@inproceedings{roy-etal-2024-flap,
title = "{FLAP}: Flow-Adhering Planning with Constrained Decoding in {LLM}s",
author = "Roy, Shamik and
Sengupta, Sailik and
Bonadiman, Daniele and
Mansour, Saab and
Gupta, Arshit",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.29",
doi = "10.18653/v1/2024.naacl-long.29",
pages = "517--539",
abstract = "Planning is a crucial task for agents in task oriented dialogs (TODs). Human agents typically resolve user issues by following predefined workflows, decomposing workflow steps into actionable items, and performing actions by executing APIs in order; all of which require reasoning and planning. With the recent advances in LLMs, there have been increasing attempts to use them for task planning and API usage. However, the faithfulness of the plans to predefined workflows and API dependencies, is not guaranteed with LLMs. Moreover, workflows in real life are often custom-defined and prone to changes; hence, adaptation is desirable. To study this, we propose the problem of faithful planning in TODs that needs to resolve user intents by following predefined flows and preserving API dependencies. To solve this problem, we propose $\textbf{FLAP}$, a $\textbf{Fl}$ow-$\textbf{A}$dhering $\textbf{P}$lanning algorithm based on constrained decoding with lookahead heuristic for LLMs. Our algorithm alleviates the need for finetuning LLMs using domain specific (plan/dependency) data, enables quick adaptation to predefined flows, and outperforms other decoding and prompting-based baselines. Further, our algorithm empowers smaller LLMs ($\approx7$B) to perform at par larger LLMs ($\approx30$B-40B).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roy-etal-2024-flap">
<titleInfo>
<title>FLAP: Flow-Adhering Planning with Constrained Decoding in LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shamik</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sailik</namePart>
<namePart type="family">Sengupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Bonadiman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saab</namePart>
<namePart type="family">Mansour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arshit</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Planning is a crucial task for agents in task oriented dialogs (TODs). Human agents typically resolve user issues by following predefined workflows, decomposing workflow steps into actionable items, and performing actions by executing APIs in order; all of which require reasoning and planning. With the recent advances in LLMs, there have been increasing attempts to use them for task planning and API usage. However, the faithfulness of the plans to predefined workflows and API dependencies, is not guaranteed with LLMs. Moreover, workflows in real life are often custom-defined and prone to changes; hence, adaptation is desirable. To study this, we propose the problem of faithful planning in TODs that needs to resolve user intents by following predefined flows and preserving API dependencies. To solve this problem, we propose FLAP, a Flow-Adhering Planning algorithm based on constrained decoding with lookahead heuristic for LLMs. Our algorithm alleviates the need for finetuning LLMs using domain specific (plan/dependency) data, enables quick adaptation to predefined flows, and outperforms other decoding and prompting-based baselines. Further, our algorithm empowers smaller LLMs (\approx7B) to perform at par larger LLMs (\approx30B-40B).</abstract>
<identifier type="citekey">roy-etal-2024-flap</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.29</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.29</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>517</start>
<end>539</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FLAP: Flow-Adhering Planning with Constrained Decoding in LLMs
%A Roy, Shamik
%A Sengupta, Sailik
%A Bonadiman, Daniele
%A Mansour, Saab
%A Gupta, Arshit
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F roy-etal-2024-flap
%X Planning is a crucial task for agents in task oriented dialogs (TODs). Human agents typically resolve user issues by following predefined workflows, decomposing workflow steps into actionable items, and performing actions by executing APIs in order; all of which require reasoning and planning. With the recent advances in LLMs, there have been increasing attempts to use them for task planning and API usage. However, the faithfulness of the plans to predefined workflows and API dependencies, is not guaranteed with LLMs. Moreover, workflows in real life are often custom-defined and prone to changes; hence, adaptation is desirable. To study this, we propose the problem of faithful planning in TODs that needs to resolve user intents by following predefined flows and preserving API dependencies. To solve this problem, we propose FLAP, a Flow-Adhering Planning algorithm based on constrained decoding with lookahead heuristic for LLMs. Our algorithm alleviates the need for finetuning LLMs using domain specific (plan/dependency) data, enables quick adaptation to predefined flows, and outperforms other decoding and prompting-based baselines. Further, our algorithm empowers smaller LLMs (\approx7B) to perform at par larger LLMs (\approx30B-40B).
%R 10.18653/v1/2024.naacl-long.29
%U https://aclanthology.org/2024.naacl-long.29
%U https://doi.org/10.18653/v1/2024.naacl-long.29
%P 517-539
Markdown (Informal)
[FLAP: Flow-Adhering Planning with Constrained Decoding in LLMs](https://aclanthology.org/2024.naacl-long.29) (Roy et al., NAACL 2024)
ACL
- Shamik Roy, Sailik Sengupta, Daniele Bonadiman, Saab Mansour, and Arshit Gupta. 2024. FLAP: Flow-Adhering Planning with Constrained Decoding in LLMs. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 517–539, Mexico City, Mexico. Association for Computational Linguistics.