(see Table 3 and Table 4)4.

4In practice, we implement p by specifying the ratio of
the number of "self-improvement samples vs. directly correct
samples vs. gold samples“. For example, a ratio of 1.5 : 1.0 :
1.0 corresponds to p = 0.43.

4.1 Ablation Studies
We perform ablation studies for each of the three
stages in TRIPOST to better understand their con-
tribution to model’s overall performance. In Ta-
ble 6, we report the task accuracy when: interac-
tion between Mθ and LLM is removed, so that
Mθ is distilled with purely LLM demonstrations
(-interaction); data filtering is removed (-filtering);
dataset balancing is changed to using its own per-
formance (+auto-balance); and the weights for
SL are changed to be the same for all tokens (-
weighed SL). We find that all components are im-
portant for TRIPOST to work well, and the choice
of fixing p presents a trade-off between a model’s
self-improvement ability and its task performance
(notibly, both TRIPOST and TRIPOST-auto im-
prove upon the baselines).

4.2 Proportion of SI. Training Data
In Table 7, we investigate how much improvement
demonstration (ximp) is needed to elicit a measur-
able self-improvement contribution from Mθ. We
find that when a large proportion (e.g. p = 0.70)
of the training data contains ximp, the model often
attempts to self-improve but does not always result
in an overall better performance. This is because
many of the “improvement” attempts result in fail-
ures (e.g. changing an already correct attempt to
become an incorrect one), and the best performance
is achieved typically when p is low. Despite this,
we find that for all other cases with p ≤ 0.43, TRI-
POST-trained model achieved a better performance
than the baseline methods (see Table 4).

4.3 Number of TRIPOST Iterations
In most of our experiments, we trained TRIPOST
up to t = 3 iterations. This is because we found
that LLMs and our Python scripts start to strug-
gle with generating feedback or improving Mθ at-
tempts after three iterations. In Figure 3, we present

5133

1 2 3
Number of TriPosT Iterations

0

100

200

300

400
Nu

m
be

r o
f x

im
p D

at
a

Multistep Arithmetic
Logical Deduction

Figure 3: Improvement demonstrations become more
difficult to collect as TRIPOST iteration increases.

how the number of self-improving trajectories col-
lected (ximp, after filtering) changes as TRIPOST
iteration increases. We found that as Mθ improves
its performance over time, it 1) poses a greater chal-
lenge for our FBK module to generate feedback
and/or the IMP module to generate improvement,
and 2) generates fewer incorrect attempts for TRI-
POST to edit. This is especially impactful for Mul-
tistep Arithmetic, as our feedback scripts can only
consider a fixed number of error types. This also
shows that even LLMs can struggle at generating
useful feedbacks or correct improvements, which
supports our findings in Section 3.5 that learning
to generate feedback and improvements may be
harder than to directly generate a correct solution.
Lastly, we note that TRIPOST can, in principle, be
applied as an online RL algorithm, where one does
not restrict the input prompts to be a fixed set as in
Section 3. We believe this could be beneficial to im-
prove the model’s performance and genearlization
ability beyond TRIPOST(t = 3).

5 Related Work

Prompting LLMs to Self-Improve Recently,
many work (Bai et al., 2022; Madaan et al., 2023)
have discovered LLM’s capability to self-improve
by letting it revise its own answer after prompting
it to generate feedbacks. Following these work,
Yang et al. (2022); Peng et al. (2023a); Shinn et al.
(2023); Schick et al. (2022); Yang et al. (2023)
has utilized such a capability to improve LLM’s
performance on various tasks. For example, Yang
et al. (2022) recursively prompts an LLM to gen-
erate a longer story, and Madaan et al. (2023) iter-
atively prompts an LLM to improve its answers
on a wide range of tasks such as sentiment re-
versal and dialogue response generation. More
generally, Yang et al. (2023) finds that LLMs can

be prompted to act as an “optimization function”,
which can be used to automatically perform prompt
engineering. Our work focuses on distilling the
self-improvement ability of LLMs into a smaller
model, which was initially not capable of self-
improvement (Figure 1).

Training LMs to Self-Improve Besides prompt-
ing methods, recent work also explored approaches
to train a LM to self-improve. LMSI (Huang
et al., 2023) trains LMs (e.g., PaLM-540B) with
self-generated, self-consistent answers to improve
their task performance, yet we found such method
ineffective for small LMs. Many work such as
Paul et al. (2023); Welleck et al. (2022); Madaan
et al. (2021); Yasunaga and Liang (2020); Du et al.
(2022) considered using multiple small LMs to gen-
erate feedback and improvement, which also relates
to model ensemble methods (Dietterich, 2000). For
example, Welleck et al. (2022) trains a “correc-
tor” to improve answers generated by a given fixed
generator. This method gathers improved attempts
by sampling from the generator and pairing high-
scoring attempts with low-scoring ones. It also
does not provide reasonings (e.g., feedbacks) for
each improvement. Paul et al. (2023) first trains a
feedback model by using a set of predefined rules
that perturbs an original solution, and then trains a
separate model to generate answers conditioned on
the feedback. Our work leverages LLMs to train
a single model capable of generating both feed-
back and improvement, and also does not require
any predefined rules (e.g., using LLMs as the FBK
module). Saunders et al. (2022); Ye et al. (2023)
has attempted to equip a single small model to self-
improve by training on LLM demonstrations, but
found that it had little to no effect for small models
on math/reasoning tasks. Our work presents anal-
yses of how these previous methods can fail, and
proposes TRIPOST that can train a small model to
self-improve and achieve better task performance.

Knowledge Distillation Learning from experts’
demonstrations or reasoning (e.g., from GPT-4)
has shown to be successful at improving the perfor-
mance of smaller models in various tasks (Mukher-
jee et al., 2023; Laskin et al., 2022; Peng et al.,
2023b; Ho et al., 2023; Ye et al., 2023; Huang et al.,
2023; Jung et al., 2024). Distillation methods (Hin-
ton et al., 2015; Ba and Caruana, 2014) generally
train a target model using expert demonstrations un-
aware of the target model’s capability. While TRI-

5134

POST also use LLMs to demonstrate generating a
feedback or an improvement, these demonstrations
are always conditioned on the output of the smaller
model. In this view, our approach combines merits
from reinforcement learning with knowledge distil-
lation techniques, where small models are distilled
with demonstrations that are created by its own
exploration augmented by LLMs’ supervision.

6 Conclusion

We introduce TRIPOST, a training algorithm that
distills the ability to self-improve to a small model
and help it achieve better task performance. TRI-
POST first creates improving trajectories using in-
teractions between a smaller model and an LLM,
then post-process the collected trajectories, and fi-
nally train the smaller model to self-improve using
weighted SL. We evaluated TRIPOST on four math
and reasoning tasks from the Big-Bench Hard col-
lection and found that it can help small models
achieve better task performance. In our analysis,
we find that 1) the interactive process of learning
from and correcting its own mistakes is crucial
for small models to learn to self-improve and 2)
learning to always generate a useful feedback and
a corresponding improvement can be much harder
than learning to directly generate a correct answer.
These findings suggest that other data formats, be-
yond the traditional (input, answer) pair, could be
better suited for training a language model to solve
a downstream task. We believe this also opens new
possibilities for future work to leverage LLMs to
improve the performance of smaller, faster models.

7 Limitations

Model Sizes In all of our experiments, we used
a single A100 and mainly tested TRIPOST on 7B
models, the smallest in the LLaMA-1 and LLaMA-
2 family (Touvron et al., 2023a,b). However, with
the recently introduced flash attention technique
(Dao et al., 2022; Dao, 2023) which can be used to
reduce memory usage during training, we plan to
extend our experiments to use models with more
than 7B parameters.

Datasets We focused our experiments on math
and reasoning tasks because 1) prior work (Ye et al.,
2023) had found it difficult to train a 7-13B to
self-improve on those tasks and 2) measuring per-
formance improvement is more well defined (for
example, as compared to creative story writing).

However, we note that as TRIPOST is task agnos-
tic, in theory it can be applied to other tasks such as
knowledge-grounded dialogue generation (Yoshino
et al., 2023) or dialogue safety (Dinan et al., 2019).
We intend to leave this for future work.

LLM Usage While attempts for some tasks can
be parsed and evaluated using a Python script (e.g.,
multistep arithmetic and word sorting), it quickly
becomes unmanageable for tasks where reasonings
mostly take the form of free text (e.g., date under-
standing and logical deduction). Therefore, we use
LLMs such as GPT-3 and Codex (and ChatGPT,
see Appendix F), which are highly performant at a
reasonable cost. Specifically, we mainly use text-
davinci-003 as the feedback module and Codex
as the improvement module, as we found this to
be the most cost-performant configuration in our
experiments.

However, since the ability of LLMs to generate
feedback or improvements is crucial for TRIPOST
to collect training data, this presents a trade-off be-
tween the cost of using more performant LLMs
(e.g., GPT-4) and the training outcome of TRI-
POST, for example on harder tasks such as GSM8k
(Cobbe et al., 2021). We hope that with advances in
making LLMs more available (Zhang et al., 2022a),
such a trade-off would diminish.

8 Ethical Considerations

Our work describes an algorithm to improve small
models’ performance on math and reasoning tasks,
by distilling them the ability to self-improve using
interaction records with LLMs. Generally, while
most algorithms are not designed for unethical us-
age, there is often potential for abuse in their ap-
plications. In our experiments, we apply TRIPOST
to four math and reasoning tasks from the Big-
Bench Hard collection (Suzgun et al., 2022). How-
ever, because training algorithms are typically task-
agnostic, it is possible to use them for unethical
tasks, such as scamming and generating harmful
responses (Welbl et al., 2021; Gehman et al., 2020).
We do not condone the use of TRIPOST for any
unlawful or morally unjust purposes.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas

Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, Pieter Abbeel, and Wojciech
Zaremba. 2018. Hindsight experience replay.

5135

http://arxiv.org/abs/1707.01495

Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets
really need to be deep?

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022. Constitutional ai: Harmlessness
from ai feedback.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben

Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2023. FlashAttention-2: Faster attention with
better parallelism and work partitioning. ArXiv.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Thomas G. Dietterich. 2000. Ensemble methods in ma-
chine learning. In International Workshop on Multi-
ple Classifier Systems.

Emily Dinan, Samuel Humeau, Bharath Chintagunta,
and Jason Weston. 2019. Build it break it fix it for
dialogue safety: Robustness from adversarial human
attack.

Wanyu Du, Zae Myung Kim, Vipul Raheja, Dhruv Ku-
mar, and Dongyeop Kang. 2022. Read, revise, re-
peat: A system demonstration for human-in-the-loop
iterative text revision. In Proceedings of the First
Workshop on Intelligent and Interactive Writing As-
sistants (In2Writing 2022), pages 96–108, Dublin,
Ireland. Association for Computational Linguistics.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Zhiyuan He, Danchen Lin, Thomas Lau, and Mike Wu.
2019. Gradient boosting machine: A survey.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers.

5136

http://arxiv.org/abs/1312.6184
http://arxiv.org/abs/1312.6184
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e3b09a777c71a4b88888509ab9bfa12d8bf295ba
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e3b09a777c71a4b88888509ab9bfa12d8bf295ba
http://arxiv.org/abs/1908.06083
http://arxiv.org/abs/1908.06083
http://arxiv.org/abs/1908.06083
https://doi.org/10.18653/v1/2022.in2writing-1.14
https://doi.org/10.18653/v1/2022.in2writing-1.14
https://doi.org/10.18653/v1/2022.in2writing-1.14
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
http://arxiv.org/abs/1908.06951
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2212.10071

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1051–1068, Singa-
pore. Association for Computational Linguistics.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman,
Ximing Lu, Jillian Fisher, Taylor Sorensen, and Yejin
Choi. 2024. Impossible distillation: from low-quality
model to high-quality dataset & model for summa-
rization and paraphrasing.

Sekitoshi Kanai, Shin’ya Yamaguchi, Masanori Ya-
mada, Hiroshi Takahashi, Kentaro Ohno, and Ya-
sutoshi Ida. 2023. One-vs-the-rest loss to focus on
important samples in adversarial training.

Angelos Katharopoulos and François Fleuret. 2019. Not
all samples are created equal: Deep learning with
importance sampling.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio
Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan
Brooks, Maxime Gazeau, Himanshu Sahni, Satin-
der Singh, and Volodymyr Mnih. 2022. In-context
reinforcement learning with algorithm distillation.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Aman Madaan, Niket Tandon, Dheeraj Rajagopal, Peter
Clark, Yiming Yang, and Eduard Hovy. 2021. Think
about it! improving defeasible reasoning by first
modeling the question scenario.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4.

OpenAI. 2022. OpenAI: Introducing ChatGPT.

OpenAI. 2023. GPT-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John

Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2023. Refiner: Reasoning feedback on in-
termediate representations.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023a. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023b. Instruction tuning with
gpt-4.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20,
page 3505–3506, New York, NY, USA. Association
for Computing Machinery.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evalua-
tors.

Robert E. Schapire. 1999. A brief introduction to boost-
ing. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence - Volume 2, IJ-
CAI’99, page 1401–1406, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. 2016. Prioritized experience replay.

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2022. Peer: A collaborative language
model.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, and et al. 2023. Beyond the imita-
tion game: Quantifying and extrapolating the capa-
bilities of language models.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,

5137

https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
http://arxiv.org/abs/2305.16635
http://arxiv.org/abs/2305.16635
http://arxiv.org/abs/2305.16635
http://arxiv.org/abs/2207.10283
http://arxiv.org/abs/2207.10283
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2210.14215
http://arxiv.org/abs/2210.14215
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2110.12349
http://arxiv.org/abs/2110.12349
http://arxiv.org/abs/2110.12349
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2304.03277
http://arxiv.org/abs/2304.03277
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/2208.11663
http://arxiv.org/abs/2208.11663
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615

Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen
Gong, Gang Niu, Mingyuan Zhou, and Masashi
Sugiyama. 2022. Probabilistic margins for instance
reweighting in adversarial training.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey,
Xingjun Ma, and Quanquan Gu. 2020. Improving ad-
versarial robustness requires revisiting misclassified
examples. In International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Johannes Welbl, Amelia Glaese, Jonathan Uesato,
Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Cop-
pin, and Po-Sen Huang. 2021. Challenges in detox-
ifying language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2447–2469, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan
Klein. 2022. Re3: Generating longer stories with
recursive reprompting and revision.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback.

Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong
Kim, Hyeonbin Hwang, and Minjoon Seo. 2023.
Selfee: Iterative self-revising llm empowered by self-
feedback generation. Blog post.

Koichiro Yoshino, Yun-Nung Chen, Paul Crook, Satwik
Kottur, Jinchao Li, Behnam Hedayatnia, Seungwhan
Moon, Zhengcong Fei, Zekang Li, Jinchao Zhang,
Yang Feng, Jie Zhou, Seokhwan Kim, Yang Liu,
Di Jin, Alexandros Papangelis, Karthik Gopalakrish-
nan, Dilek Hakkani-Tur, Babak Damavandi, Alborz
Geramifard, Chiori Hori, Ankit Shah, Chen Zhang,
Haizhou Li, João Sedoc, Luis F. D’Haro, Rafael
Banchs, and Alexander Rudnicky. 2023. Overview of
the tenth dialog system technology challenge: Dstc10.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, pages 1–14.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022a. Opt: Open
pre-trained transformer language models.

Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter
Abbeel, and Joseph E. Gonzalez. 2023. The wisdom
of hindsight makes language models better instruc-
tion followers.

Zhisong Zhang, Emma Strubell, and Eduard Hovy.
2022b. A survey of active learning for natural lan-
guage processing. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6166–6190, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

5138

http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2106.07904
http://arxiv.org/abs/2106.07904
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2021.findings-emnlp.210
https://doi.org/10.18653/v1/2021.findings-emnlp.210
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2210.06774
http://arxiv.org/abs/2210.06774
http://arxiv.org/abs/2005.10636
http://arxiv.org/abs/2005.10636
http://arxiv.org/abs/2005.10636
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://doi.org/10.1109/TASLP.2023.3293030
https://doi.org/10.1109/TASLP.2023.3293030
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2302.05206
http://arxiv.org/abs/2302.05206
http://arxiv.org/abs/2302.05206
https://doi.org/10.18653/v1/2022.emnlp-main.414
https://doi.org/10.18653/v1/2022.emnlp-main.414
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

A More Details on Datasets and
Preprocessing

We use four tasks from the Big-Bench Hard collec-
tion (Suzgun et al., 2022) for our experiments: mul-
tistep arithmetic, word sorting, date understanding,
and logical deduction. Since these tasks do not pro-
vide ground truth step-by-step rationale, we either
generate them using a script (for multistep arith-
metic and word sorting), or prompt Codex (Chen
et al., 2021) in a few-shot setting using examples
from Suzgun et al. (2022). For rationales gener-
ated using prompting, we only keep the ones that
reached the correct answer and passed a simple
consistency check (e.g. for multiple choice ques-
tions, we ensure that the final selected choice in
the last step appeared in the second last step). We
provide example rationales used for each task in
Table A8, Table A9, Table A10, and Table A11.
Since Big-Bench (Srivastava et al., 2023) did not
provide an official training/validation/test split, we
generated our own splits with statistics shown in
Table A1.

Dataset Train Validation Test

Multistep Arithmetics 550 50 300
Word Sorting 433 40 379
Date Understanding 191 20 87
Logical Deduction 360 40 158

Table A1: Number of training, validation, and test sam-
ples used for the four tasks from the Big-Bench Hard
collection (Suzgun et al., 2022).

B Analyzing Errors Made by Codex and
LLaMA-7B

To detail the different type and amount of errors
made by an LLM (e.g., Codex) and a smaller model
(e.g., LLaMA-7B), we manually examine incorrect
attempts generated by the two models in the Mul-
tistep Arithmetics dataset. We use Codex with
few-shot prompting, and LLaMA-7B after super-
vised finetuning on ground-truth step-by-step solu-
tions (denoted as LLaMA+ft). We randomly sam-
ple 50 generated attempts with incorrect answers,
and carefully review each step in those attempts.
For each incorrect step, we apply the principle of
error-carried-forward and categorize the first error
encountered according to Table A2.

We present our analysis in Figure A1 and Ta-
ble A3. Figure A1 shows that calculation er-
rors take up more than 50% of the time for both

Codex and the finetuned LLaMA-7B. However,
Codex also makes many algebriac errors (such as
forgetting to change sign after adding brackets),
while LLaMA-7B often hallucinates by adding or
deleting terms from previous calculations. Fur-
thermore, Table A3 shows that, compared to the
fine-tuned LLaMA-7B, Codex generates longer
solutions while producing fewer errors per step.
These findings suggest that supervised finetuning
a smaller LM (e.g., LLaMA-7B) based on correct-
ing LLM-generated errors may be inefficient, as it
forces the smaller model to learn from attempts and
mistakes very different from its own (see Section 1
and Appendix C for more details).

C More Details on the Prior Study

In the prior study mentioned in Section 1, we ex-
perimented with distilling a smaller model (e.g.
LLaMA-7B) with self-improvement demonstration
using just the LLMs. We found that not only can
the smaller model not self-improve by few-shot
prompting, they also still fail to do so after train-
ing on the LLM self-improvement demonstrations
(also discussed in Section 1). In Figure 1 we pre-
sented the performance gap between prompting
Codex (175B) and finetuning/prompting LLaMA
(7B) with self-improvement demonstrations, and in
Table A4 we show the detailed numerical results.

D Additional Results on LLaMA-2

In Table A5 we present the results of using the
LLaMA-2 7B model (Touvron et al., 2023b) for
TRIPOST training. We used the same proce-
dure as testing with the LLaMA-1 model in our
main experiments (Section 3), except that we used
p = 0.26 across all settings with LLaMA-2 instead
of p = 0.43. This is because we found that the
LLaMA-2 baseline (ft rationale) achieves almost
twice the performance compared to its LLaMA-1
counterpart. As the LLaMA-2 models make fewer
mistakes, we decrease p accordingly to prevent
TRIPOST from terminating early due to lack of
data. In general, Table A5 shows a similar trend as
discussed in Section 3 that 1) fine-tuning on LLM
demonstrations of self-improvement did not help
improve math/reasoning task performance, and 2)
TRIPOST can further improve upon the baselines.

E Effect of Weighted SL

Besides balancing the training dataset, we also
found it important to use a weighted cross-entropy

5139

Error Name Definition Example

Calculation Error errors in performing basic arithmetic operations (addition, subtrac-
tion, multiplication, division)

2 + 3 = 7

Algebraic Error errors in algebraic manipulation, such as forgetting to change signs
when adding brackets or forgetting the correct order of operations

1− 2 + 3 = 1− (2 + 3)

Copy Error mis-copying an operand or an operator from previous steps 7 + 1 + (...) = 7− 1 + (...)
Hallucation adding or deleting an operand or an operator from previous steps 7 + (...) = 7− 1 + (...)
Other Error errors that do not fall into the above categories

Table A2: Categorization of errors commonly made by Codex or LLaMA-7B in the Multistep Arithmetics dataset.

51.3%

31.6%

6.8%
9.4%

(a) Codex

55.0%

7.6%

9.2%

26.0% Calculation Error
Algebraic Error
Copy Error
Hallucination
Other Error

(b) LLaMA+ft (7B)

Figure A1: LMs of different sizes make different types of errors. In the Multistep Arithmetics dataset, more than
half of the errors made by Codex or a finetuned LLaMA-7B belong to Calculation Error. However, the second most
common error is Arithmetic Error for Codex, and Copy Error for LLaMA-7B.

Codex LLaMA+ft (7B)

Avg. Char per Question 113.8 102.4
Avg. Char per Attempt 920.0 650.1
Percent Steps with Errors 31.7 35.1

Table A3: LMs of different sizes make different amount
of errors. In the Multistep Arithmetics dataset, Codex
makes less errors per step compared to a finetuned
LLaMA-7B, while answering longer questions and gen-
erating longer solutions.

Dataset Method SI. Contrib. Total Acc.

MS.A.

Codex (175B) - 31.33
+ SI. prompting 2.00 33.33 ↑
LLaMA+ft (7B) - 16.78
+ SI. prompting 0.00 11.60 ↓
+ ft SI. demo 0.28 11.67 ↓

L.D.

Codex (175B) - 81.01
+ SI. prompting 4.43 85.44 ↑
LLaMA+ft (7B) - 45.78
+ SI. prompting 0.00 43.67 ↓
+ ft SI. demo 0.00 41.67 ↓

Table A4: Compared to LLMs, smaller models have
difficulty performing self-improvement (SI.) on math-
ematical/logical tasks, such as Multistep Arithmetics
(MS.A.) and Logical Deduction (L.D.).

loss to emphasize learning the improvement-related
tokens (xfbi or xatti+1) of each training sample. In
Table A6, we find that using a weight too low
(w = 1.0) can result in the model rarely attempt-
ing to self-improve, while using a weight too high
(w = 3.0) does not result in better performance.
We believe that this has a similar effect of adjust-
ing p in Section 4.2: some incentive is needed for
the model to learn to self-improve, while too much
emphasis on trying to self-improve can result in a
worse performance.

While we also experimented with alternatives
such as masking easier tokens (xatti in a single-step
improvement triplet), we believe there is a rich set
of techniques that can be used to train the model to
focus on harder inputs. This includes boosting algo-
rithms (Schapire, 1999; He et al., 2019), automatic
loss reweighing methods (Kanai et al., 2023; Wang
et al., 2022, 2020), as well as importance-sampling
based methods (Katharopoulos and Fleuret, 2019).
We leave this for future work as it is orthogonal to
our main contributions.

F Prompting Details

Besides prompting to generate rationales (e.g. for
date understanding), we also use prompting to gen-

5140

Method
Multistep Arithmetics† Logical Deduction

seen unseen total seen unseen total

L
L

aM
A

-1
(7

B
) ft rationale 38.75 1.48 16.78 62.69 8.67 45.78

ft SI. demo 29.17 0.00 11.67 54.63 15.00 41.67

TRIPOST(t = 1) 41.67 0.84 17.17 57.88 22.00 46.52
TRIPOST(t = 2) 49.58 1.39 20.67 58.80 18.00 45.25
TRIPOST(t = 3) 52.50 2.50 22.50 63.89 15.00 48.42

L
L

aM
A

-2
(7

B
) ft rationale 72.50 5.00 32.00 87.04 34.00 70.25

ft SI. demo 51.67 2.22 22.00 80.56 42.00 68.35

TRIPOST(t = 1) 71.67 3.89 31.00 83.33 52.00 73.42
TRIPOST(t = 2) 75.00 6.11 33.67 83.33 48.00 72.15
TRIPOST(t = 3) 72.22 5.19 32.00 71.67 50.00 72.78

Table A5: Using TRIPOST with LLaMA-2 7B model. Overall, LLaMA-2 performs better than its LLaMA-1
counterpart, and TRIPOST further improves LLaMA-2’s task performance.

Dataset w
Self-Improvement

Total Acc.
Freq. Contrib.

Multistep Arithmetic
1.0 0.00 0.00 21.33
1.5 3.67 1.67 22.50
3.0 3.33 1.38 22.00

Logical Deduction
1.0 10.13 1.90 43.67
1.5 23.42 8.86 48.42
3.0 19.62 9.49 46.84

Table A6: Varying the SL weights w used during TRI-
POST training.

erate feedbacks and improvements given the ini-
tial attempt. For scriptable tasks such as multistep
arithmetic and word sorting, we use a script to gen-
erate the feedback by first parsing each step in the
attempt, and check their correctness/consistency
with other steps using a set of predefined rules.
This is similar to Welleck et al. (2022), but we also
generalize this to unscriptable tasks such as date
understanding and logical deduction by few-shot
prompting GPT-3 (text-davinci-003) (Brown et al.,
2020) and Codex (Chen et al., 2021) to generate
feedbacks and improvements. We found that being
able to generate useful feedback is critical for gath-
ering successful improvement trajectories, and we
discovered that ChatGPT (OpenAI, 2022) is less
effective than GPT-3 or Codex in our case. We
provide examples of the feedbacks generated for
each task in Table A12, and the prompts used to
generate feedback or improvements in Table A13,
Table A14, Table A15, and Table A16. Note that
we used a form-type of prompting for generating
feedback because it can more easily ensure that our
(formatted) feedback will contain all the elements
we need.

When an answer is correct, we manually attach

the phrase “Step 1 to step x is correct, and the
final response is also correct.” as the termination
feedback, where “x” is the last step number. This
termination condition is also used during inference.

G More Details on Baselines

LMSI Huang et al. (2023) proposed LMSI, a
method to improve PaLM-540B (Chowdhery et al.,
2022) on math and reasoning tasks by training it
on self-generated and consistent step-by-step ra-
tionales. First, LMSI generates multiple step-by-
step solutions using a high temperature (τ = 1.2).
Then, LMSI only keeps the answers that are self-
consistent (by majority voting) in the final answer.
Finally, LMSI further augments these solutions
with mixed formats, such as removing all the inter-
mediate steps and only keep the final answer. To
be comparable with other methods in Table 3 that
have access to the ground truth answer, we modify
the second step to only keep the answers that are
correct. In addition, since small models such as
LLaMA-7B performed poorly in these tasks with-
out fine-tuning, we perform LMSI after training the
model on the collected silver step-by-step solutions
in Appendix A.

ft. SI demo Following Ye et al. (2023), ft. SI
demo finetunes a model on LLM-generated self-
improvement demonstrations. For all tasks, we
experimented with LLMs ∈ {ChatGPT, Codex}
and reported one with better performance (often
Codex). In details, we first prompt a LLM (e.g.
Codex) to generate an initial attempt, and then re-
used TRIPOST with the same LLM as the FBK and
IMP to generate a feedback and an improvement.
For a fair comparison in Table 3, we also balanced

5141

the collected data using the same p = 0.43 as with
TRIPOST. Finally, train the small LM using (un-
weighted) SL on the collected data.

H Running LMSI(t > 1)

LMSI described in (Huang et al., 2023) was not
applied as an iterative algorithm. However, since
LMSI training only relies on self-generated and
self-consistent answers, it can be ran iteratively
similar to TRIPOST. We present this comparison
in Table A7, and find that LMSI(t ≥ 1) struggles
when the base model (ft rationale) has a weak task
performance. We believe this is because LMSI is
mainly a self-training algorithm designed for LLMs
such as PaLM-540B (Chowdhery et al., 2022),
which can often generate correct or near-correct
solutions. However, TRIPOST is a training algo-
rithm designed for smaller LMs, where models
learns to self-improve from its interaction records
with expert LLMs.

Method Multistep Arithmetic Date Understanding

ft rationale 16.78 29.87

LMSI(t = 1) 4.33 12.99
LMSI(t = 2) 2.50 11.69
TRIPOST(t = 1) 17.17 27.27
TRIPOST(t = 2) 20.67 37.01

Table A7: Comparing TRIPOST(t > 1) with LMSI(t >
1). For simplicity, we show total accuracy for each task.

I Implementation Details

We combine techniques from prompting-based self-
improvement (Madaan et al., 2023; Bai et al., 2022)
and active learning (Zhang et al., 2022b; Lightman
et al., 2023) to collect a set of self-improving tra-
jectories. Specifically, we first either use a script
or few-shot prompting (see Appendix F for more
details) to gather feedbacks on a given attempt, and
then use prompting to generate improvements con-
ditioned on the previous attempt, the feedback, and
all the steps in the previous attempt before the first
error step (see Tables A13 to A16 for example).
This is to ensure that the improved attempt is mak-
ing modifications on the previous attempt, rather
than creating an entirely new attempt.

To edit the original attempt given the
script/LLM-generated feedback, we 1) find
the first xfb∗i feedback that differs from the Mθ-
generated feedback xfbi (usually i = 1); 2) replace
xfb∗i with xfbi ; 3) remove all the attempts, feedback,

and improvement after after xfbi from the trajectory.
After this, we prompt an LLM in the improvement
module IMP to generate an improvement as
described above and in Appendix F.

To filter out some of the unhelpful feedbacks or
incorrectly “improved” attempts, we mainly check
1) whether the final attempt reached the correct
answer; 2) if there is at least one difference between
the previous attempt and the improved attempt; and
3) if the final answer is consistent with the second
last step. We only keep the data that have passed
all checks. The effect of this filtering is discussed
in our ablation studies in Section 4.1.

J Model/Training hyperparameters

In our main experiments, we used a single A100
GPU with DeepSpeed (Rasley et al., 2020) Zero-2
optimization. We used AdamW (Loshchilov and
Hutter, 2019) as the optimizer. For each iteration
of the TRIPOST algorithm, we train the model for
4 epochs (line 17). We use a linear learning rate
schedule with 20% of warmup steps and a peak
learning rate of 1e-6. We use a maximum sequence
length of 1024 tokens, batch size = 1 and gradient
accumulation step = 4. On average, three iterations
of TRIPOST take about 12 hours to train.

5142

Example Question and Generated Rationale for Multistep Arithmetic

Q: ((7 - -1 + -1 + -4) - (-7 + 7 * 3 * -9)) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics is as follows:
(1) Parentheses, (2) exponents, (3) multiplication and division (from left to right), (4) addition
and multiplication (from left to right). So, remember to always compute the expressions inside
parentheses or brackets first.
(1) This equation can be written as “(A - B)”, where A = (7 - -1 + -1 + -4) and B = (-7 + 7 * 3 * -9).
(2) Let’s calculate A = (7 - -1 + -1 + -4) = (((7 - -1) + -1) + -4) = ((8 + -1) + -4) = (7 + -4) = 3.
(3) Let’s calculate B = (-7 + 7 * 3 * -9) = (-7 + ((7 * 3) * -9)) = (-7 + (21 * -9)) = (-7 + -189) = -196.
(4) Then, the final equation is (A - B) = (3 - -196) = 199.
(Final response) So the answer is 199.

Table A8: Examples of generated rationales for Multistep Arithmetic using Python scripts. Question and prompts
are written in gray italics, and the generated step-by-step rationale is shown in black.

Example Question and Generated Rationale for Word Sorting

Q: Sort the following words alphabetically:
List: sioux fortescue purloin percept helmsman
Attempt: Let’s think step by step.
(1) The first letter: “sioux”=“s”, “fortescue"=“f" (6), “purloin"=“p" (16), “percept"=“p" (16),
“helmsman"=“h" (8)
(2) We now have: (6) “fortescue” < (8) “helmsman” < (16) [“purloin” ? “percept”] < (19) “sioux”.
(3) Now sort this subpart [“purloin” ? “percept”] by looking at their second letters:
“purloin”=“u” (21), “percept”=“e” (5).
(3.1) We now have: (5) “percept” < (21) “purloin”.
(3.2) Hence, we have “percept” < “purloin”.
(4) Hence, we have “fortescue” < “helmsman” < “percept” < “purloin” < “sioux”.
(Final response) So the answer is: fortescue helmsman percept purloin sioux.

Table A9: Examples of generated rationales for Word Sorting using Python scripts. Question and prompts are
written in gray italics, and the generated step-by-step rationale is shown in black.

Example Question and Generated Rationale for Date Understanding

Q: Jane scheduled 3 appointments with 5 poeple for tomorrow (Tue, 7/9/1972).
What is the date one year ago from today in MM/DD/YYYY?
Options:
(A) 07/01/1971
(B) 07/08/1971
(C) 07/15/1971
(D) 07/07/1971
(E) 07/09/1971
(F) 07/08/1910
Attempt: Let’s think step by step.
(1) If Jane scheduled 3 appointments with 5 people for tomorrow (Tuesday, 7/9/1972), then today’s
date is Monday, 7/8/1972.
(2) The date one year ago from today is 7/8/1971.
(Final response) So the answer is (B).

Table A10: Examples of generated rationales for Date Understanding by prompting Codex (Chen et al., 2021).
Question and prompts are written in gray italics, and the generated step-by-step rationale is shown in black.

5143

Example Question and Generated Rationale for Logical Deduction

Q: The following paragraphs each describe a set of three objects arranged in a fixed
order. The statements are logically consistent within each paragraph. On a shelf, there
are three books: a white book, a green book, and an orange book. The green book is
to the right of the white book. The orange book is the rightmost.
Options:
(A) The white book is the leftmost.
(B) The green book is the leftmost.
(C) The orange book is the leftmost.
Attempt: Let’s think step by step. Let “??” represent 0 or more objects, and “?”
represent exactly 1 object.
(1) The green book is to the right of the white book: “(left) ?? white ?? green ?? (right)”.
(2) The orange book is the rightmost: “(left) ?? orange (right)”.
(3) There are in total three books: a white book, a green book, and an orange book.
(4) Combining (1) and (2) we get the following ordering: ”(left) ?? white ?? green ?? orange (right)”.
(5) Combining (3) and (4) we get the following ordering: ”(left) white green orange (right)”.
(6) According to this ordering, the leftmost book is the white book.
(Final response) So the answer is (A).

Table A11: Examples of generated rationales for Logical Deduction by prompting Codex (Chen et al., 2021).
Question and prompts are written in gray italics, and the generated step-by-step rationale is shown in black.

5144

Task Example

Multistep Arithmetic† Q: ((-8 + -2 * 1 * 3) * (-2 * -1 * 5 - 2)) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics ...
(1) This equation can be written as "(A * B)", where A = (-8 + -2 * 1 * 3) and B = ...
(2) Let’s calculate A = (-8 + -2 * 1 * 3) = ... = -14.
(3) Let’s calculate B = (-2 * -1 * 5 - 2) = ... = (2 * 5 - 2) = 10.
Then, the final equation is (A * B) = (-14 * 10) = -140.
(Final response) So the answer is -140.
Feedback: Step (1) to (2) are correct. In step (3) the part " (2 * 5 - 2) = 10 " is incorrect.
This is because there is a calculation error, since (2 * 5 - 2) is not equal to 10.

Word Sorting† Q: Sort the following words alphabetically:
List: cole estonia brian redneck coda
Answer: Let’s think step by step.
(1) The first letter: "cole"="c" (3), "estonia"="e" (5), ..., "coda"="c" (3).
(2) We now have: (2) "brian" < (3) ["cole" ? "coda"] < (5) "estonia" < (18) "redneck".
(3) Now sort this subpart ["cole" ? "coda"] by looking at their second letters:
"cole"="o" (15), "coda"="o" (15).
(3.1) We now have: (15) ["cole" ? "coda"].
(3.2) Now sort this subpart ["cole" ? "coda"] by looking at their third letters:
"cole"="l" (12), "coda"="d" (4).
(3.2.1) We now have: (12) "cole" < (4) "coda".
...
(Final response) So the answer is: cole coda estonia brian redneck.
Feedback: Step (1) to (3.2) are correct. In step (3.2.1) the part " (12) "cole" < (4) "coda" "
is incorrect. This is because words are not sorted in ascending order. Using results from
step (3.2), the first and smallest number should be 4.

Date Understanding Q: Jane thinks today is 6/18/2019, but John thinks today is 6/19/2019. Jane is correct.
What is the date one week from today in MM/DD/YYYY?
Options:
(A) 04/21/2019 (B) 06/25/2019
(C) 06/26/2019 (D) 06/24/2019
(E) 05/28/2019 (F) 07/04/2019
Answer: Let’s think step by step.
(1) If Jane thinks today is 6/18/2019, but John thinks today is 6/19/2019, then today’s
date is 6/19/2019.
(2) The date one week from today is 6/26/2019, that is 06/26/2019.
(Final response) So the answer is (D).
Feedback: In step (1) the part "today’s date is 6/19/2019" is incorrect. This is because
Jane is correct, so today’s date should be 6/18/2019.

Logical Deduction Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. In an antique car show,
there are three vehicles: a motorcycle, a bus, and a tractor. The motorcycle is the oldest.
The bus is newer than the tractor.
Options:
(A) The motorcycle is the newest.
(B) The bus is the newest.
(C) The tractor is the newest.
Answer: Let’s think step by step. Let "??" represent 0 or more objects, and "?" represent
exactly 1 object.
(1) The motorcycle is the oldest: "(oldest) motorcycle ?? (newest)".
(2) The bus is newer than the tractor: "(newest) bus ?? tractor ?? (oldest)".
(3) There are in total three vehicles: a motorcycle, a bus, and a tractor.
(4) Combining (1) and (2) we get the following ordering: "(newest) bus ?? tractor ?? (oldest)"
(5) Combining (3) and (4) we get the following ordering: "(oldest) motorcycle bus (newest)
tractor".
(6) According to this ordering, the vehicle that is the newest is the tractor.
(Final response) So the answer is (C).
Feedback: Step (1) to (2) are correct. In step (3) the part "(newest) bus ?? tractor ?? (oldest)"
is incorrect. This is because it is missing the motorcycle from step (1).

Table A12: Examples of an incorrect attempt generated by a small model, followed by its feedback generated by
either an LLM (Codex or text-davinci-003) or a script (indicated by †) for each task. Input question is written in
black, a generated attempt is written in blue, and its feedback is written in cyan.

5145

Prompt Type Prompt Example

Get Improvement Q: (((-9 * 3 + -6) * (-2 + 7 * -6)) - ((-4 - -6 + 6) * (4 * -4 + 8))) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics is as follows:
(1) Parentheses, (2) exponents, (3) multiplication and division (from left to right), (4) addition
and multiplication (from left to right). So, remember to always compute the expressions inside
parentheses or brackets first.
(1) This equation can be written as "((A * B) - (C * D))", where A = (-9 * 3 + -6), B = (-2 + 7 * -6),
C = (-4 - -6 + 6) and D = (4 * -4 + 8).
(2) Let’s calculate A = (-9 * 3 + -6) = ((-9 * 3) + -6) = (-27 + -6) = -33.
(3) Let’s calculate B = (-2 + 7 * -6) = (-2 + (7 * -6)) = (-2 + -42) = -44.
(4) Let’s calculate C = (-4 - -6 + 6) = ((-4 - -6) + 6) = (2 + 6) = 8.
(5) Let’s calculate D = (4 * -4 + 8) = ((4 * -4) + 8) = (-16 + 8) = -8.
(6) Then, the final equation is ((A * B) - (C * D)) = ((-33 * -44) - (8 * -8)) = (1424 - (8 * -8)) =
(1424 - 64) = 1360.
(Final response) So the answer is 1360.
Feedback: Step (1) to step (5) are correct. In step (6) the part "((-33 * -44) - (8 * -8))
= (1424 - (8 * -8))" is incorrect. This is because there is a calculation error, since (-33 * -44)
should be 1452.
Updated Answer: Let’s think step by step. Recall that the order of operations in mathematics is
as follows: (1) Parentheses, (2) exponents, (3) multiplication and division (from left to right),
(4) addition and multiplication (from left to right). So, remember to always compute the
expressions inside parentheses or brackets first.
(1) This equation can be written as "((A * B) - (C * D))", where A = (-9 * 3 + -6), B = (-2 + 7 * -6),
C = (-4 - -6 + 6) and D = (4 * -4 + 8).
(2) Let’s calculate A = (-9 * 3 + -6) = ((-9 * 3) + -6) = (-27 + -6) = -33.
(3) Let’s calculate B = (-2 + 7 * -6) = (-2 + (7 * -6)) = (-2 + -42) = -44.
(4) Let’s calculate C = (-4 - -6 + 6) = ((-4 - -6) + 6) = (2 + 6) = 8.
(5) Let’s calculate D = (4 * -4 + 8) = ((4 * -4) + 8) = (-16 + 8) = -8.
(6) Then, the final equation is ((A * B) - (C * D)) = ((-33 * -44) - (8 * -8)) = (1452 - (8 * -8)) =
(1452 - -64) = 1516.
(Final response) So the answer is 1516. [END]

Table A13: Prompt used for generating improvement for Multistep Arithmetic. The generated feedback is then
formatted as “Step 1 to step {earliest error step - 1} is correct. In step {earliest error step} the part ‘{error segment}’
is incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.

5146

Prompt Type Prompt Example

Get Improvement Q: Sort the following words alphabetically:
List: cosh inferno every foyer coterie mcfadden halifax
Answer: Let’s think step by step.
(1) The first letter: “cosh”=“c” (3), “inferno”=“i” (9), “every”=“e” (5), “foyer”=“f” (6),
“coterie”=“c” (3), “mcfadden”=“m” (13), “halifax”=“h” (8).
(2) We now have: (3) “cosh” ? “coterie” < (5) “every” < (6) “foyer” < (8) “halifax” <
(9) “inferno” < (13) “mcfadden”.
(3) Now sort this subpart ["cosh" ? "coterie"] by looking at their second letters:
"cosh"="o" (15), "coterie"="o" (15).
(3.1) We now have: (15) ["cosh" ? "coterie"].
(3.2) Now sort this subpart ["cosh" ? "coterie"] by looking at their third letters:
"cosh"="s" (19), "coterie"="c" (3).
(3.3) We now have: (3) "coterie" < (19) "cosh".
(3.4) Hence, we have "coterie" < "cosh".
(4) Hence, we have "coterie" < "cosh" < "every" < "foyer" < "halifax" < "inferno" < "mcfadden".
(Final response) So the answer is: coterie cosh every foyer halifax inferno mcfadden. [END]
Feedback: Step (1) to (3.1) are correct. In step (3.2) the part " "coterie"="c" (3) " is incorrect.
This is because the third letter of "coterie" should be "t".
Updated Answer: Let’s think step by step.
(1) The first letter: "cosh"="c" (3), "inferno"="i" (9), "every"="e" (5), "foyer"="f" (6),
"coterie"="c" (3), "mcfadden"="m" (13), "halifax"="h" (8).
(2) We now have: (3) ["cosh" ? "coterie"] < (5) "every" < (6) "foyer" < (8) "halifax" <
(9) "inferno" < (13) "mcfadden".
(3) Now sort this subpart ["cosh" ? "coterie"] by looking at their second letters:
"cosh"="o" (15), "coterie"="o" (15).
(3.1) We now have: (15) ["cosh" ? "coterie"].
(3.2) Now sort this subpart ["cosh" ? "coterie"] by looking at their third letters:
"cosh"="s" (19), "coterie"="t" (20).
(3.3) We now have: (19) "cosh" < (20) "coterie".
(3.4) Hence, we have "cosh" < "coterie".
(4) Hence, we have "cosh" < "coterie" < "every" < "foyer" < "halifax" < "inferno" < "mcfadden".
(Final response) So the answer is: cosh coterie every foyer halifax inferno mcfadden. [END]

Table A14: Prompt used for generating improvement for Word Sorting. The generated feedback is then formatted
as “Step 1 to step {earliest error step - 1} is correct. In step {earliest error step} the part ‘{error segment}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.

5147

Prompt Type Prompt Example

Get Feedback Q: Yesterday was 12/31/1929. Today could not be 12/32/1929 because December has only
31 days. What is the date tomorrow in MM/DD/YYYY?
Options:
(A) 12/12/1929
(B) 01/01/1930
(C) 01/02/1998
(D) 01/02/1885
(E) 01/02/1930
(F) 12/23/1929
Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (F).
Earliest error step: (Final response)
Error segment: "the answer is (F)"
Error reason: (F) 12/23/1929 is inconsistent with the result "01/02/1930" in step (2). [END]

Get Improvement Q: Yesterday was 12/31/1929. Today could not be 12/32/1929 because December has only
31 days. What is the date tomorrow in MM/DD/YYYY?
Options:
(A) 12/12/1929
(B) 01/01/1930
(C) 01/02/1998
(D) 01/02/1885
(E) 01/02/1930
(F) 12/23/1929
Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (F).
Feedback: Step (1) to step (2) are correct. In step (Final response) the part "the answer is (F)"
is incorrect. This is because (F) 12/23/1929 is inconsistent with the result "01/02/1930"
in step (2).
Updated Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (B). [END]

Table A15: Prompt used for generating feedback and improvement for Date Understanding. The generated feedback
is then formatted as “Step 1 to step {first error step - 1} is correct. In step {first error step} the part ‘{error part}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.

5148

Prompt Type Prompt Example

Get Feedback Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. On a branch, there are three birds:
a hummingbird, an owl, and a falcon. The falcon is to the right of the owl. The hummingbird is to
the left of the owl.
Options:
(A) The hummingbird is the second from the left.
(B) The owl is the second from the left.
(C) The falcon is the second from the left.
Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents exactly
1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ?? falcon
?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the falcon.
(Final response) The falcon is the second from the left. So the answer is (C).
Earliest error step: (6)
Error segment: "the bird that is second from the left is the falcon"
Error reason: It is inconsistent with the ordering in step (5), which established that
"(left) hummingbird owl falcon (right)". [END]

Get Improvement Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. On a branch, there are three birds:
a hummingbird, an owl, and a falcon. The falcon is to the right of the owl. The hummingbird is to
the left of the owl.
Options:
(A) The hummingbird is the second from the left.
(B) The owl is the second from the left.
(C) The falcon is the second from the left.
Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents exactly
1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ?? falcon
?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the falcon.
(Final response) The falcon is the second from the left. So the answer is (C).
Feedback: Step (1) to (5) are correct. In step (6) the part "the bird that is second from the left
is the falcon" is incorrect. This is because it is inconsistent with the ordering in step (5), which
established that "(left) hummingbird owl falcon (right)".
Updated Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents
exactly 1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ??
falcon ?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the owl.
(Final response) The owl is the second from the left. So the answer is (B). [END]

Table A16: Prompt used for generating feedback and improvement for Logical Deduction. The generated feedback
is then formatted as “Step 1 to step {first error step - 1} is correct. In step {first error step} the part ‘{error part}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.

5149

