
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 556–569

June 16-21, 2024 ©2024 Association for Computational Linguistics

Query-Efficient Textual Adversarial Example Generation
for Black-Box Attacks

Zhen Yu Zhenhua Chen Kun He*

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China
{baiding15, zhenhuachen, brooklet60}@hust.edu.cn

Abstract

Deep neural networks for Natural Language
Processing (NLP) have been demonstrated
to be vulnerable to textual adversarial exam-
ples. Existing black-box attacks typically re-
quire thousands of queries on the target model,
making them expensive in real-world applica-
tions. In this paper, we propose a new ap-
proach that guides the word substitutions us-
ing prior knowledge from the training set to
improve the attack efficiency. Specifically,
we introduce Adversarial Boosting Preference
(ABP), a metric that quantifies the impor-
tance of words and guides adversarial word
substitutions. We then propose two query-
efficient attack strategies based on ABP: query-
free attack (ABPfree) and guided search attack
(ABPguide). Extensive evaluations for text clas-
sification demonstrate that ABPfree generates
more natural adversarial examples than exist-
ing universal attacks, ABPguide significantly
reduces the number of queries by a factor
of 10 ∼ 500 while achieving comparable or
even better performance than black-box at-
tack baselines. Furthermore, we introduce the
first ensemble attack ABPens in NLP, which
gains further performance improvements and
achieves better transferability and generaliza-
tion by the ensemble of the ABP across differ-
ent models and domains. Code is available at
https://github.com/BaiDingHub/ABP.

1 Introduction

Despite the outstanding performance, Deep Neural
Networks (DNNs) are known to be vulnerable to ad-
versarial examples (Szegedy et al., 2014), i.e., im-
perceptible perturbations on benign samples could
lead to entirely incorrect predictions. Adversarial
examples have brought critical security threats to
the widely adopted deep learning based systems,
and have attracted enormous attention on adver-
sarial attacks in various domains, e.g. Computer
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Vision (CV) (Goodfellow et al., 2015; Madry et al.,
2018), Natural Language Processing (NLP) (Paper-
not et al., 2016; Liang et al., 2018), etc.

Textual adversarial attacks pose greater chal-
lenges due to the discrete input space and con-
straints of lexicality, semantics and fluency, which
can be categorized into white-box, black-box and
universal attacks. White-box attacks (Liang et al.,
2018; Meng and Wattenhofer, 2020) require full ac-
cess to the victim model, including its architecture,
parameters, loss function, gradient, output, etc.,
which are typically unavailable in real-world appli-
cations. Black-box attacks (Ren et al., 2019; Zang
et al., 2020) only need access to the model output,
e.g., output logits or predictions. However, they
require thousands of queries to determine the im-
portance of each word based on the model output,
making them expensive in real-world applications.
Universal attacks (Moosavi-Dezfooli et al., 2017;
Li et al., 2021b) are a particular type of adversarial
attacks which adds the same adversarial text gen-
erated by the training set at the beginning or end
of all input samples to mislead the model. They
require no access to the model and usually have
a stronger attack efficiency and better usability in
the real-world, but lower attack performance and
unnatural adversarial examples.

In this work, we aim to utilize the prior knowl-
edge learned from the training set to guide word
substitutions in black-box attacks to reduce the
need to access the model, making it more practical
for real-world applications. To this end, we propose
Adversarial Boosting Preference (ABP), a metric
that quantifies the importance of different words
and guides the word substitutions. By analyzing
statistics of synonym substitutions during adver-
sarial example generation in the training set, we
estimate the preference for replacing a word with
its synonym in generating adversarial examples, as
well as the boosting contribution to the adversari-
ality of these samples, and then multiply them to
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obtain the score of adversarial boosting preference.
Based on pre-computed ABP from the training

set, we propose three query-efficient attacks, in-
cluding query-free attack ABPfree, guided search
attack ABPguide and ensemble attack ABPens. For
a benign text, ABPfree determines the importance
of each word, assigns a candidate for each of them,
and constructs the replacement order for the text.
Then ABPfree substitutes the top 25% words with
their respective candidates in the replacement order
to generate adversarial examples with no access
to the model. ABPguide adopts ABP to guide the
search of adversarial examples, and then prunes re-
dundant perturbations to find the optimal adversary.
ABPguide significantly improves the attack perfor-
mance through dozens of queries. Finally, ABPens
integrates ABP generated by different models or
domains to further boost the attack performance.

To validate the effectiveness, we conduct exten-
sive experiments to compare ABP with various
black-box attacks (Ren et al., 2019; Zang et al.,
2020) and universal attacks (Wallace et al., 2019;
Song et al., 2021). Empirical evaluations show
that ABPfree generates more natural adversarial ex-
amples through synonym substitutions than exist-
ing universal attacks. ABPguide greatly reduces
access to the model than existing black-box attacks,
while achieving comparable attack performance.
And the ensemble of ABP across models and do-
mains gains further performance improvement and
achieves superior cross-model transferability and
cross-domain generalization. To the best of our
knowledge, this is the first ensemble attack method
for attacking NLP tasks.

2 Related Work

This section briefly introduces the black-box and
universal attacks that are moist related to our work.

2.1 Black-box Adversarial Attacks

Black-box adversarial attacks perturb each be-
nign text individually based on the model out-
put. According to the perturbation level, these
attacks fall into three categories: character-level at-
tacks (Gao et al., 2018; He et al., 2021), word-level
attacks (Alzantot et al., 2018; Yu et al., 2022), and
sentence-level attacks (Zhao et al., 2018; Ribeiro
et al., 2018). Among these attacks, the synonym
substitution based word-level attacks exhibit excel-
lent attack performance with natural, semantic and
fluent adversarial examples, which are by far the

most popular methods. PWWS (Ren et al., 2019)
and TextFooler (Jin et al., 2020) consider the word
saliency and classification probability to greedily
substitute important words with synonyms. BERT-
Attack (Li et al., 2020), BAE (Garg and Ramakr-
ishnan, 2020) and CLARE (Li et al., 2021a) attack
BERT (Devlin et al., 2019) using contextual per-
turbations from a BERT masked language model.
GA (Alzantot et al., 2018) and PSO (Zang et al.,
2020) adopt evolutionary algorithms to search for
an optimal textual adversarial example.

These attacks require a large number of queries
to victim models so as to determine the importance
of each word or retain better word substitutions. In
this work, we utilize the prior knowledge of adver-
sarial boosting preferences obtained from the train-
ing set to guide word substitutions, which helps us
significantly reduce the number of queries to the
model while ensuring good attack performance.

2.2 Universal Adversarial Attacks

Universal adversarial attacks usually add a univer-
sal perturbation on the benign text to mislead the
victim model without requiring queries. Behjati
et al. (2019) and Wallace et al. (2019) prepend the
trigger to each benign sample and update the em-
bedding for every trigger token. Atanasova et al.
(2020) propose to include an auxiliary semantic tex-
tual similarity objective to generate samples with
low perplexity in the fact checking task. Song
et al. (2021) propose the Natural Universal Trigger
Search (NUTS) to improve naturalness using an
auto-encoder and a generative adversarial network.
Li et al. (2021b) propose the Data-Free Adjusted
Gradient (DFAG) attack which utilizes the pseudo-
samples generated by the perturbation to generate
the trigger using only a single sample. Gao et al.
(2022) add the universal perturbation to the latent
representation encoded from discrete texts.

These triggers are sentence-level perturbations
that introduce a meaningless sentence into the input
samples, resulting in unnatural adversarial exam-
ples that are easily detected by humans. In this
work, we introduce a word-level policy for the uni-
versal textual attack. By substituting synonyms in
the input text based on the pre-computed adversar-
ial boosting preference without access to the victim
model, ABP generates more natural adversarial ex-
amples with good attack performance.
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3 Methodology

In this section, we formalize the problem of text
attack, present the definition of ABP metric, and
provide details of the proposed method.

3.1 Problem Formulation

Given an input space X containing all the input
texts and an output space Y containing the predict
labels, we have a pre-trained classifier f : X → Y ,
which maps the input text x = w1w2 . . . wn ∈ X
to its ground-truth label y ∈ Y based on the maxi-
mum posterior probability f(y|x). The adversary
aims to add imperceptible perturbations on the cor-
rectly classified x to craft an adversarial example
xadv to mislead the classifier f :

argmax
yi∈Y

f(yi|xadv) ̸= argmax
yi∈Y

f(yi|x) = y

In this work, we introduce a novel metric called
Adversarial Boosting Preference (ABP) to evalu-
ate the importance of words. By guiding word
substitutions with ABP, we propose three efficient
black-box adversarial attacks that require only a
few or even zero queries to the model output.

3.2 Adversarial Boosting Preference Metric

For each word wi in the text x, we choose its top m
nearest neighbors in the commonly used counter-
fitted embedding space (Mrkšić et al., 2016) as
its synonym set S(wi) = {w1

i , . . . , w
k
i , . . . , w

m
i }.

We define the adversarial boosting preference of
substituting word wi with word wk

i when crafting
the adversarial example as follows.

Definition 1 (Adversarial Boosting Preference)
Given a word wi and its synonym wk

i , the adversar-
ial boosting preference of substituting wi with wk

i

when crafting an adversarial example is defined
as A(wi, w

k
i ) = P (wi, w

k
i ) × I(wi, w

k
i ), where

P (wi, w
k
i ) denotes the preference of selecting

word wk
i from the synonym set S(wi) to replace wi

and I(wi, w
k
i ) denotes the influence of substituting

wi with wk
i on the victim model.

Typically, a larger A(wi, w
k
i ) indicates a greater

increase in the adversariality of the generated sam-
ple after substituting wi with wk

i in the original
text. So A(wi, w

k
i ) can be used to determine the

importance of different words in guiding the word
substitutions when crafting adversarial examples.

In this work, we estimate the adversarial boost-
ing preference between different words based on

the statistics of word substitutions during the craft-
ing of adversarial examples in the training set. We
record the frequency of wi changing to wk

i obtained
from statistics, as its preference P (wi, w

k
i ), and

record the average change in model output after its
replacement as the influence I(wi, w

k
i ).

Specifically, given an arbitrary synonym substitu-
tion based attack method, we can convert any text x
with label y to an adversarial example xadv, where
some words wi ∈ x are replaced by wk

i ∈ xadv.
We record all the replaced word pairs {(wi, w

k
i )}

between each text x and its corresponding adver-
sarial example xadv in the training set Xtrain. We
count the number of occurrences of wi and the
number of times wi be replaced by wk

i , which we
denote as N(wi) and N(wi, w

k
i ). We calculate

the preference P (wi, w
k
i ) = N(wi, w

k
i )/N(wi).

Meanwhile, we estimate the influence I(wi, w
k
i )

by measuring the average change in the output log-
its after replacing wi with wk

i :

I(wi, w
k
i ) =

∑
(f(y|x)− f(y|x′))

N(wi, wk
i )

,

where x = w1w2 . . . wi . . . wn,

x′ = w1w2 . . . w
k
i . . . wn.

(1)

Finally, we obtain the adversarial boosting pref-
erence A(wi, w

k
i ) = P (wi, w

k
i ) × I(wi, w

k
i ) for

each word wi and its synonyms wk
i . It is worth

noting that the preference for synonym substitu-
tions may differ among texts with different labels.
For instance, in a sentiment classification task, an
attacker is more likely to substitute word "good" in
texts with positive labels, but substitute word "bad"
in texts with negative labels. Therefore, we calcu-
late the adversarial boosting preference separately
for texts with different categories.

3.3 The Proposed ABP Attacks
Given the pre-computed adversarial boosting pref-
erence A(wi, w

k
i ) derived from the training set

Xtrain, we can evaluate the importance of different
words in guiding the word substitutions to generate
the adversarial example on a benign text x0. To
this end, we propose three query-efficient attacks,
including query-free attack ABPfree, guided search
attack ABPguide, and ensemble attack ABPens.

3.3.1 Query-Free Attack ABPfree

ABPfree comprises of two essential steps, namely
identifying important positions in the text and se-
lecting suitable candidate words for substitution.
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Figure 1: Overview of the proposed guided search attack
ABPguide. (A) Greedy search to approach the decision
boundary (B) Guided walk to find an initial adversary
(C) Prune to find the optimal adversary.

We take A(wi, w
k
i ) as the word importance of can-

didate wk
i , and define the position importance of

word wi as qi = maxmk=1 A(wi, w
k
i ). We sort the

positions of all words wi ∈ x0 in descending order
of the position importance qi to determine the re-
placement order. For each word wi in the top 25%
of the replacement order, we select the most impor-
tant candidate w∗

i = argmaxwk
i
A(wi, w

k
i ) from

its synonym set S(wi) for substitution to generate
an adversarial example.

ABPfree only utilizes adversarial boosting pref-
erences to determine word substitutions, which re-
quires no access to the victim model, making it
a universal adversarial attack based on synonym
substitution. Compared to previous universal ad-
versarial attacks (Wallace et al., 2019; Song et al.,
2021) that add meaningless prefixes or suffixes,
ABPfree generates more natural adversarial exam-
ples through synonym substitutions.

3.3.2 Guided Search Attack ABPguide

There are three key steps in ABPguide, including
greedy search to greedily replace key words to
approach the decision boundary, guided walk to
further perturb critical words to search for an initial
adversarial example and prune to restore perturbed
words to their original words to search for the opti-
mal adversarial example, as shown in Figure 1.

For a benign text x0, greedy search substitutes
a word wi with the most important candidate w∗

i

sequentially according to the replacement order ob-
tained in ABPfree. After each word substitution, we
feed it into the model and ask whether it is an adver-
sarial example until we succeed or all words have
been replaced. If the search fails despite perturbing
all words, we further perturb words to search for
an initial adversarial example through the guided

walk operation. Otherwise, we skip to the prune
operation. Guided walk first samples several (at
most δ) important positions wi in the text with the
probability pi:

pi =
max(qi, 0)∑n
i=0max(qi, 0)

,

where the max function ensures that only the words
that can potentially enhance the adversariality of
the text are selected for substitution. Afterwards,
we substitute each selected wi with a suitable can-
didate wk

i ∈ S(wi) with probability pi,k:

pi,k =
max(A(wi, w

k
i ), 0)∑m

k=0max(A(wi, wk
i ), 0)

.

We repeat such search operation until we success-
fully find an adversarial example xadv or exceed
the maximum iteration limit Tg.

Finally, prune restores redundant substitutions
in xadv to their original words to search for the
optimal adversarial example. Prune first samples
several (at most δ) positions with probability 1−pi,
and then substitutes each selected word with its cor-
responding original word in the benign text x0. If
the newly generated sample is an adversarial ex-
ample, we continue the prune operation, otherwise
we re-prune xadv. We repeat the prune operation
Tp times to approach the decision boundary and
search for the optimal adversarial example. Ad-
ditionally, we would perform an early stopping
operation when only one word in xadv is perturbed.

ABPguide adopts the adversarial boosting pref-
erence to guide word substitutions during the
search for adversarial examples, which can improve
the search efficiency and decrease the number of
queries significantly to the victim model, as com-
pared to previous black-box attacks (Ren et al.,
2019; Zang et al., 2020).

3.3.3 Ensemble Attack ABPens

Previous researches (Dong et al., 2018; Xiong et al.,
2022) in computer vision have shown that adver-
sarial examples generated by attacking an ensem-
ble of models would have better performance. As
ABP is model-agnostic that only relates to the re-
placed word pairs, it can easily facilitate the en-
semble of different models. To accomplish this, we
count the total number N(wi, w

k
i ) of replacements

for word wi with wk
i when attacking model fA

and model fB , as well as the total number N(wi)
of occurrences of word wi, to obtain the prefer-
ence Pens(wi, w

k
i ) as before. We then calculate
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Model Attack
IMDB SST MR

Succ. Pert. Query Succ. Pert. Query Succ. Pert. Query

BERT

PWWS 100.0 2.6 4,681 88.7 12.0 362 88.9 10.7 398
PSO 98.6 2.6 10,120 99.7 10.7 1,627 99.4 9.7 1726
ABPguide 99.9 3.0 28 85.4 13.3 28 89.3 11.9 25
ABPens-guide 100.0 4.1 33 97.5 14.3 19 95.8 13.6 21

ALBERT

PWWS 86.2 4.5 4,680 97.3 11.0 357 94.4 11.5 391
PSO 92.9 2.7 1,2424 99.9 10.0 1,087 100.0 9.1 1,020
ABPguide 97.0 4.6 42 92.5 12.1 20 94.7 10.6 17
ABPens-guide 99.7 5.6 41 97.2 13.5 18 97.8 12.6 17

LSTM

PWWS 100.0 2.1 4,690 98.4 12.0 358 98.5 10.4 392
PSO 98.1 2.6 11,161 99.9 10.2 1,174 100.0 11.2 1,590
ABPguide 100.0 2.2 22 89.7 12.8 25 95.0 10.8 16
ABPens-guide 99.9 3.1 29 96.9 14.3 21 96.1 12.6 19

Table 1: Comparison of attack success rate (Succ., %), word perturbation rate (Pert., %) and average query number
(Query) between ABPguide, ABPens-guide and various black-box baselines on three models using three datasets. The
best performance is highlighted in bold.

the average influence Iens(wi, w
k
i ) on models fA

and fB using Equation 1, and obtain the ensemble
adversarial boosting preference Aens(wi, w

k
i ) =

Pens(wi, w
k
i ) × Iens(wi, w

k
i ). The resulting en-

semble attacks using it for query-free attacks and
guided search attacks are referred to as ABPens-free
and ABPens-guide, respectively. Additionally, ABP
adopts the same attack strategy for texts with the
same label, making it possible to generalize across
domains within the same task. Consequently, we
could integrate the final adversarial boosting pref-
erence obtained from different models or domains.

4 Experiments

To validate the effectiveness of ABP, we conduct
extensive experiments for text classification.

4.1 Experimental Setup

Datasets and Models. We adopt three widely used
sentiment analysis datasets, i.e., IMDB (Maas et al.,
2011), SST (Socher et al., 2013) and MR (Pang and
Lee, 2005). And we train three classical models
on the training set, i.e., BERT base-uncased (De-
vlin et al., 2019), ALBERT base (Lan et al., 2020)
and Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997). Due to the high
computational costs, we do not adopt large lan-
guage models such as RoBERTa (Liu et al., 2019)
and GPT-3 (Brown et al., 2020). More details of
these datasets and the classification accuracy of

each model are shown in Appendix A.
Baselines. We select two commonly used

black-box attacks to evaluate the effectiveness
of ABPguide, i.e., PWWS (Ren et al., 2019) and
PSO (Zang et al., 2020), and two universal attacks
to evaluate the effectiveness of ABPfree, i.e., Uni-
versal Adversarial Trigger (UAT) (Wallace et al.,
2019) and NUTS (Song et al., 2021).

Evaluation Settings. In our ABP, we adopt
PWWS (Ren et al., 2019) to generate adversarial
examples and set the synonym number m = 30.
The maximum perturbation rate of 25% is set in
ABPfree, as it is commonly used in word-level at-
tacks. And we set the maximum iteration limit to
Tg = 100 and Tp = 20, and the maximum number
of perturbations for a single iteration to δ = 2 in
ABPguide. For the generation of ABP and triggers
in UAT and NUTS, we randomly sample 10,000
texts from the corresponding training set, except for
the MR dataset, where we use 9,662 samples. All
the evaluations are conducted on a subset compris-
ing a maximum of 1000 randomly sampled texts
from the corresponding test set. The parameter
studies and ablation studies of ABP are presented
in Appendices B and C.

4.2 Evaluation on Efficiency of ABPguide

In practice, if the victim detects an excessive num-
ber of queries within a short period of time, they
can block the attack by simply denying the access.
Therefore, the attack efficiency, typically referred
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Figure 2: Attack success rate (%) of ABPguide and other
black-box attacks on BERT model using MR dataset
under different query budgets (axis x is in log-scale).

to the query budget of the victim model, plays a
crucial role in evaluating the effectiveness of black-
box attacks in real-world applications. We con-
duct evaluations using three benchmark datasets on
three typical models. The results, including attack
success rate, word perturbation rate and average
query number are summarized in Table 1. We in-
vestigate the performance of different ensemble
strategies in Appendix D. We find that ABPens-guide
achieves higher performance when integrating ABP
from diverse sources, while ABPens-free is more ef-
fective at integrating ABP from the same victim
model. Thus, we opt to implement ABPens-guide by
integrating ABP obtained from BERT, ALBERT
and LSTM models using IMDB, SST and MR
datasets. Similarly, for ABPens-free evaluated in
Section 4.3, we only integrate ABP obtained from
various domains for each victim model.

The results show that PWWS and PSO are com-
putationally expensive, requiring hundreds or even
thousands of queries to launch a successful attack
on a single sample. When dealing with a large num-
ber of samples, the cost of queries to the victim
is prohibitively high for the attacker. In contrast,
ABPguide uses much fewer queries (by a factor of
10 ∼ 500) compared to the baselines, with only a
slight decline on the attack success rate and word
perturbation rate. This greatly reduces the cost of
the attack and improves its efficiency. Furthermore,
we can find that ABPens-guide achieves better per-
formance than ABPguide, outperforming PWWS in
most cases and only slightly underperforming PSO.

We further evaluate their attack performance un-
der various query budgets on BERT model using
MR dataset, as shown in Figure 2. We dynami-

Model Attack IMDB SST MR

BERT

UAT 39.1 78.4 80.6
NUTS 3.9 25.8 20.1
ABPfree 98.7 63.0 68.3
ABPens-free 97.6 68.5 71.6

ALBERT

UAT 82.4 98.7 99.2
NUTS 1.9 23.8 25.8
ABPfree 85.6 73.4 78.6
ABPens-free 88.4 72.5 76.0

LSTM

UAT 96.7 95.3 99.7
NUTS 24.9 35.0 63.8
ABPfree 99.9 62.0 84.6
ABPens-free 99.9 66.5 78.1

Table 2: Attack success rate (Succ., %) of various uni-
versal attacks on different models and datasets.

cally adjust the population size of PSO to accom-
modate the limited number of queries. The re-
sults show that PWWS and PSO exhibit poor at-
tack performance when the query budget is lim-
ited. In contrast, ABPguide and ABPens-guide con-
sistently achieves high performance under various
query budgets. Notably, the attack success rate
of ABPguide reaches 71.6% when the query budget
is only 4, which is 71.6% and 69.3% higher than
PWWS and PSO, respectively. These evaluations
show that ABPguide and ABPens-guide can achieve
good attack performance even in real-world scenar-
ios where the query is strictly limited, demonstrat-
ing their effectiveness and practicality.

4.3 Evaluation on Effectiveness of ABPfree

The universal adversarial attack is a suitable option
when the targeted model is entirely inaccessible. It
usually has higher attack efficiency, making it more
practical than both white-box and black-box attacks
in real-world settings. This subsection evaluates the
attack success rate and naturalness of our proposed
ABPfree and existing universal attacks using three
datasets on different models, as shown in Table 2.

We could observe that ABPfree achieves superior
attack performance than NUTS, and also outper-
forms UAT on IMDB datasets but exhibits lower
performance on SST and MR datasets. In con-
trast, the performance of ABPens-free varies, some-
times surpassing and sometimes underperforming
ABPfree. This observation implies that integrating
ABP across multiple domains for ABPens-free would
create a trade-off in its overall performance across
these domains. Table 3 shows adversarial examples
generated by these attacks. UAT arbitrarily com-
bines several words as the trigger, resulting in ex-
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Attack Original Text & Adversarial Example Prediction

Original Text Oliveira seems to pursue silent film representation with every mournful composition. Positive

UAT None is in Oliveira seems to pursue silent film representation with every mournful composition. Negative

NUTS Huge wooden ##loaded Oliveira seems to pursue silent film representation with every mournful
composition. Negative

ABPfree Oliveira ostensibly to pursue silent film representation with every pained composition. Negative

Table 3: The benign text from MR dataset and adversarial examples generated by various attacks on BERT model.
We highlight the words replaced and inserted by the attacks in red.

Attack BERT* ALBERT LSTM BERT ALBERT* LSTM BERT ALBERT LSTM*

PWWS 88.9* 40.6 39.7 33.5 94.4* 38.0 22.8 33.2 98.5*
PSO 100.0* 43.8 36.6 33.4 100.0* 34.8 23.7 25.2 100.0*
ABPguide 89.3* 44.2 44.8 28.3 94.7* 39.7 23.2 33.1 95.0*
ABPens-guide 94.9* 54.2 47.7 31.4 97.5* 44.1 40.9 27.5 96.3*

UAT 80.6* 34.5 57.3 0.8 99.2* 2.1 45.1 42.9 99.7*
NUTS 20.1* 19.1 10.7 7.5 25.8* 17.1 4.4 20.8 63.8*
ABPfree 68.3* 57.5 49.7 48.2 78.6* 51.5 44.7 56.3 84.6*
ABPens-free 71.6* 54.6 50.2 49.4 76.0* 51.3 44.1 53.3 78.1*

Table 4: Attack success rate (%) of various attacks on different models using MR dataset for the cross-model
transferability evaluation. * indicates that the adversarial examples are generated based on this model.

tremely unnatural adversarial examples. Although
NUTS generates meaningful triggers, these triggers
are irrelevant to the textual content and also lead
to unnatural samples. In contrast, the adversarial
examples obtained by ABPfree based on synonym
substitution are more natural and imperceptible.

Moreover, adversarial examples should also be
imperceptible to humans. Hence, we conduct hu-
man evaluation in Appendix E. The results show
that UAT and NUTS generate a large number of un-
natural samples that are easily detected by humans.
In contrast, ABPfree achieves higher naturalness,
with 70.8% of samples identified as natural, which
is very close to the benign texts.

In conclusion, ABPfree achieves higher attack
performance than NUTS, and gains comparable or
slightly lower attack success rate than UAT. Further-
more, the case study and human evaluation show
that the adversarial examples generated by ABPfree
are with higher naturalness and quality.

4.4 Evaluation on Transferability

The transferability refers to the adversarial exam-
ples crafted on one model could remain adversar-
ial on other models. It enables the adversarial ex-
amples to maintain attack capabilities even if the
model cannot be accessed in the real world. To
illustrate the transferability of ABP, we generate
adversarial examples on each model by various at-
tacks and report their attack success rate on other

models in Table 4. ABPens-free and ABPens-guide
adopt the ensemble of ABP across IMDB, SST and
MR datasets obtained from each victim model to
attack the corresponding model for the query-free
attack and guided search attack, respectively.

Although PWWS and PSO show satisfactory
performance on accessible victim models, their
attack success rates are significantly reduced by
40% to 70% when transferred to other models.
ABPguide exhibits relatively better transferability
but still falls behind. By employing ensemble tech-
niques, ABPens-guide not only enhances the attack
performance on the original model but also im-
proves its transferability. Regarding universal at-
tacks, UAT and NUTS exhibit poor transferabil-
ity, whereas ABPfree surpasses them in this aspect.
These evaluations validate the strong cross-model
transferability of ABP and highlight the advantages
of ensemble attacks.

4.5 Evaluation on Generalization

Universal attacks generate triggers on one dataset
and then use them to attack texts in the same do-
main. However, it is almost impossible for an at-
tacker to know beforehand which domain the vic-
tim model is trained on for real-world applications.
Thus, a good universal attack should exhibit excel-
lent cross-domain generalization, i.e., the adversar-
ial perturbations crafted from one domain remain
adversarial for others on the same task. We first
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Attack IMDB* SST MR IMDB SST* MR IMDB SST MR*

UAT 39.1* 30.0 28.7 18.1 78.4* 76.5 17.3 82.2 80.6*
NUTS 3.9* 13.3 14.3 2.3 25.8* 19.3 2.4 21.0 20.1*
ABPfree 98.7* 41.8 47.0 90.3 63.0* 68.2 87.2 69.5 68.3*
ABPens-free 97.8* 42.3 46.6 91.6 55.6* 61.4 91.7 64.7 65.7*

ABPguide 99.9* 75.5 75.6 97.6 85.4* 88.1 98.1 93.9 89.3*
ABPens-guide 99.8* 84.2 84.7 99.3 89.3* 91.3 99.9 96.0 92.3*

Table 5: Attack success rate (%) of various attacks using different domains on BERT model for the cross-domain
generalization evaluation. * indicates that the adversarial examples are generated using this domain.

perform attacks on a single dataset and test their
performance on another domain on the sentiment
analysis task in Table 5. In this study, we utilize the
ensemble of ABP obtained on the BERT, ALBERT
and LSTM models using the corresponding dataset
to implement ABPens-free and ABPens-guide.

We can see that ABPfree consistently ex-
hibits strong cross-domain generalization, show-
ing greater effectiveness on the IMDB dataset
and performing slightly weaker on the general-
ization between SST and MR datasets compared
to UAT. ABPens-free further improves the gener-
alization of ABPfree in most cases. Moreover,
ABPguide achieves an exceptionally high attack
success rate when utilizing the adversarial boost-
ing preference generated from one domain to at-
tack the text from another domain. Meanwhile,
ABPens-guide achieves higher attack success rate
and generalization. These findings demonstrate the
strong cross-domain generalization of ABP, along
with its superior attack performance and practical-
ity, even when the training data of the victim model
is unseen in real-world applications.

4.6 Evaluation on Real-world Applications

To further validate the practicality of ABP, we per-
form the attack against real-world online commer-
cial Application Programming Interfaces (APIs).
Due to the high cost of commercial APIs, we sam-
ple 50 texts from MR dataset for the test and evalu-
ate the attack performance on the Amazon Cloud
sentiment analysis API1. We adopt the trigger or
ABP generated on BERT model using MR dataset
for universal attacks and our ABP attacks. And we
utilize the ensemble of ABP on three models using
three datasets for the ensemble attack ABPens. As
shown in Figure 3, we can see that PWWS and
PSO, despite achieving high attack success rates,
incur significant computational expenses, requiring
500 or even 1,500 accesses per sample. In con-

1https://aws.amazon.com/
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Figure 3: Attack success rate (%) and average query
number (Query) when attacking Amazon Cloud APIs
using various attacks.

trast, ABPens-guide exhibits 96% attack success rate
and remarkable attack effectiveness, surpassing all
baselines. These findings provide empirical evi-
dence of the effectiveness of ABP in real-world
applications.

5 Conclusion

In this work, we propose the Adversarial Boosting
Preference (ABP) metric, which quantifies the
importance of different words and guides word
substitutions for attacks. By leveraging ABP ob-
tained from the statistics of a typical attack method
on the training set, we propose three novel at-
tack strategies, including query-free attack ABPfree,
guided search attack ABPguide, and ensemble at-
tack ABPens. Extensive evaluations demonstrate
the efficiency and effectiveness of these strategies.
Specifically, ABPfree generates more natural adver-
sarial examples without requiring queries to victim
models than existing universal attacks. ABPguide
significantly improves the attack efficiency, achiev-
ing similar attack performance to black-box attacks
with only a few queries. Additionally, ABPens, as
the first ensemble attack method in the field of
NLP, exhibits better attack performance, strong
cross-model transferability and cross-domain gen-
eralization compared to existing attacks. The di-
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verse range of attack strategies employed by ABP
enables it to be applicable in various real-world
scenarios, even when the victim model or training
data is inaccessible. Exploring more effective ways
to leverage ABP will be an interesting direction for
future research.

Limitations

We summarize our limitations as follows:
Firstly, we rely on samples from the training set

to generate ABP scores for each word. When sam-
ples from the same domain as the training samples
of the model are not available or the total number
of samples is limited, ABP-based attacks would
perform poorly, as shown in Appendix B. To ad-
dress this problem, we find that ABP exhibits good
cross-domain generalization, allowing us to lever-
age samples from other domains for adversarial
attacks with good attack performance.

Secondly, we have only presented a few of the
simplest and most straightforward attack strategies
based on ABP which significantly enhance the prac-
ticality of adversarial attacks in real-world applica-
tions. And we provide a concise analysis of ABP,
revealing its contribution in improving the inter-
pretability of the model in Appendix F. Therefore,
exploring more effective ways to leverage ABP will
be an interesting direction for future research.
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Dataset #Classes #Avg. Len Train Test BERT ALBERT LSTM

IMDB 2 253 25,000 25,000 90.8 92.1 87.3
SST 2 10 67,349 872 91.4 88.8 88.1
MR 2 20 9,622 1,000 90.6 82.8 77.7

Table 6: Details of three sentiment analysis datasets and their accuracy results of victim models.“#Classes” means
the number of the categories. “#Avg. Len” denotes the average length of texts. “Train” and “Test” indicate the
number of texts in the training set and test set. “BERT”, “ALBERT” and “LSTM” mean the classification accuracy
(%) of BERT, ALBERT and LSTM in the test set.
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Figure 4: Parameter studies on BERT model using MR dataset. (a) Impact of the number of sampled texts on the
attack success rate (Succ., %) of ABPfree and ABPguide. (b) Impact of the maximum number of guided walk Tg

on the attack success rate (Succ., %) and average query number (Query) of ABPguide. (c) Impact of the maximum
number of prune Tp on the word perturbation rate (Pert., %) and average query number (Query) of ABPguide.

A More Details of Dataset and Models

We adopt three sentiment analysis datasets, i.e.,
IMDB (Maas et al., 2011), SST (Socher et al.,
2013) and MR (Pang and Lee, 2005), for text clas-
sification. And we train three classical models
on the training set, i.e., BERT base-uncased (De-
vlin et al., 2019), ALBERT base (Lan et al., 2020)
and Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997). The details of these
datasets and victim models are list in Table 6.

B Parameter Study

To gain more insights on the effectiveness of ABP,
we conduct a series of parameter studies on BERT
model using MR dataset to study the impact of
the number of sampled texts, the maximum itera-
tion number of guided walk Tg and the maximum
iteration number of prune Tp.

On the number of sampled texts. To validate
the influence of different sample numbers on ABP,
we perform the generation of ABP with different
numbers of sampled texts from MR dataset and
then evaluate their attack success rates on BERT
model, as shown in Figure 4a. Note that due to
the small amount of data in the training set of the
MR dataset, a total of 9662 texts, including 8662
texts in the training set and 1000 unused texts in

the test set, are used for the generation of ABP. We
could observe that the attack success rate increases
rapidly at the beginning. And there is a log rela-
tionship between the attack success rate and the
amount of the sampled texts. In general, we set the
sample number to 10,000 in our main experiments.

On the maximum iteration number of guided
walk. In Figure 4b, we study the impact of the
maximum iteration number of guided walk Tg on
the attack success rate and average query number.
As Tg increases, the attack success rate of ABPguide
also increases. However, when Tg exceeds 100, the
growth rate of attack success rate becomes slower.
At the same time, as Tg increases, the number of
queries to the victim model also increases. To
achieve a balance between the attack success rate
and query cost of ABPguide, we have chosen to set
Tg to 100.

On the maximum iteration number of prune.
Finally, we study the impact of the maximum itera-
tion number of prune Tp on the word perturbation
rate and average query number, as shown in Fig-
ure 4c. As Tp increases, the word perturbation rate
of the adversarial examples generated by ABPguide
gradually decreases, while the number of queries
to the victim model increases. To strike a balance
between the number of queries and the quality of
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generated adversarial samples, we have set Tp to
20 based on the elbow rule.

C Ablation Study

To figure out the impact of three steps in ABPguide,
i.e., greedy search, guided walk and prune steps,
we conduct the ablation studies as shown in Ta-
ble 8. We observe that greedy search achieves an
impressive attack success rate of 85.2% with only
3 queries. By incorporating guided walk, ABPguide
achieves higher attack success rates, albeit with a
slight increase in word perturbation rate and the
number of queries. Furthermore, the use of prune
eliminates redundant word substitutions, resulting
in a further reduction in the word perturbation rate.

In summary, the combination of greedy search,
guided walk, and prune techniques enhances the
efficiency and effectiveness of ABP. Greedy search
provides a good starting point, and guided walk
allows for further exploration in the sample space,
leading to higher attack success rates. The prune
technique then refines the adversarial examples
by removing unnecessary word substitutions. To-
gether, these techniques synergistically contribute
to the development of optimal adversary.

D Effectiveness of ABPens Integrated
from Different Sources

As described in Section 3.3.3, the ensemble at-
tack ABPens could integrate the ABP obatained
from different sources, including various models
or domains, for the query-free attack ABPens-free
and guided search attack ABPens-guide. In this sec-
tion, we investigate the performance of ABPens
integrated from different sources. We have three
categories in total, including ABPens(model) to inte-
grate the ABP obtained from BERT, ALBERT and
LSTM models using single dataset, ABPens(domain)
to integrate the ABP obtained from IMDB, SST and
MR datasets using single model, and ABPens(all) to
integrate the ABP obtained from all three datasets
using all three models. Table 7 and Table 9 show
the performance of the ensemble attack for guided
search attack and query-free attack, respectively.

In terms of the guided search attack, we find
that all ensemble strategies could enhance the at-
tack success rate of ABPguide with a slight in-
crease in perturbation rate and number of queries.
Among the ensemble strategies, ABPens(all)-guide
achieves the highest attack success rate, followed
by ABPens(domain)-guide, and ABPens(model)-guide per-

forms the worst. We speculate that ABPens(all)-guide
offers a more diverse search space for guided
search, thus achieving a higher success rate. How-
ever, this comes at the cost of requiring more
queries to perform the search. Therefore, we
choose ABPens(all)-guide for the ensemble attack in
Section 4.2.

In terms of the query-free attack, we can
see that the ensemble attack generally re-
duces the attack performance of ABPfree, with
ABPens(model)-free exhibiting the poorest perfor-
mance and ABPens(domain)-free displaying relatively
better performance. Specifically, the ensemble of
ABP from different domains in ABPens(domain)-free
creates a trade-off in its performance across these
domains, sometimes surpassing and sometimes un-
derperforming ABPfree. We speculate that the en-
semble of ABP may not be conducive to identifying
the most critical words, resulting in a reduction in
their performance. Nevertheless, it is this ensemble
that confers better cross-model transferability and
cross-domain generalization to ABP.

E Human Evaluation

Adversarial examples should be imperceptible to
humans. But we find that most existing universal
attacks generates unnatural adversarial examples as
described in Section 4.3. To further validate their
imperceptibility, we conduct human evaluation on
50 benign texts sampled from MR dataset and the
corresponding adversarial examples generated by
various universal attacks on BERT. We invite 10
volunteers to label the samples as natural, unnatu-
ral, or uncertain. The results in Table 10 show that
UAT and NUTS generate a large number of unnat-
ural samples that are easily detected by humans.
In contrast, ABPfree achieves higher naturalness,
with 70.8% of samples identified as natural, which
is very close to the benign texts. It further vali-
dates the naturalness of the adversarial examples
generated by ABP.

F Further Exploration on ABP

In order to gain further insights into ABP and an-
alyze the factors contributing to model vulnerabil-
ity, we present the visualization of ABP scores
for different words in Figure 5. Our observa-
tions reveal an interesting phenomenon. In texts
with positive sentiment, certain words associated
with negative sentiment exhibit higher ABP scores,
such as "bonehead", and positive sentiment words
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Model Attack
IMDB SST MR

Succ. Pert. Query Succ. Pert. Query Succ. Pert. Query

BERT

ABPguide 99.9 3.0 28 85.4 13.3 28 89.3 11.9 25
ABPens(model)-guide 99.8 3.8 31 89.3 15.0 27 92.3 13.5 24
ABPens(domain)-guide 100.0 3.9 32 96.0 13.0 18 94.9 12.4 20
ABPens(all)-guide 100.0 4.1 33 97.5 14.3 19 95.8 13.6 21

ALBERT

ABPguide 97.0 4.6 42 92.5 12.1 20 94.7 10.6 17
ABPens(model)-guide 98.8 5.3 39 93.8 13.1 20 96.1 11.3 18
ABPens(domain)-guide 98.8 5.9 44 96.9 13.0 17 97.5 11.9 17
ABPens(all)-guide 99.7 5.6 41 97.2 13.5 18 97.8 12.6 17

LSTM

ABPguide 100.0 2.2 22 89.7 12.8 25 95.0 10.8 16
ABPens(model)-guide 99.9 2.6 24 91.7 14.3 26 95.1 12.1 20
ABPens(domain)-guide 99.9 2.4 24 96.4 13.6 19 96.3 11.7 17
ABPens(all)-guide 99.9 3.1 29 96.9 14.3 21 96.1 12.6 19

Table 7: Comparison of attack success rate (Succ., %), word perturbation rate (Pert., %) and average query number
(Query) between ABPguide and various ensemble attacks.

(a) Word cloud for words in texts with positive sentiment (b) Word cloud for words in texts with negative sentiment

Figure 5: Word cloud illustration about ABP scores for different words in texts with positive and negative sentiment.
We adopt the ABP generated on BERT model using MR dataset. The higher the ABP score of a word, the larger its
size will be in the word cloud. And we only visualize the top 100 words with the highest scores in the word cloud.

GS GW Pr Succ. Pert. Query

✓ 85.2 15.1 3
✓ ✓ 89.3 16.0 14
✓ ✓ ✓ 89.3 11.9 25

Table 8: Ablation study on the impact of three key steps
in ABPguide on attack success rate (Succ., %), word
perturbation rate (Pert., %) and average query num-
ber (Query). GS, GW and Pr represent greedy search,
guided walk and prune steps, respectively. ✓ indicates
inclusion in the attack.

like "sleek" closely follow. Conversely, in texts
with negative sentiment, the ABP scores are pre-
dominantly higher for words associated with nega-
tive sentiment, such as "wearisome" and "nausea".
Overall, in sentiment classification tasks, we ob-
serve that sentiment-related words have the greatest
impact on the model, which aligns with our expec-
tations. Surprisingly, we discover that replacing

Model Attack IMDB SST MR

BERT

ABPfree 98.7 63.0 68.3
ABPens(model)-free 97.8 55.6 64.7
ABPens(domain)-free 97.6 68.5 71.6
ABPens(all)-free 98.3 65.1 66.7

ALBERT

ABPfree 85.6 73.4 78.6
ABPens(model)-free 87.1 66.0 73.6
ABPens(domain)-free 88.4 72.5 76.0
ABPens(all)-free 89.5 70.4 70.3

LSTM

ABPfree 99.9 62.0 84.6
ABPens(model)-free 99.1 53.6 69.0
ABPens(domain)-free 99.9 66.5 78.1
ABPens(all)-free 99.4 59.0 67.2

Table 9: Attack success rate (Succ., %) of ABPfree and
various ensemble attacks.

positive sentiment words with their synonyms can
lead the model to misclassify them as negative sen-
timent label. We speculate that this discrepancy is
largely due to the limited availability of data for
the model to learn from or the model’s incomplete
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Attack Natural Unnatural Uncertain

Benign text 86.5 10.5 3.0

UAT 15.2 81.3 3.5
NUTS 38.1 51.2 10.7
ABPfree 70.8 21.6 7.6

Table 10: The percentage (%) of adversarial examples
generated by various attacks using MR dataset that are
judged by humans as natural, unnatural, and uncertain.

understanding of all sentiment-related words.
Through an analysis of the ABP scores and their

implications, we have gained valuable insights into
the inner workings of the model and the factors
that contribute to its vulnerability. These insights
are critical for understanding the limitations of the
model and guiding future research to address these
challenges and improve the model’s overall perfor-
mance.
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