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Abstract

We explore the creative problem-solving capa-
bilities of modern LLMs in a novel constrained
setting. To this end, we create MACGYVER,
an automatically generated dataset consisting
of over 1,600 real-world problems deliberately
designed to trigger innovative usage of objects
and necessitate out-of-the-box thinking. We
then present our collection to both LLMs and
humans to compare and contrast their problem-
solving abilities. MACGYVER is challeng-
ing for both groups, but in unique and com-
plementary ways. For instance, humans ex-
cel in tasks they are familiar with but strug-
gle with domain-specific knowledge, leading
to a higher variance. In contrast, LLMs, ex-
posed to a variety of specialized knowledge,
attempt broader problems but fail by propos-
ing physically-infeasible actions. Finally, we
provide a detailed error analysis of LLMs, and
demonstrate the potential of enhancing their
problem-solving ability with novel prompting
techniques such as iterative step-wise reflection
and divergent-convergent thinking.

This work (1) introduces a fresh arena for in-
telligent agents focusing on intricate aspects
of physical reasoning, planning, and unconven-
tional thinking, which supplements the exist-
ing spectrum of machine intelligence; and (2)
provides insight into the constrained problem-
solving capabilities of both humans and AI.

1 Introduction

Creativity has long been considered the driving
force behind modern civilization, and one of the
hallmarks of human intelligence (Guilford, 1967b;
Hennessey, 1995). As large language models
(LLMs) have become increasingly powerful, re-
searchers have begun to investigate their reasoning
ability in problem-solving tasks (Yao et al., 2022;

∗ Work was done during Yufei’s internship at AI2.
Code and data available at: https://github.com/allenai/
MacGyver

Problem (a): I need to roll out dough evenly but 
don't have a rolling pin. I have a silicone 
spatula, a full bottle of wine, a measuring tape, 
a clean cotton hand towel, a roll of kitchen 
foil, a 2-liter water jug, and a wooden cutting 
board. How should I proceed?

“Take the cotton towel and 
roll it up tightly to form a 

cylindrical shape!”

Problem (b): I have a flat tire, but my lug 
wrench is broken. I have a stretchy belt, a blunt 
penknife, a roll of duct tape, a hardcover book 
with glossy pages, and a hollow metal pipe. The 
metal pipe is rusted, breaking under force. How 
to replace the flat tire?

“Strengthen the pipe with 
duct tape. Use the 

reinforced pipe as a lever.”

“Use the bottle of wine as
a makeshift rolling pin!”

“None of the tools is
strong enough for … ”

Figure 1: Examples of the problems in our MACGYVER
dataset with the GPT-4 and human answers (continued
in Figure 11). Pictures, drawn by DALL·E 3, are solely
for illustration purposes and may not accurately reflect
the text. In our experiment, all inputs to human and
LLMs are natural language texts.

Brahman et al., 2023) and their capacity for cre-
ativity as demonstrated by expressing humor and
generating artistic content (Mittal et al., 2022; Hes-
sel et al., 2023; Ramesh et al., 2022; Chakrabarty
et al., 2022; Tian et al., 2023). However, everyday
activities that involve creative thinking have not
been studied to the same extent. In this work, we
contribute a benchmark for creative problem solv-
ing, hoping to critically assess modern LLMs when
it comes to ‘thinking out-of-the-box’.

To bridge this gap, we curate MACGYVER,
a novel unconventional problem-solving dataset
consisting of 1,683 sets of verbal problems that re-
quire human-like creativity in the realm of physical
reasoning. Drawing inspiration from the cognitive
science literature (Duncker and Lees, 1945), we
collect problem scenarios that deliberately push
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against functional fixedness—a cognitive bias that
limits an agent from employing familiar tools in
innovative ways. Notably, leveraging the genera-
tive strength of LLMs and the verification strength
of humans, we design a novel and labor-efficient
pipeline to collect progressively more challenging
scenarios (§2). These scenarios are verified by
humans as requiring unconventional usage of ob-
jects to find a solution. For example, solving prob-
lem (a) in Figure 1 requires using the wine bottle
as a makeshift rolling pin.1 Each problem in our
dataset is paired with at least one human-provided
or verified solution. To the best of our knowledge,
MACGYVER is the first dataset of unconventional
everyday problems requiring two key elements of
creativity (Guilford, 1967a): divergent thinking (to
come up with creative or unconventional usage of
objects) and convergent thinking (to accomplish a
goal efficiently).

Next, we use the resulting dataset as a bench-
mark to evaluate the creative problem-solving abil-
ities of both human participants and recent LLMs,
including GPT-3.5, GPT-4, PaLM2, Claude2, and
Llama2 (OpenAI, 2022, 2023; Anil et al., 2023;
Touvron et al., 2023; Anthropic, 2023). Our results
in §4 reveal a substantial gap between most LMs
and human. While the best performing LM, GPT-4,
complements the capability of an arbitrary human
under certain domain-specific settings (e.g., fixing
a hole on the wall), humans’ collective wisdom is
so far still invincible. Additionally, LLMs struggle
to identify unsolvable problems and either exhibit
misleading helpfulness or are ultraconservative in
inappropriate cases. In §5, we present detailed
comparison between human and machine.

Finally, a qualitative analysis of LLM responses
reveals two common failure modes: (1) mod-
els propose physically infeasible, unnecessary, or
wrong solution steps that deviate from the intended
goal, and 2) models hallucinate unavailable tools
or do not adhere to constraints specified. We pro-
pose two prompting strategies to mitigate these
common error types: (1) a self-reflection based
strategy to iteratively verify the feasibility of each
generated step and then modify as necessary, and
2) a cognitive-science-inspired strategy of first di-
vergently exploring the potential use of presented
tools and then converging on the problem solu-
tion. Experimental results show the efficacy of

1If the problem is unsolvable given the presented tools and
constraints (problem b in Figure 1), we expect the agent to
identify such infeasibility and provide a short justification.

both strategies in boosting models performance
(§6). We hope MACGYVER will serve as a useful
resource for

• Evaluating LLMs and autonomous agents in new
challenges involving real-world scenarios, innova-
tive object usage, and physically feasible actions;

• Enhancing LLMs’ creativity and physical-related
reasoning skills; and

• Providing useful insight and resources to re-
searchers in other fields such as computational cog-
nition and psychology

2 MACGYVER Dataset

LLMs have demonstrated utility for idea genera-
tion (Girotra et al., 2023). Therefore, instead of
asking humans to come up with thousands of con-
strained scenarios from scratch, we design a pro-
gressive refinement pipeline to explore LLMs’ po-
tential to generate problem settings quickly and at
scale (§2.1). Human annotators then verify that
each problem is concrete and requires creativity
(§2.2). Each instance in our dataset includes a con-
strained problem setting paired with at least one
human-provided or verified solution (§2.2, §C.2).

2.1 Progressive Problem Refinement for
Dataset Creation

Figure 2 provides an illustration of our problem col-
lection pipeline, showing how we combine human
and machine inputs. Specifically, we propose a
progressive problem refinement approach that grad-
ually increases problem complexity by 1) adding
specific object properties (e.g., material, size, etc.)
as constraints to eliminate a previous solution and
2) adding distracting objects that are not involved
in the solution. From a cognitive perspective on
problem-solving (Knoblock, 1991), the first refine-
ment step removes the most straightforward solu-
tion path, while the second step further complicates
the problem by adding branches to the search space.

We implement this pipeline through a dialogue
interaction with GPT-4. Human assessment results
(detailed in appendix C.3) confirm that both steps
within the progressive refinement approach pose
additional challenges to LLMs, and after the two
iterations, the original problem requires more cre-
ativity and becomes more challenging.
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Solution: use the
kitchen tongs!

[Iteration 3]
Add additional items 

as distractors.

[Iteration 2]
Add constraints to 
veto the solution

Constraint added: The 
tongs are also slightly 
shorter than the jar.

Problem: You have a tall and narrow cookie 
jar, a pair of chopsticks, a roll of 
sticky tape, rubber bands and a pair of 
kitchen tongs. The jar is too narrow for 
your hand to fit in and the chopsticks are 
slightly shorter than the jar. How can you 
retrieve the cookies using only these 
items?

[Iteration 1]
Generate the 

vanilla scenario

The Cookie 
Jar Problem 

You have a tall and narrow cookie jar, a
piece of string, a plastic straw, a pair of
kitchen tongs, some napkins, a pair of
chopsticks, a roll of sticky tape, rubber
bands and a magnet. The jar is too narrow
for your hand to fit in and both the
chopsticks and tongs are slightly shorter
than the jar. How can you retrieve the
cookies using only these items?

GPT-4

Human

Figure 2: Progressive problem refinement with GPT-4. Starting from a vanilla version (i.e., Iteration 1), we carefully
design refinement steps that gradually increase the problem’s complexity by adding specific object properties as
constraints to veto a previous solution (i.e., Iteration 2), and adding distracting objects that are (likely) not involved
in the solution the problem (i.e., Iteration 3). After that, human verifiers judge the quality of refined problems.

Problem (All) Solvable Unsolvable Total

Count 1,306 377 1,683
Percentage 77.6% 22.4% 100%

Problem
(Solvable Subset) Unconv. Conv. Total

Count 1,073 233 1,306
Percentage 82.2% 17.8% 100.0%

Table 1: Statistics of the entire MACGYVER dataset
(top). Number of solvable problems that require uncon-
ventional use of tools (bottom).

2.2 Human Verification Process

After the refinement process, we involve human
verifiers to judge if the final versions of the prob-
lems 1) are solvable, unsolvable, or need more
clarification (e.g., the setup is vague, which will be
discarded), and 2) for those solvable, whether solv-
ing them efficiently requires creative thinking (i.e.,
using objects to achieve goals they were not origi-
nally designed for —unconventional usage). Each
problem is annotated by three human verifiers, with
average inter-annotator agreement (IAA, measured
by Cohen’s Kappa) of 0.67 and 0.77 for tasks 1)
and 2), respectively. Finally, we pair each problem
with a gold answer. For the solvable subset, it is
a step-by-step feasible solution. For the unsolv-
able subset, it is an explanation why the stated goal
cannot be achieved (detailed in §C.2).

In total, we created 1,683 problems, with a de-
tailed breakdown in Table 1. Of those, 78% are
solvable and 22% are unsolvable. Another 7% of
all problems were discarded after being annotated
by at least one annotator to be ambiguous or contra-
dictory. For solvable problems, 82% require using
tools in an innovative or unconventional manner.

2.3 Diversity Control and Check
Intuitively, we want to avoid generating multiple
problems with familiar goals and constraints. In
this section, we summarize our measures to ensure
the collected problems are diverse, comprehensive,
and free of repetitive patterns.

Diversity Control We hand-craft more than 50
tags of locations and activities, aiming to ensure
that our data collection pipeline delves into a vari-
ety of topics. These predefined tags are integrated
into the prompt that we used to query GPT-4 for
problem curation at Iteration 1. The detailed list of
all tags can be found in Table 6.

Diversity Check After the final iteration, we
parse the objects presented as tools among all gen-
erated problems. Intuitively, we consider two sim-
ilar objects with different properties (e.g., plastic
knife and metal knife; eyeglasses and magnifying
glass) to be different. In total, 3,800 unique tools
were identified. We compute their frequency and
use GPT-4 to analyze their affordances (Appendix
Table 8; Figure 3). We found that holding items and
covering are the top two types, followed by tying
or connecting and cleaning. The long tails in both
illustrations signify a desirable level of diversity.2

3 Assessing the Task Difficulty

To gauge the challenge of our task posed to the
most recent LLMs, we evaluate the zero-shot per-
formance of GPT-4 (OpenAI, 2023). Nevertheless,
existing automatic evaluations fall short to assess

2Refer to Appendix C.4 for more details such as the de-
tailed list of all tags, the most frequent tools and their affor-
dances, and the prompt used to analyze tool affordance.
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Figure 3: Affordances of the presented tools in our
MACGYVER dataset and their frequency (and count).
Note that one object may have multiple affordances
(e.g., paddle boards can be used for boating, reaching
high areas, and exercise).

the efficacy of a presented solution. Therefore, we
recruit human annotators to evaluate the quality of
the GPT-4’s answers on the entire MACGYVER.

Assessment Setup. For a solvable problem, hu-
man annotators are asked to judge if the presented
solution is 1.1 feasible and efficient3, 1.2 feasi-
ble yet inefficient, or 1.3 infeasible. The machine-
generated answer may also wrongly assume the
problem is unsolvable and gives a wrong justifica-
tion (1.4). For an unsolvable problem, they need
to judge if the presented answer 2.1 correctly iden-
tifies the problem as unsolvable, and 2.2 gives the
right justification. Similarly, the answer may also
wrongly assume the problem is solvable and give a
wrong solution (2.3).

GPT-4 Performance. We report the perfor-
mance on the solvable and unsolvable subset in
Figure 4. Our preliminary findings indicate that,
firstly, LLMs as strong as GPT-4 still exhibit lim-
itations in solving unconventional problems, with
only 18.9% likelihood of providing an efficient
solution, while 37.5% likelihood of providing an
infeasible solution. Analysis in the later section
(§6) shows that one common mistake is it failing
to realize the consequences of actions and tool af-
fordances in the given context (e.g., proposing to
use chopsticks to lift up the egg yolk). Secondly,

3A solution is considered efficient if it has no redundant or
unnecessary steps, and it is unlikely that the problem can be
solved with less labor or using fewer steps.

1,306 Solvable 377 Unsolvable

38.8%
2.9%

58.2%

Correct (↑)
Right Reason

Correct
Wrong Reason

Wrongly Says
Solv. (↓)

18.9%
42.5% 37.5%

1.1%

Efficient 
Solution (↑)

Inefficient
Solution

Infeasible 
Solution (↓)

Wrongly Says
Unsolv. (↓)

Figure 4: Left: Human-evaluated GPT-4 performance
on all 1,306 problems from the MACGYVER that hu-
mans think are solvable. Right: GPT-4 performance
on all 377 problems that humans think are unsolvable.
Correct for the right reason means that the LLM cor-
rectly identifies the problem is unsolvable, and gives the
right justification. Correct for the wrong reason means
that it correctly identifies the problem is unsolvable, but
gives an incorrect justification.

GPT-4 displays overconfidence, often suggesting
solutions to problems that are inherently unsolv-
able. This could be partially due to GPT-4 being
trained with RLHF (Ouyang et al., 2022), maximiz-
ing its helpfulness. Moreover, the model struggles
to discern whether a problem description is suffi-
ciently concrete for resolution or too ambiguous,
necessitating additional context (Liu et al., 2023).

4 Benchmarking Humans and LLMs

A natural follow-up question is how well modern
LLMs perform on this task, as compared to humans.
We thus evaluate the performance of several recent
LLMs (i.e., PaLM2, Claude2, Llama2, GPT-3.5
and GPT-4) on a representative sample of the entire
MACGYVER dataset which contains 323 problems.
In addition, we gauge the capability of average
humans on the same set of tasks.

4.1 Collecting Independent Human Responses

We assessed human capability by recruiting par-
ticipants who are new to this task. To this end,
independent solutions were collected from a pool
of N = 252 UK participants on Prolific. We inten-
tionally used a different platform and target pop-
ulation from those of the human evaluators (i.e.,
MTurk and US) to minimize any chances of over-
lap. For a given problem, participants indicated
whether they believed the problem is solvable, un-
solvable, or required further clarification. If solv-
able, they provided a step-by-step solution, and oth-
erwise explained why the problem was unsolvable.
Overall, we elicited an average of six responses per
problem and each participant contribute to up to
five different problems.
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Figure 5: Left: Benchmark results of seven LLMs and human with a single effort. For human participants, since
there is no single participant who worked on all problems, we take a random response from each problem. We
color-code the three categories indicating fine-grained aspects of correctness or falseness. Right: Comparison
between GPT-4 and human where we evaluated multiple solutions per problem. The best performance, which can
be viewed as an upper bound, is computed by taking the individual best answer (out of 6) for each problem. The
actual numbers are reported in Table 5 in appendix A.2.

4.2 Collecting Machine Responses
We collected solutions from seven different LLMs
using Nucleus sampling (Holtzman et al., 2020)
and return the top one sequence (T=0.7 and
p=0.95). In the prompt, we instruct an LLM to
either provide a feasible and efficient solution to
a problem when it believes the problem is solv-
able, or otherwise a justification explaining why the
given problem is unsolvable. To explore whether
different sizes of the same model plays a role
in its problem solving ability, we include three
variations of Llama2 (i.e., -7b, -13b, -70b), as
well as two variants of GPT model family (i.e.,
gpt-3.5-turbo, gpt-4-0613).

Additional GPT-4 Responses For a fair com-
parison with humans, we emulate the same setup
in §4.1 by obtaining multiple solutions per prob-
lem from a single LLM. Since exhaustive human
evaluation is costly, we opted to elicit multiple so-
lutions exclusively from the most capable LLM,
GPT-4. Multiple manually-designed instructions
are used to prompt GPT-4 in order to reduce repe-
tition among separate sessions of API calls. More
details can be found in Appendix D.1.

4.3 Human Evaluation
Human annotators were asked to evaluate if a pre-
sented answer is correct by selecting one out of six
fine-grained categories: A (or B) correctly giving a
feasible and efficient (or less efficient) solution to
a solvable problem; C correctly identifying an un-
solvable problem and giving the right justification;

D giving a partially incorrect answer; E giving a
mostly or entirely wrong answer; and F failing to
identify the correct solvability status.4

4.4 Benchmark Results
We report the benchmark results in Figure 5. Cat-
egory A, B, and C are the three aspects of correct
responses, while the remaining D, E, and F are as-
pects of the wrong ones. At a glance, despite vary-
ing in their characteristics, all of the benchmarked
LLMs lag behind the performance of humans.

4.4.1 Performance with Single Effort
As is mentioned in §4.2, only the top one response
is collected for a LLM per problem. Hence, we
first list the LLMs’ performances with their single
best answers on left of Figure 5.For human partici-
pants, there is no single person who approached all
problems. Therefore, to simulate an arbitrary per-
son’s individual performance, we take a random
response from each problem.

We see that most recent LLMs achieve a mere
35% to 42% chance of success. Although GPT-
4 and Claude2 stand out among the tested LLMs,
their best attempts still under-perform an arbitrary
average person with total correct rate of 65.1%
(sum of category A, B and C).

We observe that different families of LLMs ex-
hibit dissimilar behaviors. For example, PaLM2
and GPT-4 are overly verbose and often suggest so-
lutions to problems that are inherently unsolvable

4Screenshots of the human evaluation interface can be
found in Appendix Figure 23 and 24.
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(as seen by their remarkably low performance in
category C: correctly identify an unsolvable prob-
lem). In contrast, Llama2-7b, Claude2, and GPT-
3.5 are more conservative and fail to realize a con-
strained problem can still be solvable (reflected in
their high numbers in category F). Comparing the
three variants of Llama2, we find that the larger
models (13b, 70b) excel in correctly identifying
solvability (category F). The smaller model (7b) is
more subject to falsely recognizing a constrained
problem as unsolvable. Beyond this, however, it ap-
pears that scale alone does not significantly unleash
any creative problem-solving capabilities.

4.4.2 Performance with Multiple Efforts

Recall that we collect multiple solutions per prob-
lem for GPT-4 and humans. With these, we com-
pute the average and best performance. The best
performance, which can be viewed as an upper
bound, is computed by taking the individual best
answer for each problem. The results are shown
on the right of the same figure. In addition, we
compute the majority performance by considering
a binary annotation (i.e., correct or wrong) of each
problem. We find that the majority of humans are
79.3% correct, surpassing that of GPT-4 (73.3%).

We see that on average human participants are
slightly worse than GPT-4 in coming up with a cor-
rect solution (especially inefficient ones, category
B), which is potentially owing to functional fixed-
ness. In general, humans still out-perform GPT-4
due to the fact that GPT-4 seldom correctly identi-
fies an unsolvable problem. Moreover, the best of
the four human answers, which can be considered
as a form of collective wisdom, clearly leads to a
near perfect performance.

Finally, humans seem to struggle with certain
problems (category F). We hypothesize that an in-
dividual person, who likely does not have domain-
specific knowledge in all aspects of life, may not
outperform a single LLM such as GPT-4, which
is trained on massive amount of data and a wide
variety of tasks. However, when considered col-
lectively as a group, with each person contributing
their unique expertise and wisdom, human intelli-
gence exceeds that of LLMs. To verify our hypoth-
esis and gain deeper insights into the relationship
between the intelligence of humans and LLMs, we
conduct further analyses in the next section.

Fail Mostly
Wrong

Partially
Wrong

Less
Efficient

Perfect

D
en

si
ty

Human vs GPT-4 on Creative Problem Solving
Individual GPT-4
Individual Human

Figure 6: The kernel density estimate of individual hu-
man and GPT-4 answers.

5 Comparing GPT-4 with Humans

5.1 Humans have higher variance than LLMs.

We plot the kernel density estimate (KDE) of in-
dividual human and GPT-4 responses in Figure 6.
We can see that humans either approach a prob-
lem perfectly or fail totally. Namely, once humans
understand the task and acquire the relevant knowl-
edge, they can always propose a feasible and often
the most efficient solution. On the contrary, GPT-4
responses fall more into the middle (mostly/par-
tially wrong, or inefficient), owning to its ability to
aggregate information from a wide range of sources
it has been trained on. However, GPT-4 is some-
times ignorant of tool affordances or consequences
of its proposed actions, lacking the depth of under-
standing that humans possess (see more detailed
error analysis in §6.1).

5.2 Humans possess better general everyday
knowledge, but less domain-specifically.

Next, we visualize the capability of humans and
GPT-4 on individual problems in a 2D plot (Figure
7). Accordingly, we convert categorical labels into
numerical scores ranging from 0 (Fail) to 1 (Per-
fect), and take the average score across solutions.
We also plot the diagonal line: the farther away
a point is from this, the larger the gap between
human and GPT-4 performance.

We find that humans are better at solving tasks
in categories likely to be familiar to them, such
as household and personal life. For those requir-
ing domain-specific knowledge such as gardening/-
farming/fishing, GPT-4 performs better. The same
holds when we manually inspect the outliers: those
few problems that belongs to everyday categories
yet humans are poor at. Unsurprisingly, they are
problems such as demonstrating the concept of re-
fraction without a prism (category: school), and
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Error Description Example Freq.

(1) Wrong tool usage. Using tools in ways that are physically
infeasible or not afforded

Using the stapler to staple the duct tape on top of
broken glasses.

42.4%

(2) Not achieving the goal. The proposed approach contains
unnecessary or wrong steps towards the stated goal

To save space when packing, use the scissors to
cut the comforter into smaller pieces.

17.7%

(3) Using unavailable tools. - 16.9%

(4) Wrong spatial understanding Putting the shoe box inside the empty DVD case. 10.8%

(5) Unfaithful to constraints. Ignoring constraints added to
a tool or a situation

- 9.5%

Table 2: Categories of common errors made by GPT-4. It is highly prone to coming up with actions that are
physically infeasible, unnecessary, or wrong. An erroneous solution may have more than one type of mistake.

0.0 0.2 0.4 0.6 0.8 1.0

Human scores

0.2

0.4

0.6

0.8

1.0

G
PT

-4
 s

co
re

s

2D visualization of individual problems

household
personal life
in the city
school/office/work

Category
seaside/snow/beach
camping/in the wild
gardening/farming/
fishing

Figure 7: 2D visualization of human (x-axis) and GPT-
4 (y-axis) performance on individual problems. Each
dot represents a problem, with its color representing
seven different categories. Humans are better at solving
problems that they are familiar with (e.g., household),
than those requiring domain-specific knowledge (e.g.,
gardening/farming/fishing).

making a sundial (category: beach), which an aver-
age person might have little experience with. Refer
to §A.1 for examples and other comparisons.

Overall, the different creative strengths of hu-
mans and AI systems suggests that the most effec-
tive solutions to tasks requiring thinking “out-of-
the-box” might arise from a collaborative approach
leveraging the strengths of both parties.

6 Enhancing LLMs’ Problem Solving

Here, we investigate whether different prompting
strategies can enhance the problem-solving abilities
of existing LLMs. In §6.1, we conduct a detailed
error analysis on GPT-4, showing it is weakest at
identifying the correct tool affordance and physical
feasibility. In §6.2, we propose two new prompting
strategies that effectively reduce its mistakes.

6.1 Error Analysis for GPT-4

To better understand the limitations of LLMs and
provide insight for potential improvement, we man-
ually analyze 200 solutions generated by GPT-4
marked as infeasible by human annotators. We
identified five common failure modes in Table 2.

We find that GPT-4 is highly prone to proposing
physically infeasible, unwanted, or wrong actions.
In Table 2, error type (1) wrong tool usage accounts
for ∼half of all the errors made (42.4%), followed
by (2) not achieving the goal (17.7%). It is crucial
to highlight that LLMs act in a fictional setting,
failing to realize the consequences of their pro-
posed actions and the affordances of tools in the
given unconventional context. While one can argue
that LLMs lack direct interaction with the physical
world, the human solvers similarly contemplate the
same task purely in their minds, without any visual
or physical cues. We also observe two types of
hallucination: (3) using unavailable tools and (5)
unfaithful to constraints, which account for 16.9%
+ 9.5% = 26.4% of all the errors made.

6.2 Improving LLMs via Prompting

The common error types in Table 2 motivates us
to explore techniques to enhance LLMs’ problem
solving abilities. Specifically, we explore two
prompting strategies as illustrated in Figure 8:
• Iterative Step-Wise Reflection : A self-

reflection-based strategy. After the LLM gen-
erates an initial solution, we prompt it to verify
if each step is physically feasible and afforded.
Subsequently, it modifies the original solution it-
eratively until no more modifications are needed.

• Divergent-Convergent Thinking: A cognitive-
science-inspired strategy. The LLM is prompted
to first enumerate the affordance of each object
(i.e., divergent thinking) and conclude whether
they are useful, followed by generating the steps
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Solution with 
Vanilla Prompting: 
Use the chopstick 
to gently lift the 
yolk out of the 

bowl, leaving the 
egg white behind. 
Be careful not to 
break the yolk.

Figure 8: Proposed prompting methods: iterative step-wise reflection (left), divergent-convergent thinking (right).

30.1

38.7
31.2

0.0

32.3

45.7

21.5

0.5

36.6 36.0
26.9

0.5

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 9: Results of different prompting strategies with
GPT-4 in a zero-shot fashion: 1) vanilla prompting,
2) iterative step-wise reflection (self-reflect), and 3)
divergent-convergent thinking (div-conv).

towards the goal (i.e., convergent thinking).
We implement both prompting strategies with

GPT-4, Claude2, and Llama2-13b on 180
randomly-sampled solvable problems that do not
overlap with those used in §6.1. The performance
of the standard prompting and two proposed im-
provements for GPT-4 (and the remaining two
LLMs) are shown in Figure 9 (and Appendix A.3).

For GPT-4, both proposed prompting methods
contribute to a reduction in infeasible solutions.
Intuitively, Self-Reflect, which is designed to
verify the feasibility of steps, has a larger improve-
ment in reducing infeasible solutions (9.7% vs
4.3% drop); while Div-Conv Thinking, which
is designed for better preparation before generating
the solution, is more helpful in generating efficient
solutions (6.5% vs 2.2% gain). Comparing all three
LLMs, Div-Conv Thinking is shown to be ben-
eficial for all, both in terms of efficiency and fea-
sibility, but Claude2 and Llama2’s performances
do not improve with Self-Reflect. Such a find-
ing implies that, smaller models so far still lack
the inherent ability to self-reflect and reason about
physical consequences which GPT-4 is capable of.

7 Related Work

Model Description Example

Mini-C
Developmental achievement
in the learning process.

A pupil applying a strategy
learned in a math class into
her science project.

Little-C
Everyday innovation that
ordinary people engage with.

Removing wrinkles on a
shirt without possession of
an iron.

Pro-C Professional expertise
Writing poems or stories
that receive professional
recognition.

Big-C
Legendary innovation that
redirect a field.

Albert Einstein arriving at
general relativity.

Table 3: The Four-C model of creativity.

Creativity Theory Guilford (1967a) defines a
meaningful creative process as an interplay be-
tween spontaneous (divergent, to come up with
novel ideas) and controlled (convergent, to satisfy
the demand of the task) modes of thinking. Kauf-
man and Beghetto (2009) categorize human cre-
ative activities into four dimensions (Table 3), rang-
ing from everyday innovation that ordinary people
have knowledge of (e.g., removing wrinkles on a
shirt without possession of an iron) to highly emi-
nent innovation that few people engage with.

In the AI-related creativity community, every-
day innovation which better reflects the activi-
ties that most people may engage in, is under-
explored possibly due to the lack of a sizable
dataset. For example, recent work (Koivisto and
Grassini, 2023) study problems with four objects:
rope, box, pencil, and candle. We bridge this gap
by contributing a dataset with 1,600 everyday prob-
lems. collins2022structured In the AI-related cre-
ativity community, everyday innovation which bet-
ter reflects the activities that most people may en-
gage in, is under-explored possibly due to the lack
of a sizable dataset. For example, recent work
(Koivisto and Grassini, 2023) study problems with
four objects: rope, box, pencil, and candle. We
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bridge this gap by contributing a dataset with 1,600
everyday problems.

Cognitive Bias Functional fixedness is a cogni-
tive bias limiting our ability to use familiar ob-
jects in novel ways. For example, struggling to see
a chair as anything other than a seat exemplifies
this. These biases subtly impact our daily deci-
sions, often unconsciously. Over 82% of the solv-
able problems in MACGYVER require using tools
unconventionally to bypass such a bias. A similar
work to ours (Collins et al., 2022) explored LLMs’
problem-solving ability in out-of-distribution rea-
soning tasks.

Machine Physical Reasoning Previous research
such as Hong et al. (2021) and Bakhtin et al. (2019)
investigated physical reasoning in visual contexts.
In the realm of language-based physical reason-
ing, prior studies primarily focused on understand-
ing physical concepts and attributes of various ob-
jects, such as PROST (Aroca-Ouellette et al., 2021),
and NEWTON (Wang et al., 2023). Relatedly,
SWAG (Zellers et al., 2018) introduced the task
of grounded commonsense inference about phys-
ical situations. PIQA (Bisk et al., 2020), which
tests machines’ physical commonsense reasoning
ability is most similar. While proficiency in ad-
dressing problems in MACGYVER involves all the
above abilities, our emphasis extends beyond. We
focus on unconventional tool usage, reasoning over
the affordance of tools and ruling out unnecessary
ones, and how individual objects can be used in
combination to achieve a complex goal.

8 Discussion and Conclusion

Significance of Work We propose a new play-
ground and the accompanying MACGYVER dataset
for creative problem solving, which covers a broad
range of topics for everyday innovation, such as
household, training, and outdoor sports, which is
orthogonal to the existing areas of reasoning and
creativity, and adds to the spectrum of machine
intelligence.

The area of daily innovation, or “little-c” accord-
ing to the creativity theory (Table 3), is a stand-
alone type of creativity and better reflects the cre-
ative activities that normal people engage with, but
is much less studied than math, logical reasoning,
or writing problems. These so-called daily activi-
ties can be complex too, by involving multiple-step
planning for efficiency, ruling out possibilities in

a large search space, using multiple tools in an
unconventional manner that even humans find dif-
ficult. Namely, solving these “daily activities" re-
quires different kinds of creativity from scientific
discovery, art, etc., and have a high potential for AI
making people’s daily life more enjoyable.

Conclusion We present MACGYVER, a novel
benchmark focusing on everyday innovation that is
carefully collected with quality and diversity con-
trol. We evaluate and compare both LLM and hu-
man performances, and highlight failure modes
of LLMs in proposing physically feasible actions
towards a goal. Nonetheless, we find LLM capa-
bilities to be complementary to human capabilities
under certain domain-specific settings. We pro-
pose two new prompting methods that effectively
improve this reasoning ability in LLMs.

9 Future Opportunities

We hope MACGYVER dataset opens the door to
multiple future directions that will contribute to the
broader goal of creating AI systems that can intelli-
gently and flexibly interact with their surroundings.
For example in this paper, we provide a preliminary
attempt to improve the capability of LLMs via two
prompting strategies. We encourage future inves-
tigation into planning and reasoning strategies to
enhance LLMs with physical knowledge and spa-
tial understanding, and to reduce hallucination. To
further ameliorate the mistakes made by LLMs in
a fictional setting, future work are encouraged to
build embodied agents that can interact with physi-
cal or simulated worlds and receive feedback from
the environment.

Finally, we encourage automatic evaluation
methods for this complex reasoning task. For exam-
ple, using LLMs to extract claims from the candi-
date solutions, and examine the physical feasibility
(or predict the consequences) of proposed actions
based on some physical world knowledge.
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Limitations

Measuring how well a model can solve creative
problems is hard due to the lack of standardized
automated metrics. For example, assuming the
availability of multiple references, popular auto-
matic NLG metrics exhibit a weak correlation with
human judgment, with Pearson correlation coeffi-
cients of 0.07 for BLEU-2/BLEU-3 (Papineni et al.,
2002) and 0.12 for BertScore (Zhang et al., 2019).
Our experiments thus rely on human evaluation pro-
cess, which is relatively slow and costly. Therefore,
new proposals for efficient and automatic evalua-
tion framework for creative and sequential plan-
ning could be a compelling future direction. In
addition to the MACGYVER Dataset, we release
human annotations for all the solutions tested in
benchmarking. We hope these additional 4,100
answer-annotation pairs, containing a full gradient
of correctness (completely wrong, partially correct,
correct but less efficient, and perfect), will facilitate
future works in automatic evaluation.

Another limitation of our study lies in the na-
ture of our problems being generated by an LLM,
GPT-4. Despite its strengths in exploring a unique
and novel angle of problem-solving, it might also
exhibit inherent biases and tendencies of the under-
lying model. Given GPT-4’s predominant training
on English-speaking data, we may inadvertently
reflect the cultural nuances of North American and
European contexts.
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Figure 10: Number of problems (out of 323) that at least
20%, 40%, 60%, 80%, 100% human participants (or
GPT-4) answer correctly.

A Additional Results

A.1 Comparing GPT-4 with Humans

What percentage of individual humans outper-
form AI? Figure 10 compares human and ma-
chine by showing the number of problems (out
of 323) that at least 20%, 40%, 60%, 80%, and
100% human participants (or GPT-4) answer cor-
rectly. Given the unique strengths and knowledge
scopes of different individuals, it is less likely that
all human participants can answer the same prob-
lem correctly. However, there is a higher chance
where at least 60% human participants know the
answer.

Complementary capabilities of human and AI.
Figure 11 presents two examples showing the com-
plementary capabilities of human and AI in cre-
ative problem solving. In problem (c), human par-
ticipants find a more efficient solution to heat the
pizza than GPT-4. In problem (d) requiring do-
main knowledge gardening, humans fail to solve
this highly-specialized task, whereas the LLM has
equipped itself with such domain knowledge dur-
ing massive pre-training.

What tools are human more proficient at? Re-
call that in §5.2 we convert the categorical labels
into numerical scores ranging from 0 (Fail) to 1
(Perfect) to conduct problem-wise analysis. Simi-
larly, we conduct object-wise analysis by first pars-
ing the tools presented in each problem, and then
calculating the same numerical scores for each tool.
Note that we opt to parse all the tools presented in
the problem setting instead of those actually used
in a proposed solution, because being able to rea-
son about the potential usage of presented tools
and conclude to not use a possible tool is also an
keystone towards intelligence. We identify several
tools that humans and GPT-4 attempt most differ-

Problem (c): You want to heat your leftover pizza 
in the hotel room but there is no microwave. 
Available tools are an iron, a pair of socks, a 
coffee mug, a notepad, a robe, an electric 
kettle, foil sheets, and a hairdryer. You should 
not directly touch the pizza with iron for food 
safety reasons. How to 
heat the pizza using 
these items only?

“Boil the water with 
kettle. Wrap pizza with 
foil. Use the steam to 

heat the pizza!”
“Wrap pizza with foil. It 

is now safe to iron!”

Problem (d): Your short-stemmed flowers are being 
invaded by small aphids. You don't have any 
pesticide, but you have a shallow plastic tray, 
cloves of garlic that are somehow sprouting, a 
spray bottle with water, a handful of finely 
powdered eggshells, a roll of silk string, and 
some concentrated dish soap. How can you protect 
your plants without harming them? 

“Tough. I don’t know how 
to repel aphids …”

Garlic contains natural sulfur 
compounds that are effective 

against pests like aphids. Strain 
and add finely powdered 

eggshells for extra plant health.”

“Crush garlic cloves and 
soak them in water.

Figure 11: Detailed examples showing the complemen-
tary capabilities of human and GPT-4. In problem (c),
human participants find a more efficient solution to heat
the pizza than AI. In problem (d), humans fail to solve
this highly-specialized task to repel aphids, whereas the
LLM has equipped itself with domain knowledge on
gardening during massive pre-training.

ently and report them in Table 4. For example, hu-
mans are more proficient at attempting magnifying
glass, rocks, calculators, knifes, etc., whereas AIs
are better attempting mirrors, gloves, and scarves.
In general, there are more tools humans are profi-
cient at.

A.2 Benchmark Results

We report the benchmark results in Table 5. Cate-
gory A, B, and C are the three aspects of correct
responses, while the remaining D, E, and F are as-
pects of the wrong ones. At a glance, despite vary-
ing in their characteristics, all of the benchmarked
LLMs lag behind the performance of humans.

A.3 Enhancing LLMs’ Problem Solving

Results with Claude2 and Llama2 We report
the performance of the standard, zero-shot prompt-
ing and two proposed improvements for Claude2
and Llama2-13b in Figure 12 and Figure 13.

5314



Object Human-AI
Difference

A. human>AI

magnifying glass 0.602
rock 0.447
calculator 0.405
kitchen knife 0.386
hair tie 0.359
paper cup 0.292
zip ties 0.283
pen 0.281
kettle 0.273
old t-shirt 0.252
sunscreen 0.25

B. human<AI

mirror -0.314
gardening gloves -0.311
scarf -0.307
tablecloth -0.289
clothespins -0.253

Table 4: Tools that human are more proficient at lever-
aging or deciding to not leverage than AI (GPT-4 in our
case), and vice versa.
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Figure 12: Results of different prompting strategies
with Claude2. We compare 1) vanilla prompting, 2)
iterative step-wise reflection (reflect), and 3) divergent-
convergent thinking (div-conv).

Different from GPT-4 (shown in Figure 9), the
self-reflection strategy does not help any of
these two models to reduce infeasible answers.
When prompted to reflect on its previous answer,
Llama2 always claims that its original answer is
mistaken and attempts to correct itself blindly. We
hypothesize that these two LLMs are weaker than
GPT-4 and lack the inherent ability to faithfully
conduct complicated physical reasoning. On the
other hand, we see that Divergent-Convergent
Thinking is beneficial for all LLMs across all di-
mensions.

B The Four-C Creativity Model

Kaufman and Beghetto (2009) propose the Four-C
model (Table 3), categorizing human creative activ-
ities into Mini-C: developmental creativity in the
learning process, Little-C: everyday innovation
that ordinary people have knowledge of and engage

5.3
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61.7

5.33.2
11.8

84.9
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10.1
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Figure 13: Results of different prompting strategies
with Llama2-13b. We compare 1) vanilla prompting, 2)
iterative step-wise reflection (reflect), and 3) divergent-
convergent thinking (div-conv).

with (such as removing wrinkles on a shirt without
possession of an iron) , Pro-C: professional exper-
tise such as writing poems or painting artwork, and
Big-C: highly eminent innovation that few people
engage with.

C More Information on the MACGYVER
Dataset

C.1 Human Verification Process
After generating the challenging scenarios, we in-
volve human verifiers to judge if the final versions
of the problems 1) are solvable (i.e., it is possible
to find a reasonable solution using the presented
tools), unsolvable, or need more clarification (i.e.,
the setup is vague or contradictory, which will
be discarded), and 2) for those solvable, whether
solving them efficiently requires creative thinking
(i.e., using objects to achieve goals they were not
originally designed for —unconventional usage).
Each problem is annotated by three human veri-
fiers from Amazon Mechanical Turk. The detailed
verification interface can be found in Appendix
D.4. The average inter-annotator agreement (IAA),
measured by Cohen’s Kappa, are 0.67 and 0.77 for
tasks 1) and 2), respectively.

C.2 Collecting Gold Solutions
We provide more details on the final step of our
data collection —to pair each problem with a gold
answer. For the solvable subset, the answer is a
feasible solution written step by step. For the un-
solvable subset, the answer is a correct explanation
for why the stated goal cannot be achieved.

To save human effort, we start by leveraging the
generative strengths of a powerful LLM, i.e., GPT-
4. Specifically, we first prompt GPT-4 to generate
a solution for each problem in the MACGYVER

dataset. Then, human verifiers assess whether the
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Correct (%) Wrong (%)
A. Eff-
icient

B. Less
Efficient

C. Uns-
olvable

Correct in
Total (↑) D. Partial E. Mostly F. Fail to

Identify

Wrong in
Total (↓)

Single Effort

Llama2-7b 8.9 18.1 8.5 35.5 6.9 27 30.6 64.5
Llama2-13b 11.7 28 2.3 42.0 12.1 32.3 13.6 58.0
Llama2-70b 11.6 24 5.6 41.2 14.0 27.2 17.6 58.8
PaLM2 14.7 25.9 0.0 40.6 10.8 35.5 13.1 59.4
Claude2 14.0 22.2 16.5 52.7 8.2 12.3 26.7 47.2
GPT-3.5 13.8 15.4 11.4 40.6 10.2 11.4 37.8 59.4
GPT-4 (Random) 24.8 35.5 2.1 62.4 11.9 14.9 10.8 37.6
Human (Random) 27.6 27.6 9.9 65.1 5.6 10.8 18.6 35.0

Multiple Efforts

Average GPT-4 24.8 33.2 5.0 63.0 12.5 15.7 8.7 36.9
Average Human 26.2 28.7 12.9 67.8 5.1 10.2 16.9 32.2
Best GPT-4 62.5 21.1 8.7 92.3 2.2 4.3 1.2 7.7
Best Human 72.8 15.2 10.8 98.8 0.6 0.6 0.0 1.2

Table 5: Top: Benchmark results of seven LLMs and human with a single effort. For human participants, there is
no single participant who worked on all problems. So we take a random response from each problem. Bottom:
Comparison between GPT-4 and human where we evaluated multiple solutions per problem. The best performance,
which can be viewed as an upper bound, is computed by taking the individual best answer (out of 4) for each
problem. We use boldface to denote the best performance and underline to denote the second best.

generated solutions are valid. Only if all three ver-
ifiers agree that a solution is valid, it becomes part
of our dataset. Otherwise, we ask human workers
to write down a solution (for solvable subset) or a
justification (for unsolvable subset).

C.3 Does the data collection pipeline result in
progressively challenging problems?

To test whether our data creation pipeline (in Fig-
ure 2) is indeed iteratively posing challenge to a
previous iteration, we collect GPT-4 answers to
iteration 1, 2, and 3 of 200 problems, and run the
same human evaluation process described in §4.3.

GPT-4’s performance on all three iterations of
the same set of problems can be found in Table 7.
As the problems get iteratively refined, the ratio of
feasible and efficient solutions decrease, and the
ratio of infeasible answers increase. This reflects
that most potent LLM, GPT-4, indeed finds the
problems increasingly challenging.

C.4 Diversity Control

Tags used for Diversity Control Before the first
iteration, we hand craft more than 50 tags of lo-
cations and activities, aiming to ensure that our
data collection pipeline delves into a variety of
topics. The tags cover diverse range of human
activities, from indoor ones such as home arrange-
ment and working in the office, to outdoor ones
such as hiking, gardening, and playing with wa-
ter. These predefined tags are integrated into the
prompt that we used to query GPT-4 for problem
curation at Iteration 1. We list all the tags (i.e., lo-

cations and activities) used to curate the dataset in
Table 6. They are introduced to prompt the LLM
for diversity control, and can be broadly divided
into Indoors/Household, Neutral, and Outdoors.

Generation in Batch All problems are gener-
ated and refined in batches of 15 rather than one
by one, as we find out the former results in signifi-
cantly higher diversity. We then leverage a widely-
used sentence transformer (Reimers and Gurevych,
2020) to filter out any newly generated problem
that is semantically similar to the existing ones in
our database.

Analyzing Tool Affordance We leverage GPT-
4 to analyze the affordance of presented tools in
the MACGYVER dataset. Specifically, we start
with a small set of hand-crafted affordance as seed.
Despite being required to choose only from this
fixed list of affordances, GPT-4 does not strictly
follow our instruction, and sometimes returns new
types that are not included in the seed list. We then
gradually expand the list of affordances with newly
generated ones.

For eliciting tool affordances, we use the prompt
shown in Figure 14.

Commonly-presented tools and their frequen-
cies In total, more than 3,800 different tools ap-
pear in our MACGYVER dataset. We list in Table 8
16 commonly-presented tools, their featured affor-
dances, and frequency. The number of unique tools
and the long tails in distribution signify a desirable
level of diversity.
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Indoors/Household Neutral Outdoors

bedroom at a party at the beach
closet or storage organization classroom and university lecture hall backyard gardening
cooking a complex dish dog training beach cleanups, or planning a beach event
dining room garage boat trip
fitness workouts going out for a meal campsite setting
gym and sports facilities plants, flowers and garden city streets and sidewalks
hair styling and care public speaking construction work
home improvement recycling and waste management desert survival
in a hotel room school and student activity exploring a cave
indoors arrangement school science fair farm duties
kitchen science laboratory forest and jungle
library swimming hiking, camping, and traveling
living room university campus in the parks
office and work vehicle maintenance in the rain
packing things up weather preparation and response in the winter
personal grooming and beauty routine in the zoo
shopping on the playground

playing with snow
playing with water
rooftop terrace

Table 6: The tags (i.e., locations and activities) used to curate the dataset for diversity control. They can be broadly
divided into Indoors/Household, Neutral, and Outdoors.

Solutions Feasible
& eff. (↑)

Feasible
& ineff.

Infeasible
(↓)

LLM says
unsolv. (↓)

Iteration 1 39.1% 36.8% 24.0% 0.1%
Iteration 2 34.7% 32.2% 31.7% 1.4%
Iteration 3 25.4% 37.9% 35.7% 1.0%

Table 7: GPT-4 performance on iteration 1, 2, and 3 of
200 problems. Numbers in each row add up too 100%.

D Experimental Details

D.1 Benchmark Setup

Recruiting MTurk Evaluators We used qualifi-
cation tasks to recruit 160 qualified annotators on
Mechanical Turk. They are paid over 18 USD per
hour for all the evaluation and verification tasks.

Collecting Human Solutions on Prolific All par-
ticipants of human study provide informed con-
sent in accordance with an approved Princeton Uni-
versity institutional review board (IRB) protocol
(10859). For a given problem, participants indi-
cated whether they believed the problem is solv-
able, unsolvable, or required further clarification.
If solvable, they provided a step-by-step solution,
and otherwise they explained why the problem was
unsolvable. A screenshot of the elicitation interface
is shown in Figure 22.

Collecting Multiple GPT-4 Responses in Bench-
mark Recall that in §4.2, we elicit multiple solu-
tions exclusively from the most potent LLM, GPT-

4, to emulate the same setup of human study. To
align with the varying number of human responses
for different problems, we adjusted the quantity of
collected GPT-4 answers to match that of human
answers. On average, we elicited four GPT-4 so-
lutions per problem through separate API call. To
this end, four manually-designed instructions are
used to prompt GPT-4 to reduce repetition among
separate sessions. For each API call, we still adopt
Nucleus sampling and return the top one sequence.

D.2 Analyzing Results

Each machine-generated or human-written answer
is annotated by three Mturk workers, with an aver-
age IAA of 0.71 as measured by Cohen’s Kappa,
indicating a substantially strong agreement. Inter-
estingly, we notice that human workers disagree
more often when deciding whether a solution is
efficient or inefficient. Upon further investigation,
we realize this is partially due to the limitation of
individual annotator’s capability – a person who is
unaware of the most efficient solution might label a
sub-optimal one as highly efficient. Therefore, for
those generated solutions linked to solvable prob-
lems, instead of taking the majority vote, we take
the worse labels as the golden label (e.g., taking ‘in-
eff.’ from [‘eff.’, ‘ineff.’, ‘eff.’]). For all other cases,
we still take the majority votes as gold labels. We
find such modification leads to a more accurate set
of labels.
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1 <−− Instruction . −−>
2 You need to write the most common affordances of an

item. Please choose one or more options from the
following :

3 <−− Seed list to expand with . −−>
4 Container / holding items , covering , heating , measuring,

drawing/ writing , cleaning , sitting / stepping ,
tying or connecting , illumination , stretching ,
starting fire , sealing , cutting , separation ,
reaching high areas , powering devices , digging ,
making noise , flatten , cutting , gripping things ,
reflecting , eaten as food.

5

6 <−− Examples. −−>
7 Here are some examples:
8 rice : eaten as food
9 case : container / holding items , protection , covering

10 ruler : measuring, straightening
11 box: container / holding items
12 pencil : drawing/ writing ,
13

14 <−− Actual Task. −−>
15 Please write the common types of affordances of the

following tools .
16

17 1. {Tool 1}.
18 ...
19 N. {Tool N}.

Figure 14: The prompt used to analyze tool affordance.
We start with a list of affordances as seed. We gradually
expand our list thanks to the fact that GPT-4 does cannot
strictly follow our instruction and occasionally gener-
ates other affordances not belonging the predefined set.

D.3 The Prompts for Improving LLM’s
Ability

Figure 15 and Figure 16 list the actual prompts for
Self-Reflection and Divergent-Convergent
Thinking.

D.4 Human Task Interfaces

Data Collection and Difficulty Assessment. In
practice, we combine the questions of data collec-
tion (§2) and difficulty assessment (§3) into one
single task. The detailed human annotation inter-
face, including the instructions, examples, and the
actual task and be found in Figure 17 to Figure 21.

Human Study A screenshot of the interface to
elicit independent human responses is shown in
Figure 22. For a given problem, participants in-
dicate whether they believe the problem is solv-
able, unsolvable, or required further clarification.
If solvable, they provide a step-by-step solution,
and otherwise they explain why the problem was
unsolvable.

Tool Affordance Freq.

duct tape sealing; tying or connecting 2.0%

plastic bag container or holding items;
covering 0.7%

flashlight illumination 0.7%
aluminum foil covering; heating; sealing 0.6%
hairdryer heating; drying; making noise 0.5%
ruler measuring; straightening 0.4%

broom cleaning; sweeping; reaching
high areas 0.4%

spoon eating; stirring; measuring 0.4%
toothbrush cleaning; spraying 0.4%
mag. glass magnifying; starting fire 0.4%

rope tying or connecting; reaching
high areas 0.4%

hammer flattening; gripping things;
making noise 0.3%

yoga mat stretching; sitting/stepping;
covering 0.3%

towel wetting; covering; absorbing 0.3%
frisbee playing; throwing 0.3%
toothpick cleaning; separating 0.3%

Table 8: Examples of most commonly presented tools,
their featured affordances, and frequency of these tools
in the entire dataset. We randomly pick 16 tools from
the top 40 frequent ones in the MACGYVER dataset.
In total, more than 3,800 different tools appear in our
dataset.

Benchmark Evaluation The screenshots of our
human evaluation interface for the benchmark ex-
periment can be found in Figure 23 and 24.
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1 <−− Round 1: −−>
2 User: {Problem Statement}
3 If the problem is solvable , provide a concise solution . Use step1 , step2 , etc , and mention the tools to achieve

each step . Use as few steps as possible and the answer should ideally be less than 100 words.
4

5 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
6

7 Assistant : {Answer}
8

9 <−− Round 2: −−>
10 User: Now, please verify if each step is physically feasible and afforded . After that , modify the solution if

needed.
11 Use the following format :
12 Step 1: ...
13 Step 2: ...
14 ...
15 Conclusion 1: Whether the problem is indeed solvable given all the constraints
16 Conclusion 2: ( If still solvable ) No modification needed/ Modification needed.
17

18

19 Modified solution :
20 Assistant : {Response and Updated solution }
21 <−− Repeat until no modification is needed.−−>

Figure 15: Prompt used for the step-by-step verify strategy.

1 User: {Problem Statement}
2 Give a feasible solution very concisely . Note that some tools are not useful , so please analyze the affordance

of each presented object , and rule out unnecessary ones first .
3

4

5 Use the following format :
6 1. List the affordance of presented items and whether they are useful
7 2. Summary: list useful tools
8 3. If the problem is solvable under all these constraints , write the solution . Use step1 , step2 , etc , and

mention the tools to achieve each step . Use as few steps as possible and the answer should ideally be less
than 100 words.

9

10 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
11

12 Assistant : {Analysis of the affordance and the main answer}

Figure 16: Prompt used for the divergent-convergent thinking strategy.
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Figure 17: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 1.
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Figure 18: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 2.

Figure 19: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 3.

5321



Figure 20: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 4.

Figure 21: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 5.
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Figure 22: Human Study Interface to Collect Independent Human Responses.

Figure 23: Human Evaluation Interface for Benchmarking, Page 1.
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Figure 24: Human Evaluation Interface for Benchmarking, Page 2.
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