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Abstract

In this work, we extend the instruction-
tuned Llama-2 model with end-to-end general-
purpose speech processing and reasoning abili-
ties while maintaining the wide range of origi-
nal LLM capabilities, without using any care-
fully curated paired data. The resulting end-to-
end model, named AudioChatLlama, can uti-
lize audio prompts as a replacement for text and
sustain a conversation. Such a model also has
extended cross-modal capabilities such as be-
ing able to perform spoken question answering
(QA), speech translation, and audio summa-
rization amongst many other closed and open-
domain tasks. This is unlike prior approaches in
speech, in which LLMs are extended to handle
audio for a limited number of pre-designated
tasks. On both synthesized and recorded speech
QA test sets, evaluations show that our end-to-
end approach is on par with or outperforms
cascaded systems (speech recognizer + LLM)
in terms of modelling the response to a prompt.
Furthermore, unlike cascades, our approach can
interchange text and audio modalities and in-
trinsically utilize prior context in a conversation
to provide better results.

1 Introduction

Large Language Models (Brown et al., 2020;
Chowdhery et al., 2022; Scao et al., 2022; Tou-
vron et al., 2023a,b) (LLMs) have, due to their
flexibility and extended capabilities, proven them-
selves highly performant on a wide range of nat-
ural language tasks, including open-domain tasks
which might require world-knowledge. Such gener-
ative tasks include text summarization, text and
code generation, information retrieval, and ma-
chine translation among others (Radford et al.,
2019; Brown et al., 2020). Despite the impres-
sive performance of these models, there is a mis-
match between the criteria they were trained on and
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users’ preferences (Leike et al., 2018; Ouyang et al.,
2022). Vanilla LLMs when prompted would often
produce non-factual, unhelpful, or toxic material–
the model is not aligned with user preferences (Ben-
der et al., 2021; Bommasani et al., 2021; Kenton
et al., 2021; Weidinger et al., 2021). This has led
to a wide range of work on aligning the behavior
of large language models with the intent of users
(Christiano et al., 2017; Stiennon et al., 2020).

On a different front, there has been a notable
surge in work extending the end-to-end capabil-
ities of large language models (LLMs) to other
modalities such as audio, with the aim of enabling
them to process information that was previously
difficult to encapsulate purely with text (Driess
et al., 2023; Gong et al., 2023; Fathullah et al.,
2023; Lakomkin et al., 2023; Rubenstein et al.,
2023; Zhu et al., 2023). For example, audio has
the capacity to encapsulate a diverse array of emo-
tions within a person’s speech, while images have
the ability to depict structures and placement of
objects, which could be significantly more com-
plex to convey through text. The work of Driess
et al. (2023) aligned a large pre-trained visual trans-
former (Dehghani et al., 2023) to the PaLM LLM
(Chowdhery et al., 2022) using a dedicated dataset
for robotics with natural language. Similarly, Zhu
et al. (2023) aligned a pre-trained visual model
to the large language model Vicuna, a fine-tuned
version of Llama (Chiang et al., 2023), using a
carefully curated paired image-text dataset to en-
able reasoning. In the audio domain, Gong et al.
(2023) proposed LTU, an extension of Llama with
an aligned audio encoder trained on a curated audio
question-answering corpus. This enabled LTU to
reason with and understand sounds but still lacked
speech recognition abilities. Furthermore, Tang
et al. (2023) used a similar data processing ap-
proach to curate a dataset, enabling the resulting
system (with dual audio encoders) to perform a
wide range of tasks including speech recognition.
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Figure 1: Model architecture. The LLM consumes a sequence of embeddings irrespective of the modality and
does not differentiate between them. The variable-length and continuous audio embeddings are sandwiched
between some prefix and suffix which could contain instructions (and eventually a conversation history) for
how the audio prompt should be interpreted. For text-based prompts, the audio encoder is swapped out for the
text embedding matrix.

The work of (Fathullah et al., 2023; Lakomkin et al.,
2023; Rubenstein et al., 2023; Wu et al., 2023;
Yu et al., 2023) all extend an underlying LLM to
various speech tasks such as multilingual speech
recognition, translation, and synthesis. While these
approaches achieve promising results on predeter-
mined tasks, they do not fully utilize the power and
flexibility of LLMs to perform a much wider range
of closed and open-domain, open-ended tasks.

In this work, we address this limitation in exist-
ing text/speech-modal language models. Starting
from an instruction-tuned (and conversational) lan-
guage model (Llama) we how to extend the wide
range of its text capabilities to the speech domain
in an end-to-end manner, without the use of curated
paired data. Everything possible with text should
be possible with speech, in conjunction with en-
abling cross-modal recognition and reasoning capa-
bilities. The overall result is an end-to-end model,
AudioChatLlama, that can perform text/speech-to-
response generation and utilize prior context in a
conversation to guide the model in its reasoning.

2 AudioChatLlama: LLM with
General-Purpose Speech Abilities

There has been a significant amount of recent work
on equipping LLMs with multi-modal processing
capabilities. The current standard approach re-
volves around two components: (1) a pre-trained
encoder for the new modality and (2) paired data
which is used in aligning the encoder with the lan-
guage model for the particular tasks the joint sys-
tem should solve (Driess et al., 2023; Fathullah

et al., 2023; Gong et al., 2023; Lakomkin et al.,
2023; Rubenstein et al., 2023; Wu et al., 2023; Zhu
et al., 2023). Furthermore, most of these works use
vanilla LLMs, instead of instruction-tuned versions
which are often more aligned with user preferences
in terms of usability and content generation.

Our goal is to create a system that can be
prompted with audio as a direct replacement for
text and allow for a user to use speech to converse
while maintaining the LLM original capabilities.
Furthermore, we aim to achieve this without curat-
ing dedicated paired datasets for extending these
capabilities to the speech domain. To achieve this
we first opt to equip an instruction-tuned LLM with
an audio encoder to enable it to directly process
speech representations. Second, instead of rely-
ing on utilizing paired datasets, we make use of a
modal-invariance trick: Whether the input to the
LLM is a string of text or an audio recording, the
response to both prompts should be identical if the
semantic information in the modalities is the same.
The resulting system is named AudioChatLlama
due to the extension of Llama-2-chat to the speech
conversational domain.

The following subsections cover the architecture
for our approach, the audio encoder for feature
extraction, the type of large language model, and
finally, how we align the audio encoder to the LLM
while achieving all the outlined goals.

2.1 Architecture

Following prior work (Driess et al., 2023; Fathullah
et al., 2023; Zhu et al., 2023) we opt for a decoder-
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Figure 2: The aim is to create an end-to-end system that would generate the same response when being fed
spoken (audio) input instead of its text version. The overall system should be invariant to the modality of the
inputs containing the same semantic information.

only approach due to the simplicity of extending
such a system to other modalities, see Figure 1.
Practically, this multi-modal LLM is operated in
an identical manner to its uni-modal equivalent,
consuming a sequence of embeddings irrespective
of modality, and generating a textual response in
an autoregressive manner. The audio encoder con-
sists of a small connectionist temporal classifica-
tion (CTC) (Graves et al., 2006) pre-trained con-
former (Gulati et al., 2020) encoder followed by
a projection layer to ensure the audio embedding
dimension matches the LLM dimension.

The language model is chosen to be the recently
released Llama-2-chat (7B) model (Touvron et al.,
2023b), an instruction-tuned version of Llama-2
that can maintain conversations. One of the goals of
this work is to extend the capabilities of this model
to the speech domain without compromising on the
LLM’s original capabilities. Therefore, we keep
the LLM completely frozen in all our experiments.
The only trainable aspect of this system is the audio
encoder, which effectively needs to learn how to
prompt the LLM.

2.2 General-Purpose Alignment Using
Unpaired Data

The goal of general-purpose alignment on audio
prompts is to induce the same behavior as text
prompts, it should not matter whether the prompt
is a written or a spoken version of the same un-
derlying information. Furthermore, while there
exists plenty of text conversational and instruction
datasets, the same is not true for the speech-text
domain In the field of speech QA, we often face
a challenge in obtaining paired data, consisting of
speech prompts as inputs and corresponding text
responses as outputs. To address this issue, this
paper proposes an approach that utilizes unpaired

data from the automatic speech recognition (ASR)
field to overcome this limitation, see Figure 2. One
potential advantage of using ASR data is that it cov-
ers a wide range of acoustic conditions, and there
are also numerous datasets available that have been
prepared over the past few decades. However, these
datasets come paired only with the corresponding
transcriptions, which limits their usefulness for
aligning the range of LLM capabilities. A differ-
ent alternative is extending a question-answering
dataset by using text-to-speech systems to synthe-
size spoken questions. While a set of diverse syn-
thetic questions and answers could help in training
a general-abled system, prior work has shown that
purely training on synthetic data is not as effective
as human speech with most approaches incorporat-
ing human speech to achieve competitive perfor-
mance (Rosenberg et al., 2019; Rossenbach et al.,
2020; Liu et al., 2023; Zheng et al., 2021).

To circumvent this issue of creating a general-
purpose abled system, we rely on Llama-2-chat
itself to prepare the automatic response of the ASR
dataset. Given a generic dataset of (audio, tran-
script) pairs we use the transcript to prompt Llama
and generate a response, following the chat struc-
ture (Touvron et al., 2023b):

prompt = "<s>[INST] <<SYS>>\n{{system_prompt}}

\n<</SYS>>\n\n{{user_prompt}} [/INST]"

where the {{system_prompt}} was not used (set
to empty) and the {{user_prompt}} was set to the
transcript. The generated response is then used to
align an audio encoder to Llama-2-chat using the
(audio, response) pairs. The use of an ASR dataset
could bring its own problems:

• Standard ASR benchmarks such as (Multilin-
gual) LibriSpeech are collected from audio-
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Table 1: Representative examples of transcripts (prompts) and corresponding responses from Llama-2-chat;
taken from the English training set of Multilingual Librispeech. In the majority of cases, the LLM will
apologize or initiate the response in a speculative manner.

Prompt (transcript) Response

thus graciously the war i wage as
witnesseth my hand tom gage by
command of mother gary thomas
flucker secretary

I apologize, but I’m a large language model, I cannot provide
a forged signature as it is illegal and unethical. I cannot
assist with any activities that promote fraud or deception.

i frequently heard pater refer to
certain of their books to madame
gervaisais to l’art du de we to

It seems that you are referring to a quote or a passage from a
book, and you are asking for clarification on the meaning of a
specific phrase or word. [Terminated early]

raniero was married to francesca
who was the daughter of jacopo
degli uberti a wise and influential
man

Ah, I see! So Raniero was married to Francesca, who was the
daughter of Jacopo Delli Uberti, a wise and influential man.
Is there anything else you would like to know about this
family and their relationships?

books. Utterances from audiobooks are often
not useful prompts.

• ASR datasets are often segmented into short
utterances that might span parts of sentences
making the transcript a nonsensical prompt in
many cases.

However, despite these shortcomings, the aim is
considered achieved if the audio prompt can induce
the same response, even if the original transcript
and the generated response by Llama are nonsen-
sical, see Table 1 for representative examples of
prompts and corresponding replies. Note, that it
is possible to generate synthetic spoken questions
(as was discussed above) and train a system on this
data in conjunction with human speech to improve
performance. However, we opt to keep our setup
simple and only rely on abundant public speecch
recognition data.

3 Experimental Setup

3.1 Dataset & Generation

All experiments in this paper will be based on the
English split of Multilingual LibriSpeech (MLS)
(Pratap et al., 2020). The dataset is a 50k-hour
ASR corpus derived from audiobooks of LibriVox,
of which 45k hours are in English. Following the
segmentation of the dataset to utterances of up to
20 seconds, the corresponding reference text is
fed to Llama-2-chat (7B) to generate the response
(according to Section 2.2). Due to the large number
of utterances, we resort to greedy decoding with

a maximum decoding length equal to 4 times the
input prompt. The resulting replies from Llama
are often significantly longer due to the "talkative"
nature of the instruction-tuned LLMs, leading to a
much larger dataset.

3.2 Model Architecture & Training
Audio Encoder We build and pre-train an audio en-
coder that operates on 80-dimensional filterbanks
with a 10ms frame rate. The architecture consists
of a convolutional feature extractor with an out-
put frame rate of 80ms followed by a linear layer
to project the output to 512 dimensions. This se-
quence of features is then fed through a number
of conformer layers. Each conformer block has a
hidden dimension of 512, a feed-forward net dimen-
sion of 2048, a kernel size of 11, and 8 attention
heads. A linear layer is applied on top, which is
used to pre-train the system using a CTC loss with
a 1.5k SentencePiece (Kudo and Richardson, 2018)
vocabulary and is discarded after pre-training.

The encoder output is a sequence of 512-
dimensional vectors with a frame rate of 80ms. We
reduce sequence length by stacking every n consec-
utive frames. These are then projected to 4096-d
to match the Llama-2-chat 7B dimension, with a
resulting frame rate of 80 · n ms. These embed-
dings are sandwiched between a prefix and suffix
(as seen in Figure 1) which are set to the following
during the training phase:

prefix = "<s>[INST] <<SYS>>\n\n<</SYS>>\n\n"

suffix = " [/INST]"
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Table 2: The perplexity of various systems when being evaluated under ‘correct’ response, that is the response
generated when prompting Llama-2-chat with the transcript of the audio. Cascaded systems first transcribe the
audio, and therefore, report their associated (prompt) WERs.

Model
MLS TriviaQA-TTS

Prompt Response Prompt Response
WER PPL WER PPL

Reference text prompt 0.0% 1.383 0.0% 1.273

Cascade baselines
36L Conformer CTC-ASR + LLM 16.8% 1.831 15.2% 1.775

10.1% 1.641 11.5% 1.720
7.5% 1.575 10.3% 1.709

Proposed end-to-end systems
AudioChatLlama (18L Conformer) – 1.559 – 1.467
AudioChatLlama (36L Conformer) – 1.544 – 1.422

Note that this simply follows the standard Llama-2-
chat prompting structure (see Section 2.2), where
the system prompt has been set to be empty and
the user prompt is replaced by the variable-length
sequence of audio embeddings. Conditioned on
this prompt, the system is trained to predict the
next token of the previously generated response.

Large Language Model Since a core aim is to
maintain the wide range of original capabilities of
the instruction-tuned LLM, it will be kept frozen
in all experiments. The only trainable aspect of the
system is the audio encoder which makes up a frac-
tion of all parameters. Furthermore, Llama-2-chat
was purposely chosen for both data generation and
training to ensure a minimal mismatch in system
behavior when switching between text and audio
inputs.

Training The audio encoders were initially pre-
trained using Adam with β1 = 0.9, β2 = 0.98
(Kingma and Ba, 2015). The learning rate was
warmed up over 20k training steps up to a peak
value of 1e-3 followed by an exponential decay-
ing schedule. This was done on 16 NVIDIA A100
40GBs with 4 gradient accumulations using a per-
GPU batch size of up to 500 seconds of audio. The
checkpoint with the best validation loss was picked.
The joint system, AudioChatLlama, with an audio
encoder and LLM was thereafter trained with a
schedule of 5k warmup steps up to a peak learn-
ing rate of 5e-4 decaying down to 5e-6 over 250k
steps. Training was often terminated within 100k
steps. This was performed on 64 NVIDIA A100
40GBs with 8 gradient accumulation steps using
a batch size of 2. Decoding is done using beam

search with a beam of 10. The proposed scheme is
implemented on an extension of the fairseq frame-
work (Ott et al., 2019).

4 Results

This section reports empirical results of evaluating
the ability of AudioChatLlama in various settings.
First, we measure the perplexity of the speech-
prompted LLM on the responses generated by the
text-prompted LLM. Comparing to a cascade of
ASR + LLM may provide some insight on how well
the end-to-end approach performs. Second, start-
ing from a text-based QA dataset, we synthesize
spoken questions using a text-to-speech system.

We then conduct human evaluation on responses
from the cascaded baseline and AudioChatLlama.
Evaluators judge the response quality by comparing
with reference answers. To further understand the
performance of the proposed model on real speech,
we also perform human evaluation on a real spoken
QA dataset. Finally, since our proposal can interact
with speech it has many more capabilities which
are showcased in the last subsection.

4.1 Cascade Baseline

To evaluate the end-to-end response generation abil-
ity, we built a cascade baseline system, which con-
sists of an ASR model and the Llama-v2-chat (7B)
to perform spoken QA. The ASR system is a CTC
model, using 36 Conformer layers as an acoustic
encoder. It was trained on the same MLS English
split, following the standard recipe from (Pratap
et al., 2020). This type of cascaded system is sensi-
tive to the quality of the ASR-generated prompt to
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LLM. Therefore, we include several checkpoints of
the CTC Conformer to present the performance of
the cascaded system under different quality levels,
in the below response perplexity comparison.

4.2 Perplexity
Next, we evaluate the perplexity of various models
under the ‘correct’ response, e.g. the response gen-
erated from Llama-2-chat with transcript as input.
The cascaded system first transcribes the audio and
sends the transcribed text to the LLM while our
proposed system directly feeds audio embeddings
into the LLM. The perplexity evaluation results
from the two systems on MLS English test set and
on the TriviaQA (Joshi et al., 2017) test set are
shown in Table 2. Since TriviaQA is a standard
text-based QA dataset, we synthesized the corre-
sponding audio, using a text-to-speech (TTS) tool,
to evaluate the speech processing capabilities of
our proposed systems. This test set is referred to as
TriviaQA-TTS in this paper.

The perplexity results show that AudioChatL-
lama outperforms the cascaded ASR + LLM sys-
tems on both MLS and TriviaQA-TTS data; all
whilst not having to perform two stages of decod-
ing. Furthermore, one of the main strengths of
our end-to-end approach is that it is able to main-
tain a dialogue and uses prior context to guide the
response generation (discussed in Section 4.5).

4.3 Human Evaluation
For a more comprehensive insight into the perfor-
mance of AudioChatLlama, we conducted a human
evaluation to compare the quality of the generated
response between AudioChatLlama and the best-
performing cascaded baseline on the TriviaQA-
TTS test set. As is typical with cascaded systems,
the overall performance is highly dependent on the
quality of the separate modules. For our baseline
with cascaded ASR and LLM modules, the quality
of a response to a spoken query is highly suscep-
tible to recognition errors from the ASR module.
In contrast, the proposed end-to-end system is ex-
pected to be more robust to this kind of uncertainty,
avoiding the accumulation of errors. Therefore, we
compare performance of the proposed model with
baseline across datasets with different word error
rate levels.

Table 3 summarizes the human evaluation re-
sults. We compared 3 different word error levels
based on the baseline, and for each level, we ran-
domly selected 50 question samples to evaluate the

Table 3: Human evaluation on success rate (SR) on
TriviaQA-TTS (subset). AudioChatLlama is com-
pared with the cascaded baseline over 50 samples
in each word error level.

Model
Prompt Response
WER SR

Cascade ASR+LLM 37.5% 40%
AudioChatLlama – 52%

Cascade ASR+LLM 14.3% 60%
AudioChatLlama – 70%

Cascade ASR+LLM 4.3% 80%
AudioChatLlama – 80%

generated answers. The success rate (SR) is used
as a metric, measuring the fraction of predicted
responses that agree with the reference response.
In high error rate situations (37.5% and 14.3%),
the proposed model generated better answers in
comparison with the baseline. Meanwhile, in lower
error rate situation (4.3%), the performance was on
par with the baseline.

Table 4: Human evaluation on success rate (SR)
on RealSQA evaluation data.

Model
Prompt Response
WER SR

Cascade ASR+LLM 31.5% 42%
AudioChatLlama – 48%

Cascade ASR+LLM 13.3% 50%
AudioChatLlama – 58%

Cascade ASR+LLM 3.5% 80%
AudioChatLlama – 78%

For further understanding the ability of the pro-
posed model to process speech, we recorded a
small set of speech questions, referred to as Re-
alSQA in this paper 1. Similar to TriviaQA-TTS,
this prepared test set sampled 3 splits of different
difficulty (error-rate) levels, and each contains 50
samples. Table 4 presents the results on RealSQA.
We observed similar trends that AudioChatLlama

1We provided scripts to a vendor, where scripts were
sourced from the Open Assistant dataset hosted by Hugging-
face. Using a BERT-based NE tagger, we selected 8k utter-
ances with at least one entity and shorter than 100 characters.
Each of 200 Participants was presented with a random set of
the scripts with each can only have max 200 utterances.
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Figure 3: Cosine similarity between text and audio embeddings.

>>> [Audio Input] "i have a github
repo fork how can i add it to my
origin with git remote add"

[ASR prompt] i have a gi hub reble
fork how can i add it to my origin
with gi remote *
[Cascade ASR+LLM] To add a
repository to your Origin with
GiRemote, you ...

[AudioChatLlama] To add a GitHub
Repo Fork to your Origin with Git
Remote Add, you can follow ...

Figure 4: An example when the cascaded baseline
had a prompt WER of 26%. AudioChatLlama
demonstrated robust response generation in the
face of these ambiguities.

outperforms the cascaded model in higher error rate
scenario (31.5% and 13.3%) and achieves on-par
performance with the baseline in lower error rate
situation (3.5%).

Compared to AudioChatLlama, we noticed the
cascaded baseline suffers more in providing rea-
sonable responses when error rates from the ASR
model are relatively high. The results and findings
on the two datasests suggest that AudioChatLlama
can leverage the LLM to effectively handle the un-
certainty in speech embeddings to generate better
responses. On RealSQA, an example analysis of
different error-rate levels is given in Figure 4 and 5.
In the high-error example in Figure 4, the ASR sys-
tem can not generate a sensible prompt, leading the
LLM to produce a response with hallucinations. On
the other hand, the proposed AudioChatLlama is
able to effectively overcome these ambiguities and
generate the desired output. While the proposed

>>> [Audio Input] "describe joseph
scaliger and his contributions to
modern understanding of history"

[Cascade ASR+LLM] Joseph Scaliger
(1540-1609) was a French scholar and
historian who ...

[AudioChatLlama] Joseph Schumpeter
(1883-1950) was an Austrian-American
economist ...

Figure 5: A low-error example when AudioChatL-
lama made mistakes. The cascaded baseline had
a WER of 0%, but AudioChatLlama responded
wrongly with a name that sounded similar to the
correct one.

scheme has its robust advantages, it also has some
limitations. As demonstrated in Figure 5, when the
prompt WER is 0%, the cascaded system provided
a perfect response. However, AudioChatLlama is
unable to distinguish between acoustically similar
names and therefore provided information from an
incorrect person’s profile.

4.4 Embedding Space Alignment

Since the LLM is kept frozen, we hypothesized
that the sequence of embeddings produced by the
audio encoder must be closely related to the text
embeddings of the transcript. Figure 3 illustrates
the pairwise cosine similarity between the audio en-
coder outputs and the text embeddings for a human-
recorded example.

Since the recording is approximately 3.2s and the
frame rate of the audio encoder is 80ms, the result
is a sequence of 40 audio embeddings. Meanwhile,
the transcript is converted into 10 text embeddings.
Despite the length difference, the pairwise cosine
similarity between all embeddings shows a nearly
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monotonic alignment, although "Obama" is only
weakly aligned. Furthermore, the uninformative
start and end portions of the figure correspond to
the deliberate silence in the recording.

4.5 Extended Capabilities
The training of AudioChatLlama using ASR data
doesn’t restrict the model on specific tasks. In this
section, we explore its extended capabilities be-
sides the standard QA functionality. Due to space
constraints, examples of the below abilities are pre-
sented in Appendix A.

• Basic Speech Translation: Since the original
Llama-2-chat can perform some level of trans-
lation, it directly enables our speech model to
perform speech-to-text translation.

• Audio Summarization: LLMs excel at sum-
marization; our system extends this capability
to the speech-to-text domain.

• Interchanging modalities: The proposed
scheme aims at aligning the audio and text
embedding spaces, thus audio can be a re-
placement of text. Throughout a conversation,
the user can switch between using audio or
text inputs.

• Contextualization: The history of a conversa-
tion helps aid our system in deciphering the
audio. In many cases where standard ASR
systems would fail due to the occurrence of
rare words, our system would excel due to its
ability to use prior context.

Due to the nature of instruction-tuned LLMs
such as Llama-2-chat, it is difficult to use automatic
evaluation metrics to evaluate the performance of
some of the above-mentioned capabilities. Fol-
lowing, are several examples showcasing these ca-
pabilities and exemplifying the difficulties using
automatic evaluation.

These examples showcase that the end-to-end
system can directly extend various text-based tasks
to the speech domain without being explicitly
trained to do so. For example, the ‘Speech Transla-
tion’ example shows how the system first provides
a transcript of the audio before responding to it
and providing additional information relevant to
the prompt. While this is technically correct, it also
displays why using automatic evaluation becomes
increasingly difficult for such systems.

Furthermore, it is important to note that the per-
formance of the resulting system on these tasks is

highly dependent on the capabilities of the original
LLM. If the LLM being extended cannot perform
translation, then neither will the end-to-end system.

5 Limitation

The modal-invariance approach used in our work
to extend text capabilities to the speech domain
has worked effectively. However, the resulting
model still has limited audio understanding. A
possible next step would involve extending these
capabilities to generic audio understanding and rea-
soning in addition to the capabilities presented in
this paper. Furthermore, the first step in achieving
this would be to replace the small conformer au-
dio encoder with one of the many available more
robust self-supervised trained audio encoders such
as Wav2Vec2 (Baevski et al., 2020) or HuBERT
(Hsu et al., 2021). That a small conformer trained
on a limited amount of data still works is a good
stepping stone for stronger audio models that can
encode audio into richer representations useful for
a wider range of tasks.

Data Generation The end-to-end system
was trained on a segmented ASR dataset, which
presents several drawbacks discussed in the pa-
per. Proper segmentation that does not break the
structure of sentences could improve the quality
of the responses. Furthermore, Llama-2-chat was
used to generate replies using greedy search due to
computational constraints. For a more unrestricted
approach, the decoding process should be extended
to beam search with a large beam to ensure the
end-to-end system is trained on higher-quality re-
sponses.

6 Conclusion

In this work, we extend an instruction-tuned large
language model with end-to-end speech process-
ing and reasoning abilities while maintaining its
wide range of capabilities, without using any care-
fully curated paired data. The result, referred to
as AudioChatLlama, is a large language model
that can utilize audio prompt as a replacement of
text and sustain a conversation in an end-to-end
manner. Such a model also has extended cross-
modal capabilities such as being able to perform
spoken QA, speech translation, and audio summa-
rization. Finally, unlike alternative approaches that
rely on standard speech recognition systems which
struggle to recognize certain rare words, the prior
context in a conversation can guide our system in
various recognition and reasoning tasks.
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A Examples of Extended Capabilities

This section presents the examples of extended ca-
pabilities of Section 4.5. It includes basic speech
translation, audio summarization, multi-round QA
to show the ability of contextualization, multi-
round QA to show interchanging modalities be-
tween text and audio.

1. Basic Speech Translation:

>>> [Audio Input] "Translate
into Italian: How are you
today?"

[Text response] In Italian,
"How are you today?" can be
translated as "Come stai oggi?"
...

2. Audio Summarization:
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>>> [Audio Input] "Summarize
what I say. Troy was an ancient
city located in present-day
Turkey. It is best known
as the setting for the Greek
myth of the Trojan War. The
archaeological site is open
to the public as a tourist
destination, and has been added
to the UNESCO World Heritage
list as of 1998."

[Text response] Troy is an
ancient city located in
present-day Turkey, first
known as the setting for the
Greek myth of the Trojan War.

3. Interchanging modalities: this example
demonstrates the ability to alter between audio
and text questions.

>>> [Audio Input] "What can you
tell me about Barack Obama?"

[Text response] Barack Obama
is a former President of the
United States, serving two
terms from 2009 to 2017. He
was born on August 4, 1961, in
Honolulu, Hawaii, and grew up
in Chicago, Illinois ...

>>> [Text Input] Who was his
vice president?

[Text response] Barack Obama’s
vice president was Joe Biden.
Biden served as Vice President
of the United States from 2009
to 2017, during Obama’s two
terms in office.

>>> [Audio Input] "Is he allowed
to run for president again?"

[Text response] Barack Obama is
no longer eligible to run for
President of the United States
...

4. Contextualization: This example discusses
heavy name entities about Iceland. Words like
Jökulsárlón can be inferred and understood
correctly from the context.

>>> [Audio Input] "Hi, I plan
to visit Iceland for winter
vacation. Can you give me some
suggestions?"

[Text response] Certainly!
Iceland is a beautiful country
with a lot to offer, especially
during the winter months. Here
are some suggestions for your
winter vacation ...

>>> [Audio Input] "Thank you!
Besides the landscapes, is
there anything to see in
downtown Reykjavik?"

[Text response] Yes, besides
the landscapes, there are
several other attractions to
see in Reykjavik, the capital
city of Iceland. Some of these
include: ...

>>> [Audio Input] "It’s said
that there is a very famous blue
lagoon near Reykjavik, how much
is a ticket?"

[Text response] The cost of a
trip to Blue Lagoon in Iceland
can vary depending on several
factors including the time of
year, accommodation options,
and the length of your stay ...

>>> [Audio Input] "How long does
it take from Reykjavik to the
glacier lagoon Jokulsarlon by
car?"

[Text response] Sure, here’s
a short and informative answer
to your question, to get from
Reykjavik to the Glacier Lagoon
Jökulsárlón by car, you can
take the following route ...
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