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Abstract

We investigate multimodal chart retrieval, ad-
dressing the challenge of retrieving image-
based charts using textual queries. We com-
pare four approaches: (a) OCR with text re-
trieval, (b) chart derendering (DEPLOT) fol-
lowed by table retrieval, (c) a direct image un-
derstanding model (PALI-3), and (d) a com-
bined PALI-3 + DEPLOT approach. As the
table retrieval component we introduce TAB-
GTR, a text retrieval model augmented with
table structure embeddings, achieving state-of-
the-art results on the NQ-TABLES benchmark
with 48.88% R@1. On in-distribution data, the
DEPLOT-based method (b) outperforms PALI-
3 (c), while being significantly more efficient
(300M vs 3B trainable parameters). However,
DEPLOT struggles with complex charts, indi-
cating a need for improvements in chart deren-
dering - specifically in terms of chart data di-
versity and the richness of text/table represen-
tations. We found no clear winner between
methods (b) and (c) in general, with the best
performance achieved by the combined ap-
proach (d), and further show that it benefits the
most from multi-task training.

1 Introduction

Multimodal retrieval is the task of retrieving a
relevant piece of information from a multimodal
dataset, given a query. This task has been ex-
tensively studied in the context of text and im-
age retrieval (Yu et al., 2022) or text and table
retrieval (Herzig et al., 2021; Kostić et al., 2021),
but has received relatively little attention in the con-
text of visually grounded images such as charts and
scientific figures.

Charts are an important source of information
within scientific and technical domains. They are
often used to summarizing multifaceted data, con-
veying communicate insights (Hsu et al., 2021;
Obeid and Hoque, 2020) as well as facilitating the
interpretation of intricate domains encompassing

Figure 1: A graphical overview of the four text to chart
retrieval approaches evaluated in this work. All mod-
els are symmetric dual encoder (with weights shared
between the left and right towers). We train the mod-
els to optimize in-batch contrastive loss, without using
hard negatives, and evaluate four different approaches:
(a) OCR→ Text Retrieval; (b) Chart DeRendering→
Table Retrieval; (c) VLM Retrieval; (d) Chart DeRen-
dering→ VLM Retrieval. The small shapes represent
different different modalities: blue circle for text, green
triangle for tables and red rhombus for images. The
components in yellow are black-box modules convert-
ing the image into text or table, and they are not trained
or back-propagated through.

financial data analysis, news reporting, and scien-
tific disciplines (Siegel et al., 2016). In this con-
text, chart retrieval assumes a pivotal role as a po-
tent tool addressing diverse real-world applications.
Within the scholarly research domain (Wang et al.,
2023), chart retrieval can enable the exploration
and analysis of scientific literature that incorpo-
rates visual elements. Furthermore, in the realm
of fact verification (Lo et al., 2022; Akhtar et al.,
2023), chart retrieval offers distinct advantages, par-
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ticularly in domains such as financial and climate
data, where visual representations provide valuable
insights and patterns.

To the best of our knowledge, this work is the
first to investigate multimodal retrieval on chart
images, addressing the limited research in this do-
main. We begin by establishing a powerful table
retrieval model that serves as a backbone for sub-
sequent experiments, starting from the assumption
that images of charts are a visual representation
of an underlying table. To this end, we propose
extending text retrieval models with row and col-
umn embeddings modeling the table structure, bor-
rowing the main ideas from Herzig et al. (2020);
Andrejczuk et al. (2022). Our proposed model,
TAB-GTR, achieves state-of-the-art results on the
NQ-TABLES dataset (Herzig et al., 2021), resulting
in an improvement of 4.4 absolute points in R@1.
For chart retrieval, we compare four approaches,
leveraging existing findings in the literature, as also
graphically summarized in Figure 1:

(a) OCR → Text Retrieval. An OCR model,
namely Tesseract (Smith, 2007), converts the
chart image into a textual representation. The
text is then processed by a text retrieval model,
that is TAB-GTR.

(b) Chart DeRendering → Table Retrieval.
A chart de-rendering model, namely DE-
PLOT (Liu et al., 2023a), converts the chart
image into a table representation. The table is
then processed by a table retrieval model, that
is TAB-GTR.

(c) VLM Retrieval. A vision language model
(VLM), such as PALI-3 (Chen et al., 2023)
is used for chart retrieval, directly leveraging
the content of the chart image.

(d) Chart DeRendering → VLM Retrieval.
We make use of the output of DEPLOT (Liu
et al., 2023a) as an additional table input to
PALI-3 along the image data. The model was
additionally augmented with table structure
embeddings (Herzig et al., 2020; Andrejczuk
et al., 2022).

We evaluate the four approaches on a dataset
of charts. Due to the lack of available chart re-
trieval data, we adapt the CHARTQA, SCICAP, and
CHART2TEXT datasets for retrieval. Our extensive
experimentation shows that a chart derendering

pipeline coupled with a table retrieval model outper-
forms the VLM setup, when applied in-distribution
data (e.g. CHARTQA). However, DEPLOT fails to
generalize to more complicated charts (e.g. SCI-
CAP), where it falls behind an OCR baseline.

We conclude analyzing the shortcomings of the
chart derendering model suggesting that future
work in this area should focus on developing more
robust chart derendering pipelines that are able to
handle a wider range of chart types and annota-
tions. If realized these improvements can enable
(a) more efficient resource utilization, as DEPLOT

+ TAB-GTR pipeline is significantly more efficient,
with 300M trainable parameters compared to 3B
of the PALI-3 encoder; (b) flexible applications
of 0-shot chart derendering with large language
prompting/retriever models, as done in (Liu et al.,
2023b).

2 Related work

Text / Table Retrieval. Text retrieval has been
extensively studied in the literature (Karpukhin
et al., 2020; Ni et al., 2022). In this work, we
build upon existing work and repurpose a general-
izable text retriever model to work on table inputs,
following the same ideas of Herzig et al. (2020)
and Andrejczuk et al. (2022). By building on top of
a pre-trained text retrieval model (Ni et al., 2022)
we achieve better performance than (Herzig et al.,
2021) and (Kostić et al., 2021), without the need for
hard-negative mining or more complex tri-encoder
setup. Although the task of table retrieval is not
new (Liu et al., 2007), to the best of our knowledge,
there is no method that adapts the methodology for
the task of chart retrieval.

Chart Retrieval. Existing academic chart re-
trieval approaches only use metadata about figures,
such as the caption text or mentions in the body
text, to respond to queries (Xu et al., 2008; Choud-
hury et al., 2013; Li et al., 2013). Other more recent
works, focus on chart to chart retrieval. Xiao et al.
(2023) propose a user intent-aware framework for
retrieving charts that considers both explicit visual
attributes and implicit user intents. However, in this
scheme the query is a chart rather than a textual
query, limiting the usefulness of the task. Simi-
larly, Ye et al. (2022) use neural image embedding
to facilitate exploration and retrieval of visualiza-
tion collections based on visual appearance. To
the best of our knowledge, our work is the first to
investigate text query to chart retrieval, focusing on
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understanding the content of figures.

3 Problem setup

We consider multimodal retrieval problems where
a textual query is used to retrieve a document that
can be a table, an image (specifically of a chart) or
a combination of both.

3.1 Datasets
Due to lack of table and chart retrieval datasets we
re-purpose datasets meant for question answering
(QA), captioning or summarization. We use the fol-
lowing datasets, whereas general dataset statistics
are summarized in Table 1.

NQ-TABLES (Herzig et al., 2021) A table ques-
tion answering dataset created by filtering Natural
Questions (Kwiatkowski et al., 2019) to only in-
clude questions for which the answer is contained
in a table.

CHARTQA (Masry et al., 2022) A chart ques-
tion answering dataset with charts gathered from
Statista (statista.com), Pew (pewresearch.org),
OWID (ourworldindata.org) and OECD (oecd.org).
This dataset has two splits: “human” with human-
written question-answer pairs and “augmented”
with generated question-answer pairs.

CHART2TEXT (Obeid and Hoque, 2020) A
chart summarization dataset of charts extracted
from Statista and Pew with human-annotated tex-
tual summaries of the chart.

SCICAP (Hsu et al., 2021) A chart captioning
dataset consisting of figures and figure captions
extracted from scientific papers.

Some datasets (CHARTQA and the Statista sub-
set of CHART2TEXT) include human-annotated
gold tables representing the data on the chart. For
each dataset we use the text (i.e. question, tran-
script or caption) as the query and the image plus
when available the table as the retrieval candidate.

For training we treat each original training set
example as a positive query-candidate pair. For
evaluation we need a set of queries, a set of candi-
dates and an assignment of the gold candidate to
each query. For all datasets we use the evaluation
set (dev or test) as the source of queries and gold
candidates. Queries and candidates are dedupli-
cated by exact match.

On NQ-TABLES we use all tables (train, dev and
test) as evaluation candidates, following (Herzig

et al., 2021). These tables are deduplicated by
string similarity as in (Herzig et al., 2021).

3.2 Evaluation

We use standard retrieval metrics, reporting recall
at k (R@k), mean average precision (MAP) and the
highest F1 score over any classification threshold
(picked separately for each dataset). We report
single run numbers as we have not seen significant
variance between runs. We report the final numbers
on the test sets, with the exception of NQ-TABLES

for which we report dev set numbers in accordance
with previous literature. We have used the dev sets
for development and model selection.

3.3 Contextual queries.

QA datasets may include contextual queries, that
is, queries formulated in the context of the chart.
These queries are highly ambiguous and including
them in the dataset adds noise to the training and
evaluation metrics. To overcome this issue in a text
passage setup, Choi et al. (2021) propose the use
of decontextualizer model. To evaluate the scope
of the problem and feasibility of this solution we
have manually classified 50 examples from each
split of CHARTQA into one of a few categories:

1. Not contextual, e.g. “How many people from
the age group 80 years and above have died
due to COVID in Italy as of June 8, 2021?”.

2. Decontextualisable from text, e.g. “When
does the gap between the two countries reach
the smallest?”. These can be decontextualized
based on the text appearing on the chart and
deplotted table data.

3. Decontextualisable visually, e.g. “What’s
the peak value of dark brown graph?”. These
can be decontextualized but require additional
visual information from the chart, i.e. colors.

4. Missing context, e.g. “What is the ratio of
yes to no?” with a chart that does not include
specific labels for the “Yes”/“No” categories.

5. Inherently contextual, which include
queries that ask for specific visual or mathe-
matical reasoning on the chart and cannot be
decontextualized, e.g. “What category does
the red color indicate?” or “Are there any
two bars having the same value?”.
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Dataset Table data Image data Type Train examples Eval queries Eval candidates

NQ-TABLES X × QA 9594 1068 169 898
CHARTQA (human) X X QA 7398 1228 625
CHARTQA (augmented) X X QA 20 901 1235 987
CHART2TEXT (Statista) X X Summarization 24 368 5222 5222
CHART2TEXT (Pew) × X Summarization 6500 1393 1393
SCICAP × X Captioning 333 442 41 410 41 682

Table 1: Datasets used in the paper. NQ-TABLES is used for assessing the quality of TAB-GTR, whereas the other
datasets are used for benchmarking chart retrieval.

The results in Table 2 show that in CHARTQA
(human) 70% of queries are contextual and text-
only decontextualisation would only partially ad-
dress this problem, leaving out 42% of all queries.
Given the lack of a comprehensive solution, and
to avoid further complexity, we have kept the data
as-is.

We have not found this to be a problem in the
other datasets: the CHARTQA (augmented) split
is mostly non-contextual. NQ-TABLES queries
are Google search queries from Natural Questions
(Kwiatkowski et al., 2019), stated without context.
Captions and summaries are highly informative
about the content of the chart and do not present
the same ambiguity problems.

CHARTQA (h) CHARTQA (a)

Not contextual 30% 94%
Decontextualisable from text 28% 0%
Decontextualisable visually 12% 0%
Missing context 4% 0%
Inherently contextual 26% 6%

Table 2: Analysis of query contextuality on
CHARTQA. We have manually labeled 50 examples
from each dataset. The augmented split queries are
mostly non-contextual. In the human split 30% are non-
contextual, 40% could be decontextualised based on
textual or visual information from the chart and 30%
cannot be decontextualised or are missing necessary
context.

Other datasets. We decided against using
PlotQA (Methani et al., 2020) because of its
synthetic/template-based nature and focus on rea-
soning over a specific chart and high percentage of
contextual queries (estimated by us to be around
70%). However the data might still be useful after
filtering and decontextualisation, or as noisy chart
retrieval pre-training data.

4 Table Retrieval with TAB-GTR

We present TAB-GTR, a multimodal extension of
the GTR (Ni et al., 2022) model that handles both
text and tabular data. We extend the T5 encoder ar-
chitecture following the approach of (Herzig et al.,
2021; Andrejczuk et al., 2022) by adding two-
dimensional positional embeddings that encode the
table structure. The overview of the model archi-
tecture is shown in Figure 2.

Given an input text t and input table with n
columns and m rows and text ci,j in cell at column
1 ≤ i ≤ n and row 1 ≤ j ≤ m we tokenize each
piece of text and concatenate them all into a single
sequence. For each token we add two additional
discrete features text_col and text_row:

• For tokens in the text t we set both text_col =
text_row = 0.

• For tokens in a table cell ci,j we set text_col = i
and text_row = j.

Columns and rows are embedded into feature
vectors and the embeddings added to the token
embeddings before being fed to the transformer
encoder. This provides the network with absolute
positional embeddings of the table row and column
corresponding to the tokens. We also use relative
positional attention bias inherited from the T5 ar-
chitecture, which is based on the linearized token
sequence and not aware of the table structure.

4.1 Model details
The only new parameters added to GTR are the
column and row embeddings. We set the maximum
row and column numbers to be 128, which for the
large model results in 2× 128× 768 ' 197K new
parameters, which is negligible compared to the
total 334M parameters. We initialize these embed-
dings from scratch and learn them entirely during
fine-tuning on the final task. All the other parame-
ters are initialized from a pre-trained GTR check-
point. We use a symmetric retrieval model, i.e. the
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Cap #tion C #1 C #2 0 1 2 3

C0 C0 C1 C1 C2 C2 C1 C2 C1 C2

R0 R0 R0 R0 R0 R0 R1 R1 R2 R2

Column Embeddings

Row Embeddings

Token Embeddings

C1 C2
0 1
2 3

Table: Caption Tab-GTR

GTR

Figure 2: TAB-GTR leverages a GTR checkpoint (Ni et al., 2022) as a backbone model (represented in grey)
and adds two dimensional positional embeddings (represented in blue) to represent table structure (i.e. row and
columns), as done by Herzig et al. (2020); Andrejczuk et al. (2022). This is a minimal addition in terms of #params,
on top of GTR, as the structural embeddings represent < 0.06% of the total.

left and right tower share weights. We have not
tried an asymmetric setup as the added complexity
and memory requirements.

4.2 Evaluation on NQ-TABLES

We evaluate the performance of the TAB-GTR
model, as well as vanilla GTR without the extra
table structure embeddings, on the dataset NQ-
TABLES. We train the models to optimize in-batch
contrastive loss, without using hard negatives.

We have tuned the hyperparameters for the GTR
model and used the same values for TAB-GTR,
as the models are extremely similar. We trained
both for 1000 steps with batch size 1024, using
the Adafactor optimizer (Shazeer and Stern, 2018)
with constant learning rate 0.0003. The dropout
rate is set to 0.1 during training.

The evaluation results are in Table 3. The TAB-
GTR model achieves state of the art results and sig-
nificant improvement over GTR, with 89.42% re-
call at 10 compared to 87.64% of GTR and 86.40%
of the best previously published result Kostić et al.
(2021).

Model
NQ-TABLES (dev)

R@1 R@10 R@50 R@100

TAPAS, large 35.90 75.90 91.40 N/A
+ hard negatives

(Herzig et al., 2020)
44.20 81.80 92.30 N/A

Tri-encoder BERT
(Kostić et al., 2021)

N/A 86.40 N/A 96.7

GTR, large
(Ni et al., 2022)

44.48 87.64 96.63 97.57

TAB-GTR, large 48.88 89.42 97.85 98.60

Table 3: Comparison of table retrieval models on NQ-
TABLES (dev split). TAB-GTR is the simplest and best
performing model.

4.3 Conclusions
The addition of table positional embeddings to a
text model achieves a significant improvement at a

negligible cost, adding only 0.06% extra model pa-
rameters, makes no difference on training times and
does not require additional pretraining. According
to (Herzig et al., 2020) table positional embeddings
also improve performance of models specifically
pretrained on table data. That makes this method an
obvious inclusion to maximize model performance
on table data. Given its strongest performance we
will use TAB-GTR as the base text/table model for
experiments on chart retrieval.

5 Chart Retrieval

5.1 Models
We compare a direct image understanding approach
to approaches using an intermediate text or table
representation.

5.1.1 Direct image understanding
For direct image understanding we use PALI-
3 (Chen et al., 2023), a 5B parameter vision-
language model. We discard the decoder and only
use the encoder part of the model, consisting of a
ViT vision encoder and a text transformer encoder.
PALI-3 achieves very strong results on chart un-
derstanding tasks such as CHARTQA (Masry et al.,
2022), outperforming Matcha (Liu et al., 2023b)
and state of the art results on the cross-modal re-
trieval task XM3600 (Thapliyal et al., 2022).

We use PALI-3 as a symmetric multimodal dual
encoder model, keeping both the ViT component
and text encoder. We extend the model with table
positional embeddings for table inputs (in the same
way we did with GTR). Both towers are able to
encode text, table and image data. If a modality is
not present we simply do not include any tokens
corresponding to that modality. Images are padded
to a square shape and resized to resolution 448×
448 pixels.

5.1.2 Text / Table representation
All text/table-based approaches use TAB-GTR as
the base retrieval model. We compare different
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ways of converting the chart to text or table data.

DEPLOT (Liu et al., 2023a) is a zero-shot image-
to-table model trained to recover tabular data un-
derlying a chart. The architecture is based on
Pix2Struct (Lee et al., 2023), a ViT model with
282M parameters. We use the v2 checkpoint 1.

OCR. We use Tesseract OCR engine (Smith,
2007) for its ease of use, widespread utilization,
and satisfactory performance, despite the availabil-
ity of more advanced OCR models (Kim et al.,
2022; Li et al., 2023; Blecher et al., 2023). The
decision was made considering that the chart im-
ages do not necessitate a more sophisticated OCR
detection, as they primarily consist of clear and
undistorted text (as opposed to for example pic-
tures of handwriting). We feed to the model only
the linearized OCR text output, without any bound-
ing box information.

Gold tables. To establish a performance ceil-
ing for the chart representation we use human-
annotated table information present in the
CHARTQA and CHART2TEXT (Statista) datasets.

5.2 Training

All models use the AdaFactor optimizer (Shazeer
and Stern, 2018) with constant learning rate 0.0003
and bidirectional in-batch softmax cross entropy,
as in CLIP (Radford et al., 2021).

Dual encoder training with in-batch negatives is
highly sensitive to batch size as the quality of the
approximation depends on the sample size. We use
the same batch size of 256 for all experiments, as
we have found that increasing it further does not
give significant improvements.

For each experiment we pick the number of train-
ing steps by cross-validation on the dev set: we
train the model until the dev set softmax accuracy
(i.e. R@1 when viewed form the retrieval angle)
stops improving and pick the checkpoint with the
highest dev set accuracy.

We start from a single-task setup where we train
a separate model for each of the tasks. Later we
introduce a multi-task setup where the model is
trained on a mixture of data from all the datasets.
Multi-task training poses additional difficulties:

1. The loss depends on the mixture in a com-
plicated way as it changes the distribution of

1https://huggingface.co/eisenjulian/
matcha-deplot-v2

negative samples. In the multi-task setup we
consider negative pairs where the query and
candidate come from different datasets.

2. The datasets have different sizes and levels
of noise and require different early stopping
schedule to avoid overfitting.

We propose to design a data mixture by picking
sampling weights proportional to the best number
of training steps on a given dataset in the single-
task setup. To simplify the setup we use only a
single set of weights: calculated as the average
between the DEPLOT, OCR and PALI-3 models
and rounded, shown in Table 4. We note that the
weights are roughly proportional to dataset size, ex-
cept for CHARTQA (human) which overfits quickly
and was assigned a lower weight. We think that
the overfitting is caused by the high proportion of
contextual queries in this dataset. Our mixture de-
sign improves robustness to noisy data by lowering
their weight in the mixture.

Mixture dataset Weight Fraction

CHARTQA (human) 0.75 1.3%
CHARTQA (augmented) 4.0 7%
SCICAP 40.0 69.9%
CHART2TEXT (Statista) 7.5 13.1%
CHART2TEXT (Pew) 5.0 8.7%

Table 4: Mixture weights and fraction of the batch sam-
pled from the given dataset.

6 Experiments

6.1 Chart retrieval approaches

We compare the results of our chart retrieval ap-
proaches on the single-task setup in Table 5.

The first row shows the TAB-GTR model using
human-annotated table data. As expected it gen-
erally outperforms other models, showing poten-
tial room for improvement in the chart representa-
tion on the CHARTQA (human) and CHART2TEXT

(Statista) tasks. On the simpler template-generated
CHARTQA (augmented) dataset DEPLOT achieves
matching performance, showing the need for more
realistic data.

We make the following observations:

1. The combined PALI-3 + DEPLOT achieves
overall the strongest results. Compared to the
image-only PALI-3 model adding DEPLOT
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Model
CHARTQA

(human)
CHARTQA

(augmented)
SCICAP

CHART2TEXT

(Statista)
CHART2TEXT

(Pew)
AVG

R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 MAP F1

TAB-GTR (gold table) 64.33 52.09 52.11 97.33 82.82 59.03 N/A N/A N/A 99.10 95.45 78.48 N/A N/A N/A N/A N/A

TAB-GTR + DePlot 62.95 48.77 45.70 96.76 81.25 60.59 56.55 44.48 46.53 98.76 93.88 69.04 95.12 82.85 68.81 70.25 58.13
TAB-GTR + OCR 60.10 45.86 44.57 84.94 63.27 46.88 61.42 48.64 47.55 93.74 81.11 62.00 98.78 92.15 79.12 66.21 56.02
PALI-3 58.88 42.90 37.00 95.14 75.36 49.83 76.92 64.06 54.49 98.12 90.40 71.32 99.35 92.17 75.59 72.98 57.65
PALI-3 + DePlot 60.75 45.17 41.35 97.57 78.97 57.26 77.05 63.50 55.08 98.77 93.11 71.94 99.35 91.90 75.30 74.53 60.19

Table 5: Comparison of the different approaches to chart retrieval in the single-task setup (last four rows), as
graphically depicted in Figure 1. The first row is the oracle setup where the gold table is used instead. The last
columns show the average over datasets.

tables increases the overall performance with-
out significant regression on any single task.
Results are generally inline with previous liter-
ature research, where adding additional infor-
mation in addition to image inputs (e.g. OCR
text) provide significant improvements (Chen
et al., 2022).

2. The TAB-GTR + DEPLOT model per-
forms well on CHARTQA (both splits) and
CHART2TEXT (Statista), lagging behind on
the other two datasets. We analyzed the de-
plotting accuracy in isolation (shown in Ta-
ble 8). This supports that the low performance
is caused by DEPLOT rather than TAB-GTR.

3. On CHARTQA (both splits) the TAB-GTR
+ DEPLOT model outperforms other models,
including the PALI-3 + DEPLOT model. We
argue this is because of strong DEPLOT per-
formance on these datasets and TAB-GTR
being a better text retriever than PALI-3 (as it
was pre-trained for that tasks specifically).

4. On SCICAP the image-based models are clear
winners. Charts in SCICAP are complex scien-
tific plots, often with multiple subplots. This
is a large deviation from the training distri-
bution of DEPLOT which only includes sin-
gle charts. We analysed some typical error
patterns for this dataset (found in Figures 6
and 7); in particular visual elements play a
more important role in this dataset compared
to the others.

5. The OCR model generally performs the worst,
except on CHART2TEXT (Pew) where it out-
performs other models. In particular TAB-
GTR + DEPLOT falls behind on this dataset.
This situation does not happen on the Statista
split on CHART2TEXT. We have found that
charts in both datasets follow a fixed format
(we show typical examples in Figure 3). Pew

examples are different from the other datasets
in that they contain a long title, subtitle and ad-
ditional notes, with much higher textual over-
lap between the OCR’d text and the query
(shown in Table 6). This benefits the OCR
model, while on the other hand DEPLOT of-
ten fails to capture this text (chosen examples
shown in Figure 8), resulting in very low de-
plotting accuracy of 35% (Table 8).

Dataset Query OCR Jaccard Query
(# unique words) index cov.

CHARTQA (h) 11 65 .03 .17
CHARTQA (a) 12 67 .02 .09
SCICAP 31 84 .04 .14
CHART2TEXT (S) 38 57 .05 .13
CHART2TEXT (P) 69 62 .14 .25

Table 6: For each dataset we compute the average num-
ber of unique words for the Query and text outputted by
the OCR model, after a lower case normalization and
using whitespace splitting. We report the Jaccard index
between Query and OCR, and query coverage defined
as percentage of unique words in the query that are cov-
ered by the OCR text.

6.2 Multi-task training
We investigate the impact of multi-task training on
the model performance, showing the results and
difference with respect to the single-task setup in
Table 7. We have trained these models on the mix-
ture described in Section 5.2.

We see that the image-based PALI-3 models
overall benefit from multi-task training, while the
text-based TAB-GTR models perform worse. A
possible explanation is that all models experience
loss from task interference, but the PALI-3 mod-
els benefit from increased data size for learning
a common image representation. Indeed we see
that on both CHARTQA splits the improvement is
larger for the image-only model; supporting that
the multi-task image representation is stronger as it
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Model
CHARTQA

(human)
CHARTQA

(augmented)
SCICAP

CHART2TEXT

(Statista)
CHART2TEXT

(Pew)
AVG

R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 MAP F1

TAB-GTR
+ DePlot

61.24
(-1.71)

47.75
(-1.02)

44.43
(-1.27)

97.73
(+0.97)

81.42
(+0.17)

56.00
(-4.59)

57.01
(+0.46)

44.99
(+0.51)

46.42
(-0.11)

98.66
(-0.10)

92.25
(-1.63)

64.05
(-4.99)

93.83
(-1.29)

79.34
(-3.51)

64.43
(-4.38)

69.15
(-1.1)

55.07
(-3.06)

TAB-GTR
+ OCR

59.61
(-0.49)

45.61
(-0.25)

43.86
(-0.71)

86.88
(+1.94)

65.09
(+1.82)

47.34
(+0.46)

61.42
(+0.00)

48.47
(-0.17)

48.04
(+0.49)

93.57
(-0.17)

79.19
(-1.92)

54.07
(-7.93)

98.06
(-0.72)

91.44
(-0.71)

78.34
(-0.78)

65.96
(-0.25)

54.33
(-1.69)

PALI-3
63.93

(+5.05)
49.01

(+6.11)
42.95

(+5.95)
97.00

(+1.86)
79.32

(+3.96)
54.27

(+4.44)
77.69

(+0.77)
63.89
(-0.17)

54.12
(-0.37)

98.18
(+0.06)

88.08
(-2.32)

59.86
(-11.46)

99.64
(+0.29)

92.17
(+0.00)

76.53
(+0.94)

74.49
(+1.51)

57.54
(-0.11)

PALI-3
+ DePlot

61.97
(+1.22)

48.52
(+3.35)

45.28
(+3.93)

97.65
(+0.08)

82.91
(+3.94)

57.66
(+0.40)

76.96
(-0.09)

63.30
(-0.20)

53.96
(-1.12)

98.77
(+0.00)

93.13
(+0.02)

70.71
(-1.23)

99.78
(+0.43)

93.15
(+1.25)

77.94
(+2.64)

76.20
(+1.67)

61.1
(+0.91)

Table 7: Results on chart retrieval in the multi-task setup. The numbers in the parentheses show the difference
between the multi-task and single-task results.

QUERY: In 2000/01 there were approximately 1.28
million adults admitted to hospital in England due to an
illness caused by smoking . By 2019/20 the number of

hospital admissions as a result of smoking had increased
to approximately 1.99 million , the largest number during

the provided time period.

QUERY: Health care providers at hospitals and medical
centers around the country are on the front line of care for
those ill with the virus. As Americans take stock of early
efforts to control the outbreak, 71% are very or somewhat
confident that hospitals and medical centers in their local

area can handle patient needs.

Figure 3: Typical Statista (top) and Pew (bottom) exam-
ples from CHART2TEXT. DEPLOT performs well on
data-heavy examples from Statista but underperforms
on text-heavy examples from Pew.

benefits less from added DEPLOT tables. Another
reason could be that the model capacity of TAB-
GTR (which is an order of magnitude lower than
PALI-3) is too small to utilize the larger data.

Dataset Precision Recall F1
(DePlot prediction)

CHARTQA (human) 65.24 69.94 67.17
CHARTQA (augmented) 89.09 97.59 92.82
CHART2TEXT (Statista) 87.63 94.55 90.00

Dataset Accuracy† (manually evaluated)

SCICAP 15
CHART2TEXT (Pew) 35

Table 8: DEPLOT performance on the various datasets.
For the datasets that provide gold tables as the tar-
get, we use the Relative Mapping Similarity (RMS)
proposed in (Liu et al., 2023a) to asses the similarity
between tables. As gold tables are not available for
SCICAP and CHART2TEXT (Pew), we instead report
Accuracy† as a proxy metric, manually evaluated on a
randomly sampled set of 20 examples.

7 Conclusions

In this paper, we tackled the problem of chart re-
trieval, which, to the best of our knowledge, has
not been explored before, at least in the context of
text query to chart retrieval.

From the assumption that chart images are visual
representations of an underlying table, we estab-
lished a SOTA table retrieval backbone, TAB-GTR,
combining the findings of Ni et al. (2022); Herzig
et al. (2020); Andrejczuk et al. (2022). We found
that when a good (e.g. human-annotated) table
representation is available the TAB-GTR model
outperforms other chart retrieval methods.

In the situation that only image data is available,
our experiments on 5 datasets show that:

1. A derendering approach based on DE-
PLOT (Liu et al., 2023a) performs the best
as long as the chart data does not deviate too
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much from its training distribution. We show
that DEPLOT struggles with complex scien-
tific charts in SCICAP, which often contain
multiple subplots; and with text-heavy charts
in Pew. These issues might be resolved by a
more flexible representation that allows text
and multiple tables and more diverse chart
training data.

2. The image understanding approach based
on (Chen et al., 2023) delivers the most flexi-
bility, outperforming DEPLOT outside its do-
main, however at the cost of 10x the model
size. We show that PALI-3 benefits from
multi-task training and argue that the improve-
ments are likely coming from the model still
learning the image representation for charts.
This suggests that PALI-3 model might bene-
fit from more chart pre-training data.

3. A pipeline approach combining DEPLOT fol-
lowed by PALI-3 achieves the best perfor-
mance overall. Moreover the addition of DE-
PLOT tables in the multi-task setting makes
the model more robust to task interference,
resulting in our strongest model.

4. The OCR baseline overall performs the worst,
however can achieve very high performance
on text-heavy charts.

We conclude that the approaches provide com-
plementary benefits: a VLM can be extended with
deplotter input to achieve both higher performance
on chart data well represented by the deplotter and
better flexibility.

Limitations

The following are the shortcomings of our work,
which are presented in a transparent manner to
encourage future research.

First, the chart retrieval datasets were not orig-
inally created for the retrieval task. Instead, they
were adapted for this purpose. Additionally, the
chart domains we tested were limited to a few do-
mains (e.g. scientific figures and general statistics).
This limitation is inherited from the existing aca-
demic chart QA datasets, which only cover a lim-
ited number of domains. Therefore, in order to
fully assess retrieval performance, it may be ben-
eficial to expand the scope of the work to include
other domains (e.g. finance, news, etc.).

Related to the limitation above, we used a deplot-
ter model, specifically DEPLOT (Liu et al., 2023a),
which, as we see in Table 5, does not seem to gener-
alize to other domains. Indeed, OCR baselines, for
very out-of-domain datasets, seem to generally per-
form better. This suggests that future work could
focus on improving the robustness of the deplotter
module.

Third, we only focused on the English language.
We believe that this is an interesting area for future
exploration. Datasets such as TATA (Gehrmann
et al., 2023), could be used for follow-up work
(unfortunately images are not part of the dataset
release).

Despite these limitations, our work represents
the first work to explore the problem of chart re-
trieval. We hope that future research will be able
to build upon this foundation.

Ethics Statement

All the data we use is publicly available on the web
with appropriate permissive licenses. The chart
data has been obtained from publicly available,
curated data sources and contains no personally
identifiable information (PII) or offensive content.
User query data in NQ-TABLES has been properly
anonymized in (Kwiatkowski et al., 2019). Queries
for other datasets have been either written by hu-
man annotators or automatically generated and con-
tain no PII or offensive content. The risk is very
low as retrieval models have no capability to out-
put novel content, however it might reflect biases
present in the datasets.
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A Experiment details

All the experiments used bidirectional cross en-
tropy loss with in-batch negatives, batch size of
256, learning rate of 0.0003 and dropout rate of
0.1. Tables 9 and 11 show the number of training
steps for each of our models. We stopped training
when the validation metric stopped improving. The
validation metric used is the average in-batch clas-
sification accuracy calculated on the dev set, with
batch size 256 and up to 50 batches. For multi-
task runs we use the average of per-task accuracy
weighted by the mixture weights. We show the
model size and computational requirements in ta-
bles 10 and 12. We estimate that the experiments
in this paper cost around 4.9k TPU-hours.

B Error examples

In this section we show examples to illustrate the
kind of errors the models make. We compare two
models side-by-side and show examples where one
model returns the correct answer in top k results
and the other does not. We use k = 5 through
this section. A limitation of this method is that it
often finds spurious win/loss examples caused by
model training stochasticity. To work around that
we have manually chosen examples that we think
show some error patterns.

B.1 TAB-GTR + DEPLOT vs TAB-GTR +
gold tables

We look at examples where TAB-GTR + DEPLOT

loses to TAB-GTR + gold tables. For this section
we only consider datasets with gold tables available.
We have found that the two models are very close
in performance, however one consistent pattern
shown in Figure 4 is that DEPLOT sometimes omits
the title or axis labels.

B.2 PALI-3 vs TAB-GTR + DEPLOT

We have found following error patterns for DE-
PLOT (shown in Figures 5 to 7):

1. Failing to capture text on the chart, such as
plot titles or axis labels. This is the same
pattern as found in appendix B.1. Examples
shown in figs. 5a and 6a.

2. Not capturing visual elements of the chart. On
CHARTQA these are usually plot type (e.g.
bar, pie) and line colors and we note that these
wins are not relevant for retrieval because the

queries are highly contextual (fig. 5b). How-
ever on SCICAP (figs. 6b, 7a and 7b) PALI-3
is able to recognise more interesting visual
information such as semantic content of the
chart (e.g. "sigmoid function", "geodesic tri-
angle") or visual placement of the subplots
("left: ..., right: ...").

3. Failing on complex charts with multiple sub-
plots (figs. 6b and 7b). This is a limitation of
the training data which only includes single-
plot charts.

4. Failures on charts with a very large amount of
data points (Figure 7b) where DEPLOT tries
to capture all individual data points instead of
more semantically relevant summary of the
chart.

We have not found any specific error patterns
for PALI-3. Rather we see that on data that does
not trigger the above failure modes TAB-GTR +
DEPLOT generally outperforms PALI-3.
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Model Training steps
CHARTQA (h) CHARTQA (a) SCICAP CHART2TEXT (S) CHART2TEXT (P)

TAB-GTR (gold table) 200 4500 N/A 4000 N/A
TAB-GTR + DePlot 900 7500 40 000 1500 5000
TAB-GTR + OCR 300 2500 40 000 8000 1000
PALI-3 1000 2500 40 000 15 000 2000
PALI-3 + DePlot 1100 2000 40 000 2000 1000

Table 9: Number of training steps selected by cross validation for single-task training. We stopped SCICAP at 40k
steps because the progress become extremely slow. For model selection we used in-batch accuracy on the dev set.

Model Batch size # of TPU chips TPU-h per 1k steps

TAB-GTR 1024 64 15.20
TAB-GTR 256 16 3.80
PALI-3 256 64 19.00
PALI-3 + DEPLOT 256 128 23.18

Table 10: Model computational requirements. We train our models on the Google Cloud TPU v4. Batch size
1024 is only used for NQ-TABLES and all other experiments use batch size 256. All TAB-GTR models (gold,
+DEPLOT, + OCR) use the same sequence length and have the same memory requirements.

Model Training steps

TAB-GTR + DePlot 76 000
TAB-GTR + OCR 65 000
PALI-3 68 000
PALI-3 + DePlot 64 000

Table 11: Number of training steps selected by cross validation for multi-task training. For model selection we
used in-batch accuracy on the dev sets aggregated by the mixture weights.

Model # of weights

DePlot 282M
TAB-GTR 335M
PALI-3 3 289M

Table 12: Model size. Note that we only use the encoder of PALI-3 which is why the number of parameters is not
5B.
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Query
Which subject has the highest male-to-female

ratio of High School Courses?
Which place shows the lowest value of

Tuberculosis rate?

Chart

Gold
Table

Country Male-to-Female Ratio of
High School Courses in
Math and Science, United-
States, 1982

Chemistry 1.1
Science 1.08
Maths 1.06

Country Tuberculosis incidence per
100,000 people, 2000

Ghana 216
Vietnam 197
Nepal 163

DePlot
Table

Characteristic Value
Chemistry 1.1
Science 1.08
Maths 1.06

Characteristic Value
Ghana 216
Vietnam 197
Nepal 163

Figure 4: Select examples from CHARTQA (human) where DEPLOT underperforms with respect to the gold
tables. DEPLOT fails to capture the title of the plot.
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Query Which place has the highest ratio of tourists ? Is there a value 30 in the dark blue line?

Chart

Gold
Table

Country Ratio of inbound-to-
outbound tourists, 2018

Belarus 13.76
Mauritius 4.73
Hungary 2.03
Papua New Guinea 0.59
Luxembourg 0.51

Year Control gun
ownership

Protect the right
of Americans to
own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 50 49

DePlot
Table

Characteristic Value
Belarus 13.76
Mauritius 4.73
Hungary 2.03
Papua New Guinea 0.59
Luxembourg 0.51

Year Control gun
ownership

Protect the right
of Americans to
own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 49 50

(a) DEPLOT fails to capture the title of the plot.
(b) The query references the color of the bar,
which is not captured by the table. However the
query is highly contextual.

Figure 5: Select examples from CHARTQA (human) where DEPLOT underperforms with respect to PALI-3.
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Query
change of cumulative regret with respect to

number of turns where EQUAT-TK,
EQUAT-TK, EQUAT-TK.

step function and sigmoid function.

Chart

DePlot
Table

TITLE
Number of Turns OPTIMAL

CYCLE
(µ = µ2)

OPTIMAL
CYCLE
(µ = µ2)

0 0 0
2000 435 520
4000 490 590
6000 500 600
8000 500 600
10000 500 600

TITLE
<>

0 0.5
1 1.0
2 1.0
3 1.0
4 0.5
5 0.9
6 1.0

(a) DEPLOT fails to capture the label of the y
axis. Here EQUAT-TK is a special token used in
SCICAP to replace equations in the caption.

(b) PALI-3 visually recognises the step and sig-
moid functions. DEPLOT fails to handle multiple
subplots and outputs a numerical representation
that loses the semantic information.

Figure 6: Select examples from SCICAP where DEPLOT underperforms with respect to PALI-3.
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Query

a geodesic triangle ∆ (with internal
points mx, my, mz and c labelled as in

the proof of theorem NUM dashed
lines indicate a distance ≤ δ and the

red line indicates the upper estimate for
d).

illustration of the training process on celeba. left: mean
squared errors of the input images and the reconstructions
conditioned on different latent codes. right: the fid scores

of random generations after each training epoch.

Chart

DePlot
Table

TITLE
m3 ma me me me me

ma 0 0 0 0 0
ma 0 0 0 0 0
ma 0 0 0 0 0
x 0 0 0 0 0
ma 0 0 0 0 0
last row repeating 19 times...

TITLE Visualization
Iterations MSE_h0 MSE_hnorm MSE_huni
2000 0.04 0.134 0.113
2000 0.036 0.155 0.096
2000 0.032 0.129 0.09
2000 0.031 0.126 0.101
15 more rows with continuing pattern...

(a) PALI-3 recognises a geodesic trian-
gle. DEPLOT fails to output anything
useful as the chart has no underlying
table data.

(b) PALI-3 correctly answers a query that refers to vi-
sual placement of subplots (left: MSE, right: FID). DE-
PLOT misses the second subplot completely and spends its
output token budget on irrelevant datapoints for the first
subplot.

Figure 7: Select examples from SCICAP where DEPLOT underperforms with respect to PALI-3.
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Query

In many countries, a majority or plurality
believes relations will remain about the same.

However, in most regions of the world, the share
of the public that believes things will worsen
outweighs the share that thinks relations will

improve by a ratio of two-to-one. While
relatively few say they expect relations to

improve, more than half hold this view in Russia
and Israel.

About six-in-ten Americans ages 18 to 29 say
the primary way they watch television now is
with streaming services on the internet. Much
smaller shares of older Americans cite online

streaming services as their primary way of
watching TV; older Americans tend to rely on

cable connections. Overall, just 28% of
Americans cite streaming services as the

primary way they watch TV.

OCR

Global publics more likely to say relations with
U.S. will get worse than better, though

prevailing view is that things will stay about the
same Now that Donald Trump is the U.S.

president, over the next few years relations
between our country and the U.S. will ... Get
better Stay about the same Get worse Mudle
EGSt E Furcpe = Note: Europe median does

notinclude Russia. Source: Spring 2017 Global
Attitudes Survey. Q36. PEW RESEARCH

CENTER

Young adults use streaming services most to
watch TV % of U.S. adults who say__ is the

primary way they watch television Cable
orsatelite @ Online streaming Digital antenna

subscription senvico 84 7 @ 61 52 I ) I 5 7 15 5
7 e e e QR e US.aduts Ages1829 3049 5064 65+

Source: Survey conducted Aug. 15-21, 2017.
PEW RESEARCH CENTER

Chart

DePlot
Table

Entity Get better Stay about
the same

Get worse

Europe nan 51.0 37
Middle
East

nan 35.0 33

Latin
America

15.0 46.0 32

Asia-
Pacific

nan nan 38

Africa 26.0 27.0 27

Year Cable or
satellite
subscrip-
tion

Online
streaming
service

Digital an-
tenna

U.S. adults 59 28 9
Ages
18-29

31 61 5

30-49 52 37 7
50-64 70 10 15
65+ 84 5 7

Figure 8: Select examples from CHART2TEXT (Pew) where TAB-GTR + DEPLOT underperforms with respect
to TAB-GTR + OCR. In both cases DEPLOT does not output the caption.
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