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Abstract

Named Entity Recognition (NER) is essential
in various Natural Language Processing (NLP)
applications. Traditional NER models are ef-
fective but limited to a set of predefined entity
types. In contrast, Large Language Models
(LLMs) can extract arbitrary entities through
natural language instructions, offering greater
flexibility. However, their size and cost, particu-
larly for those accessed via APIs like ChatGPT,
make them impractical in resource-limited sce-
narios. In this paper, we introduce a compact
NER model trained to identify any type of en-
tity. Leveraging a bidirectional transformer en-
coder, our model, GLiNER, facilitates parallel
entity extraction, an advantage over the slow
sequential token generation of LLMs. Through
comprehensive testing, GLiNER demonstrate
strong performance, outperforming both Chat-
GPT and fine-tuned LLMs in zero-shot evalua-
tions on various NER benchmarks.

1 Introduction

Named Entity Recognition plays a crucial role in
various real-world applications, such as construct-
ing knowledge graphs (Ye et al., 2022; Zaratiana
et al., 2024). Traditional NER models are lim-
ited to a predefined set of entity types.Expanding
the number of entity types can be beneficial for
many applications, but it may require labeling data
and retraining a model, which can be costly and
time-consuming. The emergence of large language
models (LLMs), like GPT-3 (Brown et al., 2020),
has introduced a new era for Open NER by en-
abling the extraction of any entity type using only
natural language instructions. However, powerful
LLMs typically comprise billions of parameters
and thus require substantial computing resources.
Although it is possible to access some LLMs via
APIs (OpenAI, 2023), using them at scale can incur
high costs.

In spite of cost considerations, researchers have
recently explored the fine-tuning of open-source

# Installation: pip install gliner
from gliner import GLiNER

# load model
model = GLiNER.from_pretrained("urchade/gliner_base")

# choose labels
labels = ["person", "organization", "date"]

text = "Bill Gates founded Microsoft on April 4, 1975."

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])

## Expected output:
# Bill Gates => person
# Microsoft => organization
# April 4, 1975 => date

Figure 1: GLiNER for open type NER. GLiNER is
capable of identifying any entity type using a bidirec-
tional transformer encoder (BERT-like). It provides a
practical alternative to traditional NER models, which
are limited to predefined entities, and Large Language
Models (LLMs) that, despite their flexibility, are costly
and large for resource-constrained scenarios. GLiNER
can be easily installed via pip and its pretrained models
are hosted on HuggingFace, ensuring easy accessibil-
ity. Moreover, it can run efficiently on CPU, making
GLiNER especially suitable for environments with lim-
ited computing power.

language models such as LLaMa (Touvron et al.,
2023) for NER. Wang et al. (2023), for example,
introduced InstructUIE, a fine-tuned FlanT5-11B
model (Raffel et al., 2019; Chung et al., 2022)
on existing information extraction (IE) datasets,
achieving high performance in zero-shot settings.
Sainz et al. (2023) proposed GoLLIE as an exten-
sion of InstructUIE which work by fine-tuning a
CodeLLaMa (Rozière et al., 2023) using detailed
annotation guidelines, obtaining significant perfor-
mance improvements. Another recent proposal by
Zhou et al. (2023), called UniversalNER, involves
the fine-tuning of LLMs using diverse datasets
from various domains, annotated with ChatGPT
instead of relying on standard NER datasets. Re-
markably, their approach not only replicates but
also surpasses the original capability of ChatGPT
when evaluated in zero-shot settings.
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Figure 2: Model architecture. GLiNER employs a BiLM and takes as input entity type prompts and a sentence/text.
Each entity is separated by a learned token [ENT]. The BiLM outputs representations for each token. Entity
embeddings are passed into a FeedForward Network, while input word representations are passed into a span
representation layer to compute embeddings for each span. Finally, we compute a matching score between entity
representations and span representations (using dot product and sigmoid activation). For instance, in the figure, the
span representation of (0, 1), corresponding to "Alain Farley," has a high matching score with the entity embeddings
of "Person".

While these approaches have achieved remark-
able results, they present certain limitations we seek
to address. They use autoregressive language mod-
els, which can be slow due to sequential generation.
Moreover, these models have several billion param-
eters, limiting their deployment in compute-limited
scenarios.

In this paper, we propose a model that addresses
the above-mentioned problems. Instead of re-
lying on large autoregressive models, we use a
smaller and more compute-efficient Bidirectional
Language Models (BiLM), such as BERT (Devlin
et al., 2019) or DeBERTa (He et al., 2021). The
core concept of our model involves treating the task
of Open NER as matching entity type embeddings
to textual span representations in the latent space,
rather than as a generation task. This approach
naturally solves the scalability issues of autoregres-
sive models and allows for bidirectional context
processing, which enables richer representations.
When trained on the Pile-NER dataset released by
Zhou et al. (2023), which comprises texts from
numerous domains and thousands of entity types,
our model demonstrates impressive zero-shot per-

formance. More specifilcally, it outperforms both
ChatGPT and fine-tuned LLMs on various NER
datasets without fine-tuning (Table 1). The robust-
ness of our model is particularly highlighted by
its capability to process languages that were not
part of its training data. Notably, it outperforms
ChatGPT in 8 out of 10 such languages, as detailed
in Table 3.

2 Method

This section presents our model, GLiNER, which
is trained to extract any type of entity using a Bidi-
rectional Language Models. Our model has three
main components: i) a pre-trained textual encoder
(a BiLM such as BERT), ii) a span representation
module which computes span embeddings from to-
ken embeddings, iii) an entity representation mod-
ule which computes entity embeddings that the
model seeks to extract. The goal is to have en-
tity and span embeddings in the same latent space
to assess their compatibility (degree of matching).
The overall architecture of our model is depicted in
Figure 2.
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2.1 Architecture

Input format The input to our model comprises a
unified sequence combining entity types (expressed
in natural language) and the input text from which
entities are to be extracted. The input format is as
follows:

Human: [Instruction]  \n Text: Alain Farley works at McGill 
University 
Assistant: I’ve read the text 

Human: What describes person in the text ? 
Assistant: [‘Alain Farley’] 

Human: What describes location in the text ? 
Assistant: [] 

Human: What describes organization in the text ? 
Assistant: [‘Mcgill University’]

Bidirectional LMs 
(BERT, DeBERTa)

(0,1, person)
(4,5, organization)

[ENT] person [ENT] location [ENT]  organization [SEP] 
+  

Alain Farley works at McGill University

a) UniNER (prev) : Prompting LLM for Open NER. 

b) GLiNER (Ours): Prompting BiLM for Open NER.

[ENT]  [ENT]  … [ENT]  [SEP]   … t0 t1 tM−1 x0 x2 xN−1

[ENT] token represents a special token placed
before each entity type and the [SEP] token func-
tions as a delimiter, separating the sequence of en-
tity types from the input text. They are initialized
randomly at the start of training.

Token representation The token encoder pro-
cesses the input to compute interactions between
all tokens (both entity types and input text), pro-
ducing contextualized representations. Let p =
{pi}M−1

0 ∈ RM×D denote the encoder’s output
for the[ENT] tokens, representing all entity types.
Similarly, h = {hi}N−1

0 ∈ RN×D denotes the
representation of each word in the input text. For
words tokenized into multiple subwords, we use
the representation of the first subword, which is a
standard choice in the NER literature.

Entity and Span Representation In our model,
we aim to encode entity types and span embeddings
into a unified latent space. The entity representa-
tion is computed by refining the initial represen-
tation p using a two-layer feedforward network,
resulting in q = {qi}M−1

0 ∈ RM×D. The repre-
sentation of a span starting at position i and ending
at position j in the input text, Sij ∈ RD, is com-
puted as:

Sij = FFN(hi ⊗ hj) (1)

Here, FFN denotes a two-layer feedforward net-
work, and ⊗ represents the concatenation opera-
tion. Moreover, we set an upper bound to the length
(K=12) of the span in order to keep linear complex-
ity in the size of the input text, without harming
recall.

Entity Type and Span Matching To evaluate
whether a span (i, j) corresponds to entity type t,
we calculate the following matching score:

ϕ(i, j, t) = σ(ST
ijqt) ∈ R (2)

In this equation, σ denotes a sigmoid activation
function. As we train with binary cross-entropy

loss (see next sec. 2.2), ϕ(i, j, t) can be interpreted
as the probability of the span (i, j) being of type t.

2.2 Training
During training, our objective is to optimize model
parameters to enhance the matching score for cor-
rect span-type pairs (positive pairs) and reduce it
for incorrect pairs (negative pairs). A span (i, j)
paired with an entity type t forms a positive pair
(s ∈ P) if the span is labeled with type t in the train-
ing data. Otherwise, it is a negative pair (s ∈ N ).
The training loss for an individual example, com-
prising spans S and entity types T , is defined as:

LBCE = −
∑

s∈S×T
Is∈P log ϕ(s)+

Is∈N log (1− ϕ(s))

(3)

The variable s represents a pair of span/entity
type and I is an indicator function, which returns
1 when the specified condition is true and 0 oth-
erwise. This loss function corresponds to binary
cross-entropy.

2.3 Decoding algorithm
In the decoding phase, we employ a greedy span
section that selects entity spans based on matching
scores, to ensure task/dataset specific constraints.
This strategy is applied independently to each sen-
tence. Only, spans (i, j) with matching scores
ϕ(i, j, c) > 0.5 are considered for selection.

Flat NER: The algorithm chooses the highest-
scoring non-overlapping span and continues this
process until all spans are evaluated.

Nested NER: Similar to Flat NER, but the algo-
rithm allows selection of fully nested spans within
other entities while still avoiding partial overlaps.

Algorithm Efficiency: The decoding is imple-
mented using a priority queue for spans, ensuring
an O(n log n) complexity, with n being the num-
ber of candidate spans. Empirically, the size of
n is usually lower than the input sequence length
(Zaratiana et al., 2023).

3 Experimental Setting

3.1 Training data
Our objective is to construct a versatile NER model
capable of accurately identifying any entity types
across different textual domains. To achieve this,

5366



Model Params Movie Restaurant AI Literature Music Politics Science Average

Vicuna-7B 7B 6.0 5.3 12.8 16.1 17.0 20.5 13.0 13.0
Vicuna-13B 13B 0.9 0.4 22.7 22.7 26.6 27.0 22.0 17.5
USM 0.3B 37.7 17.7 28.2 56.0 44.9 36.1 44.0 37.8
ChatGPT – 5.3 32.8 52.4 39.8 66.6 68.5 67.0 47.5
InstructUIE 11B 63.0 21.0 49.0 47.2 53.2 48.1 49.2 47.2
UniNER-7B 7B 42.4 31.7 53.6 59.3 67.0 60.9 61.1 53.7
UniNER-13B 13B 48.7 36.2 54.2 60.9 64.5 61.4 63.5 55.6
GoLLIE 7B 63.0 43.4 59.1 62.7 67.8 57.2 55.5 58.0

GLiNER-S 50M 46.9 33.3 50.7 60.0 60.9 61.5 55.6 52.7
GLiNER-M 90M 42.9 37.3 51.8 59.7 69.4 68.6 58.1 55.4
GLiNER-L 0.3B 57.2 42.9 57.2 64.4 69.6 72.6 62.6 60.9

Table 1: Zero-Shot Scores on Out-of-Domain NER Benchmark. We report the performance of GLiNER with
various deberta-v3 (He et al., 2021) model sizes. Results for Vicuna, ChatGPT, and UniNER are from Zhou et al.
(2023); USM and InstructUIE are from Wang et al. (2023); and GoLLIE is from Sainz et al. (2023).

it is essential that our training dataset includes
a diverse range of entity types from various do-
mains. For this, we utilize the training data re-
leased by Zhou et al. (2023), known as Pile-NER1.
This dataset is derived from the Pile corpus (Gao
et al., 2020), commonly used for pretraining large
language models, and comprises text from diverse
sources. More specifically, to construct the dataset
Zhou et al. (2023) sampled 50,000 texts from the
Pile data and employed ChatGPT to extract their
associated entity types. Notably, they did not spec-
ify the entity types to the LLMs, aiming to extract a
diverse range of entity types. They used the prompt-
ing approach shown in Figure 3.

System Message: You are a helpful information extraction 
system. 

Prompt: Given a passage, your task is to extract all 
entities and identify their entity types. The output 
should be in a list of tuples of the following format: 
[("entity 1", "type of entity 1"), ... ].

Passage: {input_passage}

Please identify Organization, Person, Location, and 
Miscellaneous Entity from the given text, output using the 
format as:

Entity: Organization: None | Person: None | Location: 
Word1, Word2 | Miscellaneous: Word3

Text: {text}

Entity:

Figure 3: Prompting ChatGPT for entity extraction.
This prompt was used Zhou et al. (2023) to construct
the Pile-NER dataset.

Finally, after filtering bad outputs their datasets
result in 44,889 passages containing in total 240k
entity spans and 13k distinct entity types.

3.2 Hyperparameters

Our model, GLiNER, is trained on the Pile-NER
dataset, which we described in the previous sec-
tion. We use the deberta-v3 (He et al., 2021) as

1https://huggingface.co/datasets/Universal-NER/Pile-
NER-type

our backbone due to its proven empirical perfor-
mance. All non-pretrained layers have a width
dimension of 768 and a dropout rate of 0.4. Regard-
ing the training process, we employ the AdamW
optimizer (Loshchilov and Hutter, 2017), setting a
base learning rate of 1e-5 for pretrained layers (the
transformer backbone) and 5e-5 for non-pretrained
layers (FFN layers and span representation). We
trained our models for a maximum of 30k steps,
starting with a 10% warmup phase, followed by
a decay phase using a cosine scheduler. The Pile-
NER dataset natively contains only positive enti-
ties (i.e., entities that are present in the sentence),
and we found it useful to include negative entity
types during training. This is achieved by sam-
pling random entities from other examples in the
same batch. In addition, we follow the strategies
outlined in Sainz et al. (2023) as a form of reg-
ularization, which includes shuffling entity order
and randomly dropping entities. Furthermore, we
limit the number of entity types to 25 per sentence
during training. The larger variant of our model,
GLiNER-L, takes 5 hours to train on an A100 GPU
80 GB memory.

3.3 Baselines

In our evaluation, we compare our model, GLiNER,
with several recent models designed for Open NER.
First, we examine chat models like ChatGPT and
Vicuna (Chiang et al., 2023), which utilize the
prompting from Ye et al. (2023); we present their
results as reported by Zhou et al. (2023).. We also
compare our method to three recent Large Lan-
guage Models (LLMs) that have been fine-tuned
for NER: InstructUIE (Wang et al., 2023), based
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on the FlanT5 11B model and fine-tuned on var-
ious NER datasets; UniNER (Zhou et al., 2023),
which employs a LLaMa model fine-tuned on a
dataset generated by ChatGPT; GoLLIE (Sainz
et al., 2023), fine-tuned to adhere to detailed an-
notation guidelines for enhanced performance in
unseen IE tasks, utilizing CodeLLama as its base
model. Finally, we include USM (Lou et al., 2023)
in our comparison, which is similar in size to ours
but features a different architecture.

3.4 Evaluation

Datasets We primarily evaluate our model in a
zero-shot (i.e, without fine-tuning on the target
dataset) on common NER benchmarks, following
previous works (Wang et al., 2023; Zhou et al.,
2023). The first is the OOD NER Benchmark (Table
1), which comprises seven diverse NER datasets
from CrossNER (Liu et al., 2020) and MIT (Liu
et al., 2013). This benchmark is typically used
for evaluating out-of-domain generalization capa-
bilities of NER models. The second benchmark
consists of 20 NER datasets (Table 2) from a wide
range of domains, including biomedical, news ar-
ticles, and tweets. These datasets are commonly
used for training supervised NER models. Addi-
tionally, we evaluate our model on multilingual
NER datasets (Table 3) for further investigation.
For this purpose, we use the recently released Mul-
tiCoNER (Multilingual Complex NER) (Malmasi
et al., 2022), which contains data in 11 languages
across various domains.

Metric We adopt the standard NER evaluation
methodology, calculating F1-score based on the ex-
act match (span boundary and span type) between
predicted and reference entities.

4 Results

4.1 Zero-shot on English datasets

In this section, we discuss the performance of our
model in a zero-shot context, i.e., by only training
on the Pile-NER dataset without further fine-tuning
on target datasets.

OOD NER Benchmark We first evaluate our
model on the OOD benchmark as reported in Ta-
ble 1. We compare three different sizes of our
model (small, medium, and large) against the base-
lines. The results demonstrate our model’s im-
pressive capability, irrespective of its size. For
example, even our smallest model, with only 50M

Dataset ChatGPT UniNER-7B GLiNER-L

ACE05 26.6 36.9 27.3
AnatEM 30.7 25.1 33.3
bc2gm 40.2 46.2 47.9
bc4chemd 35.5 47.9 43.1
bc5cdr 52.4 68.0 66.4
Broad Tweeter 61.8 67.9 61.2
CoNLL03 52.5 72.2 64.6
FabNER 15.3 24.8 23.6
FindVehicle 10.5 22.2 41.9
GENIA 41.6 54.1 55.5
HarveyNER 11.6 18.2 22.7
MIT Movie 5.3 42.4 57.2
MIT Restaurant 32.8 31.7 42.9
MultiNERD 58.1 59.3 59.7
ncbi 42.1 60.4 61.9
OntoNotes 29.7 27.8 32.2
PolyglotNER 33.6 41.8 42.9
TweetNER7 40.1 42.7 41.4
WikiANN 52.0 55.4 58.9
WikiNeural 57.7 69.2 71.8

Average 36.5 45.7 47.8

Table 2: Zero-shot performance on 20 NER datasets.
Results of ChatGPT and UniNER are reported from
(Zhou et al., 2023).

parameters, outperforms general-purpose models
such as ChatGPT and Vicuna. It also shows bet-
ter performance than the 11B InstructUIE, which
has been instruction-tuned for the NER task. Fur-
thermore, when compared to UniNER, which used
the same training data as GLiNER, our medium-
sized model (90M) achieves comparable results
to UniNER-13B (55 F1 for both), despite being
140 times smaller. Meanwhile, our largest variant
consistently outperforms UniNER by an average
margin of 5 points.. Our best competitor, GoL-
LIE, which leads among the LLMs, achieves better
performance than most of our models but is still
less effective than GLiNER-L. When compared to
USM, which has a comparable number of parame-
ters to ours, our model demonstrates significantly
superior performance, showing the superiority of
our architecture.

20 NER Benchmark table 2 presents a compar-
ison of our model against ChatGPT and UniNER
across 20 diverse NER datasets. First, similar to
the OOD benchmark, ChatGPT significantly lags
behind fine-tuned models for NER. Furthermore,
GLiNER achieves the highest performance on 13
of these datasets, surpassing UniNER by an av-
erage of 2 points. This superior performance un-
derscores GLiNER’s robustness and adaptability
across a broad spectrum of domains. However, a
notable observation is that GLiNER underperforms
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Language Sup. ChatGPT GLiNER
En Multi

L
at

in

German 64.6 37.1 35.6 39.5
English 62.7 37.2 42.4 41.7
Spanish 58.7 34.7 38.7 42.1
Dutch 62.6 35.7 35.6 38.9

N
on

-L
at

in

Bengali 39.7 23.3 0.89 25.9
Persian 52.3 25.9 14.9 30.2
Hindi 47.8 27.3 11.3 27.8
Korean 55.8 30.0 20.5 28.7
Russian 59.7 27.4 30.3 33.3
Turkish 46.8 31.9 22.0 30.0
Chinese 53.1 18.8 6.59 24.3

Average 54.9 29.9 23.6 32.9

Table 3: Zero-Shot Scores on Different Languages.
The baseline, Sup., is an XLM-R (Conneau et al.,
2019) model fine-tuned on the training set of each lan-
guage separately, as reported by Malmasi et al. (2022).
ChatGPT evaluation is taken from Lai et al. (2023).
GLiNER-En employs deberta-v3-large, and Multi
uses mdeberta-v3-base.

compared to UniNER on tweet-based NER datasets.
This highlights potential areas for improvement in
GLiNER’s ability to process informal, colloquial,
or noisy data, typical of social media content.

4.2 Zero-Shot Multilingual Evaluation
In this section, we evaluate the performance of our
model in a zero-shot context on unseen languages
to assess its generalizability. This evaluation uses
the MultiCONER (Malmasi et al., 2022), with re-
sults detailed in Table 3. Our model, GLiNER,
is presented in two variants: En, which employs
deberta-v3-large as its backbone, and Multi,
which utilizes a multilingual version of deberta-v3
(mdeberta-v3). Both versions were fine-tuned on
the Pile-NER dataset. For comparative purposes,
we report results from ChatGPT and a supervised
baseline, the latter being fine-tuned on the training
set of each dataset using separate models.

Results As expected, the supervised baseline
demonstrated superior performance, significantly
outperforming the zero-shot models. Notably,
among these models, GLiNER-Multi showed the
most promising results, surpassing ChatGPT in
the majority of languages. This is particularly
noteworthy given that the fine-tuning dataset, Pile-
NER, comprises solely English examples. While
GLiNER-En generally underperformed compared
to ChatGPT on average, it demonstrated compet-
itive, and occasionally superior, performance in
languages that utilize the Latin script, such as Span-

Dataset InstructUIE UniNER-7B GLiNER-L
w/o w/ w/ w/o

ACE05 79.9 86.7 82.8 81.3
AnatEM 88.5 88.5 88.9 88.4
bc2gm 80.7 82.4 83.7 82.0
bc4chemd 87.6 89.2 87.9 86.7
bc5cdr 89.0 89.3 88.7 88.7
Broad Twitter 80.3 81.2 82.5 82.7
CoNLL03 91.5 93.3 92.6 92.5
FabNER 78.4 81.9 77.8 74.8
FindVehicle 87.6 98.3 95.7 95.2
GENIA 75.7 77.5 78.9 77.4
HarveyNER 74.7 74.2 68.6 67.4
MIT Movie 89.6 90.2 87.9 87.5
MIT Restaurant 82.6 82.3 83.6 83.3
MultiNERD 90.3 93.7 93.8 93.3
ncbi 86.2 87.0 87.8 87.1
OntoNotes 88.6 89.9 89.0 88.1
PolyglotNER 53.3 65.7 61.5 60.6
TweetNER7 65.9 65.8 51.4 50.3
WikiANN 64.5 84.9 83.7 82.8
wikiNeural 88.3 93.3 91.3 91.4

Average 81.2 84.8 82.9 82.1

Table 4: In-domain Supervised fine-tuning. All the
models are fine-tuned on the mix of all training data of
the benchmark. w/ indicates that the model was trained
on the Pile-NER dataset before fine-tuning.

ish and German. However, its effectiveness was
substantially less in non-Latin languages, with a
marked underperformance in Bengali, where it
achieved only a 0.89 F1 score.

4.3 In-domain Supervised tuning

In this section, we perform in-domain supervised
fine-tuning (on 20 NER datasets) of our model
to compare its capabilities against LLMs under
this setup. Specifically, we compare our model
against InstructUIE and UniNER, both of which
have also been fine-tuned. The main difference is
that UniNER has been pre-trained on the Pile-NER
dataset before fine-tuning.

Training Setup For the supervised setting, we ad-
here to the same experimental setup as described in
the main experiment (using deberta-v3 large). Re-
garding the training data, we follow the approach
of InstructUIE: we randomly sample 10,000 data
points for each dataset in the 20 NER benchmark.
If a dataset does not contain 10,000 samples, we in-
clude all available data. We implement two variants
of our model: the first one initializes the weights
from our zero-shot model, which is a pretrained on
the Pile-NER dataset. The second variant is trained
without the Pile-NER dataset, same as InstructUIE.
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Figure 4: Zero-shot performance for different back-
bones. It reports the avg. results on 20 NER and OOD
NER datasets

Result Firstly, we observe that for the in-domain
fine-tuning, our GLiNER model, pretrained on Pile-
NER, achieves slightly better results than the non-
pretrained variant, with an average difference of
0.8. Moreover, our pretrained GLiNER model out-
performs InstructUIE (with an average difference
of 0.9) despite being fine-tuned on the same dataset,
whereas InstructUIE is significantly larger (approx-
imately 30 times so). This demonstrates that our
proposed architecture is indeed competitive. How-
ever, our model falls behind UniNER by almost 3
points. Nevertheless, our model still manages to
achieve the best score in 7 out of 20 datasets.

5 Further analysis and ablations

In this section, we conduct different set of experi-
ments to better investigate our model.

5.1 Effect of Different Backbones

In our work, we primarily utilize the deberta-v3
model as our backbone due to its strong empirical
performance. However, we demonstrate here that
our method is adaptable to a wide range of BiLMs.

Setup Specifically, we investigate the perfor-
mance of our model using other popular BiLMs,
including BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), AlBERT (Lan et al., 2019), and
ELECTRA (Clark et al., 2020). We also conducted
experiments with XLNet (Yang et al., 2019) but did
not achieve acceptable performance (achieving at
most 3 F1 on the OOD benchmark) despite exten-
sive hyperparameter tuning. For a fair comparison,
we employed the base size (GLiNER-M) and tuned
the learning rate for each model. We report the
zero-shot results on both the OOD benchmark and
the 20 NER benchmark in Figure 4.

100 500 1000 5000 10000
Dataset Size

65

70
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80

Av
g.

 F
1

| |=5.6

| |=1.6
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Figure 5: Supervised performance across different
dataset sizes. The evaluation is conducted on the 20
NER datasets (in Table 4).

Result The results of our experiment, as shown
in the Figure 4, clearly demonstrate the superior-
ity of deberta-v3 over other pretrained BiLMs. It
achieves the highest performance on both bench-
marks by a clear margin. ELECTRA and AlBERT
also show notable performance, albeit slightly
lower, while BERT and RoBERTa lag behind with
similar scores. However, it should be noted that
all of the backbones we tested demonstrate strong
performance compared to existing models. More
specifically, even BERT-base, which ranks among
the lower performers, achieves around 49 F1 on
the OOD benchmark. This score is still 2 F1 points
higher than the average for models like ChatGPT
and InstructUIE.

5.2 Effect of Pretraining on In-domain
Performance

In this section, we investigate the impact of pre-
training on the Pile-NER dataset for supervised
in-domain training on the 20 NER datasets, across
various data sizes. The experiments range from
100 samples per dataset to 10,000 (full training
setup). We use the same hyperparameters for all
configurations. The results are reported in Figure
5.

Results As shown in the figure, models pre-
trained on Pile-NER consistently outperform their
counterparts that are only trained on supervised
data, indicating successful positive transfer. We
further observe that the gain is larger when super-
vised data is limited. For instance, the difference in
performance is 5.6 when employing 100 samples
per dataset, and the gap becomes smaller as the
size of the dataset increases.
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Negative Samples Prec Rec F1

0% 49.3 58.1 53.3
50% 62.3 59.7 60.9
75% 61.1 56.5 58.6

Table 5: Effect of negative entity types sampling.

5.3 Ablations
Negative Entity Sampling The original Pile-
NER dataset, curated by Zhou et al. (2023), fea-
tures passages with positive entity instances, i.e.,
entities that are directly present in the text. To bet-
ter align training with real-world scenarios, where
some entity types might be absent, we implemented
negative entity sampling as mentioned in Section
3.2. We evaluate different sampling ratios: 0%
(only positive entities), 50%, and 75% negative
entities. table 5 shows that training with only pos-
itive entities results in lower precision but higher
recall, indicating that the model often makes false
positive errors. Conversely, using 75% negative
entities increases precision but decreases recall, as
the abundance of negatives makes the model more
cautious, leading to missed correct entities. A 50%
negative entity ratio proves to be the most effective,
providing a balanced approach.

Entity type dropping In our experiments, we
employed a strategy of randomly varying the num-
ber of entity prompts during training. This ap-
proach aimed to expose the model to different
quantities of entity types in each training instance,
thereby increasing its adaptability to handle scenar-
ios with varying numbers of entities. The usage of
this technique results in an average improvement
of over 1.4 points in out-of-domain evaluation, as
shown in the Figure 5.

6 Related Works

Named Entity Recognition NER is a well-
established task in the field of NLP, with numerous
applications. Initially, NER models relied on rule-
based system (Weischedel et al., 1996) that were
built using handcrafted algorithms and gazetteers
(Mikheev et al., 1999; Nadeau et al., 2006; Zamin
and Oxley, 2011). However, these models had
limitations in terms of scalability and adaptabil-
ity to new domains or languages. To overcome
these issues, machine learning approaches have
been proposed (Lafferty et al., 2001). In the early
stages, NER tasks were designed as sequence la-

50 52 54 56 58 60 62
Avg. F1

Full

w/o drop

w/o Neg

w/o both

60.90

59.50

53.30

52.30

Figure 6: Randomly dropping entity types. We report
the results with and without negative entity sampling.

beling (Huang et al., 2015; Lample et al., 2016;
Akbik et al., 2018) where the objective was to pre-
dict tagged sequences (e.g., BILOU tags (Ratinov
and Roth, 2009)). Since then, several paradigm
shifts have occurred: span-based approaches treat-
ing NER as span classification (Sarawagi and Co-
hen, 2004; Fu et al., 2021; Li et al., 2021; Zaratiana
et al., 2022a,b,c, 2023); NER being treated as a
question answering problem (Li et al., 2019); and
even as a generation task (Yan et al., 2021).

Zero-shot learning for NER The advent of
large-scale autoregressive models has recently
transformed many paradigms in NLP through nat-
ural language prompting (Min et al., 2022; Wei
et al., 2022; Qin et al., 2023). This is also the
case for NER (Li et al., 2022; Ashok and Lipton,
2023; Agrawal et al., 2022). Others have fine-tuned
these models for tasks to better align their capabil-
ities with the requirements of entity recognition
(Cui et al., 2021; Zhou et al., 2023) or informa-
tion extraction in general (Wu et al., 2020; Lou
et al., 2023; Wang et al., 2023; Sainz et al., 2023;
Lu et al., 2022; Geng et al., 2023). This is some-
time done through-instruction tuning (Mishra et al.,
2021; Wang et al., 2022; Longpre et al., 2023).

7 Conclusion

In this paper, we introduced GLiNER, a new
method for identifying various types of entities
in text using bidirectional language models. Our
model not only outperforms state-of-the-art Large
Language Models like ChatGPT in zero-shot sce-
narios but also offers a more resource-efficient al-
ternative, crucial for environments with limited
computing power. GLiNER is versatile, perform-
ing well in multiple languages, including those
it wasn’t trained on. In future work, we aim to
further improve GLiNER’s design for enhanced
performance and to better adapt it for low-resource
languages.
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Limitations

While our GLiNER model offers several advan-
tages, it also has limitations that should be consid-
ered. One notable limitation is the model’s inability
to extract discontinuous entities. This constraint
sets GLiNER apart from some Large Language
Models (LLMs) that have this capability, poten-
tially limiting its effectiveness in complex text sce-
narios where entities are not contiguous. Addition-
ally, our evaluation methodology primarily relies
on the exact matching metric. While this is a robust
measure, it may not fully capture more nuanced as-
pects of the model’s output. Subtleties such as par-
tial matches or context-sensitive interpretations of
entities are not adequately represented in this met-
ric, suggesting that our evaluation might overlook
some fine-grained characteristics of the model’s
performance.
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Dataset # train # dev # test # types Avg. tokens Avg. entities

ACE05 (Walker et al., 2006) 7299 971 1060 7 21 2.8
AnatEM (Pyysalo and Ananiadou, 2014) 5861 2118 3830 1 37 0.7
bc2gm (Smith et al., 2008) 12500 2500 5000 1 36 0.4
bc4chemd (Krallinger et al., 2015) 30682 30639 26364 1 45 0.9
bc5cdr (Li et al., 2016) 4560 4581 4797 2 41 2.2
Broad Tweet Corpus (Derczynski et al., 2016) 5334 2001 2000 3 28 0.5
conll 03 (Tjong Kim Sang and De Meulder, 2003) 14041 3250 3453 3 25 1.9
FabNER (Kumar and Starly, 2022) 9435 2182 2064 12 36 5.1
GENIA (Kim et al., 2003) 15023 1669 1854 5 43 3.5
HarveyNER (Chen et al., 2022) 3967 1301 1303 4 48 0.4
MultiNERD (Tedeschi and Navigli, 2022) 134144 10000 10000 16 28 1.6
ncbi (Doğan et al., 2014) 5432 923 940 1 39 1.0
Ontonotes (Weischedel et al., 2013) 59924 8528 8262 18 18 0.9
PolyglotNER (Al-Rfou et al., 2015) 393982 10000 10000 3 34 1.0
TweetNER7 (Ushio et al., 2022) 7111 886 576 7 52 3.1
WikiANN en (Pan et al., 2017) 20000 10000 10000 3 15 1.4
FindVehicle (Guan et al., 2023) 21565 20777 20777 21 33 5.5

CrossNER AI (Liu et al., 2020) 100 350 431 13 52 5.3
CrossNER Literature (Liu et al., 2020) 100 400 416 11 54 5.4
CrossNER Music (Liu et al., 2020) 100 380 465 12 57 6.5
CrossNER Politics (Liu et al., 2020) 199 540 650 8 61 6.5
CrossNER Science (Liu et al., 2020) 200 450 543 16 54 5.4

Table 6: Dataset statistics.

A Appendix

A.1 Hyperparameters
In the table 7, we present detailed values of hy-
perparameters used in our study. Our model was
trained utilizing the AdamW optimizer, with a
learning rate set to 1 × 10−5 for the pretrained
encoder and 5× 10−5 for randomly initialized pa-
rameters. The initial 10% of training incorporates
a warmup phase, where the learning rate increases
from 0 to the specified base rate, followed by a de-
cay back to 0 for the remaining steps. Training was
conducted for up to 30,000 steps, with a batch size
of 8. This setup approximates to about 5 epochs on
the PILE-NER dataset. We limited the maximum
span size to 12 words and employed the represen-
tation of the first subtoken from the encoder as the
word representation. The projection/MLP layers
are configured with a hidden dimension of 768 and
a dropout rate of 0.4. Our models were trained on
an A100 80G Nvidia GPU, with the training dura-
tion for the large model totaling approximately 3
hours and 50 minutes.

A.2 Prompt
The prompting template in Figure 7 was used for
evaluating ChatGPT and Vicuna for named entity
recognition. This prompting has been borrowed
from Ye et al. (2023).

System Message: You are a helpful information extraction 
system. 

Prompt: Given a passage, your task is to extract all 
entities and identify their entity types. The output 
should be in a list of tuples of the following format: 
[("entity 1", "type of entity 1"), ... ].

Passage: {input_passage}

Please identify Organization, Person, Location, and 
Miscellaneous Entity from the given text, output using the 
format as:

Entity: Organization: None | Person: None | Location: 
Word1, Word2 | Miscellaneous: Word3

Text: {text}

Entity:

Figure 7: Prompting template for evaluating ChatGPT
and Vicuna.

Hyperparameter Value

Optimizer
Optimizer AdamW
lr_encoder 1e-5
lr_others 5e-5
Training Parameters
num_steps 30000
warmup_ratio 0.1
train_batch_size 8
eval_every 5000
Model Configuration
max_span_width 12
model_name deberta-v3
fine_tune true
subtoken_pooling first
hidden_size 768
dropout 0.4

Table 7: Hyperparameter configuration.
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