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Abstract

The rise of large-scale multimodal models
has paved the pathway for groundbreaking ad-
vances in generative modeling and reasoning,
unlocking transformative applications in a va-
riety of complex tasks. However, a pressing
question that remains is their genuine capabil-
ity for stronger forms of generalization, which
has been largely underexplored in the multi-
modal setting. Our study aims to address this
by examining sequential compositional gen-
eralization using COMPACT (Compositional
Activities)1, a carefully constructed, perceptu-
ally grounded dataset set within a rich backdrop
of egocentric kitchen activity videos. Each
instance in our dataset is represented with a
combination of raw video footage, naturally
occurring sound, and crowd-sourced step-by-
step descriptions. More importantly, our setup
ensures that the individual concepts are consis-
tently distributed across training and evaluation
sets, while their compositions are novel in the
evaluation set. We conduct a comprehensive as-
sessment of several unimodal and multimodal
models. Our findings reveal that bi-modal and
tri-modal models exhibit a clear edge over their
text-only counterparts. This highlights the im-
portance of multimodality while charting a tra-
jectory for future research in this domain.

1 Introduction

Humans possess a remarkable ability to rapidly
understand new concepts by leveraging and com-
bining prior knowledge. This compositional gener-
alization allows for an understanding of complex
inputs as a function of their constituent parts. For
instance, having grasped the meanings of “dax” and
“walk twice” humans can effortlessly understand
“dax twice” (Lake and Baroni, 2018). However,
even as neural networks trained on increasingly
larger datasets achieve impressive results across a
wide range of tasks, their ability to compositionally

1Project Page: http://cyberiada.github.io/CompAct

generalize remains limited. Recently, the research
community has demonstrated growing interest in
evaluating models under different distributions,
such as temporal shifts (Lazaridou et al., 2021;
Liska et al., 2022), or unseen compositions (Lake
and Baroni, 2018; Ettinger et al., 2018; Bahdanau
et al., 2019; Surís et al., 2020). Within the do-
main of multimodal learning, prior investigations
into compositionality have primarily delved into
visual grounding (Thrush et al., 2022), downstream
multimodal tasks like image captioning (Nikolaus
et al., 2019; Jin et al., 2020) and visual question
answering (Bahdanau et al., 2019), or vocabulary
acquisition from videos (Surís et al., 2020) or with
interactive agents (Hill et al., 2019).

Addressing the challenge of compositional gen-
eralization in the context of multimodal models is
increasingly important with the recent advances
in large multimodal foundation models, such as
GPT-4 (OpenAI, 2023), Flamingo (Alayrac et al.,
2022), and IDEFICS (Laurençon et al., 2023). Ex-
perimenting with closed-source or proprietary mod-
els introduces challenges, including reproducibility
issues, associated costs, and limited transparency
regarding their development and training method-
ologies (Nityasya et al., 2023). This inspires us to
investigate the potential of open-source large multi-
modal foundation models – IDEFICS in particular,
for multimodal sequential compositional general-
ization, which we define as the model’s capability
to understand and generate predictions about novel
compositions of primitive elements derived from
sequential multimodal inputs – for instance, video
data wherein actions unfold in a discernible order.
Consider the process of cooking onions: one typ-
ically needs to peel and slice an ONION before
frying it in a PAN. Our central inquiry revolves
around the proficiency of models in comprehend-
ing such sequential and compositional activities.2

2Note that this differs from in-context learning, where
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Inputs (keyframes and utterances) Targets (next utterance)

Tr
ai

ni
ng take celery throw things into garbage bin open fridge put celery back into fridge

pour sesame oil close sesame oil pick up onion cut onion in half

E
va

lu
at

io
n

wash celery close tap put down celery cut celery

Figure 1: Overview of the compositional generalization setup in our COMPACT dataset. During training, the model
has seen the verbs wash, close, put down, throw, open, pour, cut and pick up with the objects GARBAGE BIN,
FRIDGE, SESAME OIL, ONION, and CELERY. It has never seen the composition of cut and CELERY, and thus needs
to generalize to this novel composition at test time.

In this study, we introduce COMPACT

(Compositional Activities) to investigate multi-
modal sequential compositional generalization, a
uniquely constructed compositional dataset curated
from the EPIC KITCHENS-100 dataset (Damen
et al., 2022, EK-100). The EK-100 dataset en-
compasses 100 hours of egocentric video footage
from 45 distinct kitchens, documenting people
performing routine household tasks. Each video
contains three streams of information: visual data
in the videos; audio data involving non-narrative
audio elements –such as the sounds associated
with chopping an onion; and textual data in the
form of short, crowd-sourced descriptions of the
depicted activities, like “slice the carrot”, “pick
up the milk”, or “wash the plate”. From these
descriptions, individual verb and object concepts
such as slice, pick up, wash, and CARROT, MILK,
PLATE are extracted. The compositional splits are
devised based on the verb and object concepts
gleaned from the video descriptions, resulting in
training and evaluation sets showcasing similar
distributions of atomic concepts but featuring
varied combinations therein. Consequently, models
should compositionally generalize from the train-
ing data. Aligning with the “dax twice” principle
from Lake and Baroni (2018), if a model has been

large-scale pretrained models are prompted for a task in a
zero-shot setting, given a support set of task demonstrations.

trained with videos illustrating how to slice various
food items, excluding ROOT VEGETABLES, then it
should be capable of compositionally generalizing
to understand what it means to slice the ROOT

VEGETABLES from previously unseen instances.
In our study, we conduct a comprehensive eval-

uation of publicly available models, encompass-
ing encoder-only pretrained models such as Im-
ageBind (Girdhar et al., 2023) and MERLOT
Reserve (Zellers et al., 2022) in addition to
(multimodal) large language models (LLMs) like
LLaMA2 (Touvron et al., 2023) and IDEFICS (Lau-
rençon et al., 2023). These models exhibit versa-
tility in processing various combinations of input
streams, ranging from language-only to combina-
tions like video + language, video + audio, and even
video + language + audio. Our key experimental
finding indicates the formidable challenge that all
of these models face in mastering compositional
generalization. Yet, it becomes abundantly clear
that the utilization of multimodal input sources
yields discernible advantages, suggesting a promis-
ing direction for refining future models.

2 The COMPACT Dataset

In our pursuit to systematically examine mul-
timodal sequential compositional generalization,
we devised the COMPACT dataset, leveraging se-
quences from the EK-100 dataset (Damen et al.,
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2022). As previously noted, each video in the
EK-100 features first-person perspectives of un-
scripted kitchen activities occurring within nat-
ural household environments. A video is com-
posed of a sequence of shorter clips, represented
as V = (v1, . . . ,vk), each of which is accom-
panied by manually annotated English narrations,
denoted by x1, . . . ,xk, describing the activities
within. Additionally, these clips are integrated with
audio tracks, a1, . . . ,ak, which contain the sounds
of occurring actions. We define an instance in the
dataset as a combination of video – audio – narra-
tion: (V,A,X) Each instance consists of a win-
dow of 4 clips, with the initial 3 clips serving as
context and the last one designated for prediction.

Given this dataset, our primary focus is to fa-
cilitate researchers in exploring how multimodal
models compositionally generalize to unseen com-
binations of concepts. We meticulously curate the
COMPACT dataset to ensure a specific property:
the individual concepts are consistently distributed
across training and evaluation sets, while their com-
positions are novel in the evaluation set. This de-
sign mandates that a model should exhibit system-
atic generalization when interpreting the evaluation
set. To illustrate, refer to the example shown in
Fig. 1. During training, the model comes across
nouns such as CELERY, GARBAGE BIN, FRIDGE,
ONION, and verbs including take, wash, close, put
down. In our evaluation set, we seek instances
where an object-verb composition has not been pre-
viously encountered during training; for example,
the unique pairing of the cut with the CELERY.

2.1 Forming the Compositional Splits
We use the Maximum Compound Divergence
heuristic (Keysers et al., 2020) to curate a dataset
that requires compositional generalization. The
EK-100 dataset is annotated with 97 verb classes
and 300 noun classes; these become the noun and
verb atoms. Each instance in the dataset is as-
signed to the training / validation / test split based
on the atomic and compound divergence (similar-
ity) based on weighted distributions using Cher-
noff coefficient Cα(P∥Q) =

∑
k p

α
k q

1−α
k ∈ [0, 1]

(Chung et al., 1989). To make atom distributions
similar in train and test, we use α = 0.5 for atom
divergence. Here, we set α = 0.1 to reflect that it
is more important for a compound to be found in P
(train) rather than the probabilities in P (train) and
Q (test) match exactly. Following this logic, we
define compound divergence, and atom divergence

for a train set U and test set W as follows:

DC(U∥W ) = 1 − C0.1(FC(U) ∥FC(W ))

DA(U∥W ) = 1 − C0.5(FA(U) ∥FA(W ))

where FA(T ) denotes frequency distribution of
atoms, and FC(T ) denotes the distribution of com-
pounds for a given set T and DA and DC de-
note atom and compound divergences, respectively.
We calculated divergence scores for each instance
until the atomic divergence of train and test set
DA < 0.02 and compound divergence of train and
test set DC > 0.6, which represents a sweet spot
in terms of target distributions of atoms and com-
pounds in the train and test sets (see Fig. 4 in the
Sec. A.1). Finally, we randomly divide this test set
into a validation and test set. The resulting dataset
has 8,766 instances, which are split into 4,407 train-
ing, 2,184 validation, and 2,175 test instances (see
Sec. A for the implementation details and Sec. B for
a more detailed analysis of the COMPACT dataset).

3 Multimodal Sequential Compositional
Generalization

Anticipating what comes next is a fundamental as-
pect of human cognition (Bar, 2007; Clark, 2015).
From a cognitive perspective, it also serves as an
engaging training paradigm (Baroni, 2020). In Mul-
timodal Sequential Compositional Generalization,
we seek to understand the extent to which mul-
timodal foundation models are capable of under-
standing what comes next in activity sequences.
We propose two tasks to measure multimodal se-
quential compositional generalization in the COM-
PACT dataset: (i) next utterance prediction, and (ii)
atom classification.

3.1 Next Utterance Prediction Task

The next utterance prediction task is a language
generation problem, in which models need to pre-
dict the text narration that describes the final input
in a sequence. Let S = (X,V,A) denote a triplet
representing a short video clip with X = {xi}Ki=1

being a sequence of K utterances, which describe
a household activity and grounded with visual
and audio signals, denoted by V = {vi}Ki=1 and
A = {ai}Ki=1, respectively. This task involves
generating the (K + 1)th utterance, y = xK+1,
following the preceding K utterances and multi-
modal cues. The training data for this task consists
of a set of sequences of microsegments, {(S,y)}.
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3.2 Atom Classification Task

The atom classification is a simplified form of the
next utterance prediction task. Here, a model only
needs to predict the verb and noun in the final input,
in isolation from generating grammatically correct
sentences. As such, it can be approached as a multi-
class classification problem. Diverging from con-
ventional action anticipation tasks (Damen et al.,
2022; Gammulle et al., 2019; Ke et al., 2019), our
unique setup allows us to approach atom classifi-
cation through a compositional lens, enabling the
prediction of verbs and nouns separately. More for-
mally, let S = (X,V,A) denote a triplet represent-
ing a video clip with X = {xi}Ki=1 representing a
sequence of K utterances, which describe a house-
hold activity grounded with visual and audio sig-
nals, denoted by V = {vi}Ki=1 and A = {ai}Ki=1,
respectively. More specifically, our atom classifi-
cation task involves predicting the verb or noun in
the (K + 1)th utterance, y = xC

K+1, following
the preceding K utterances and multimodal cues
where C denotes the verb or noun class.

4 Models

In our experiments, we benchmark a variety of neu-
ral network models on the proposed next utterance
prediction and atom classification tasks, including
several text-only (unimodal) and multimodal mod-
els for better understanding the importance of dif-
ferent modalities in compositional generalization.

4.1 Text-only Unimodal Baseline (L)

Our first baseline is a text-only model to account
for unexpected biases in COMPACT (Thomason
et al., 2019). This is an encoder-decoder Trans-
former (Vaswani et al., 2017) with a hidden size
of 256 units, where each microsegment is encoded
within its context. The model is trained using only
the textual utterances x1:K from the microsegment
as the input, and the next utterance xK+1 as the
target, i.e. to predict p (xK+1|x1:K). We use the
same backbone in all of our multimodal baselines.

4.2 Multimodal Baselines

Vision and Language (VL): Our Vision and Lan-
guage baseline encodes both textual and visual con-
text for the next utterance prediction task. This
model encodes the textual utterances x1:K of each
action from microsegments and the keyframe im-
ages v1:K to predict the next utterance xK+1, i.e.
p (y = xK+1|x1:K ,v1:K). This model is adapted

from a model that parses a visual scene and learns
cross-modal self-attention (Tsai et al., 2019) over
textual inputs and visual data. The visual inputs
are encoded using pretrained CNN, and the tex-
tual inputs are encoded using a Transformer. More
specifically, for the visual modality, we extract two
types of features: one type represents global visual
features, and the other represents object-level fea-
tures. For the global features, we use a pretrained
ResNet50 model (He et al., 2016) with ImageNet
weights (Russakovsky et al., 2015). Object-level
features are extracted using a Faster-RCNN ob-
ject detector (Ren et al., 2017) with a ResNet-101
backbone (He et al., 2016) which is pretrained on
MSCOCO (Lin et al., 2014) and finetuned on EK-
100. We extract visual features from 5 objects
for each keyframe. The resulting representation
of a visual keyframe is the concatenation of the
global and the object-level features. This concate-
nated vector is projected into a lower-dimensional
space with a linear layer. The textual inputs are
encoded using a Transformer with a 256D hidden
layer. The visual and textual modalities are then en-
coded by a cross-modal (CM) self-attention mech-
anism. In this model, we consider two modalities
α and β, sequences of each modalities are denoted
as Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ , respectively
and T(·) denotes sequence length and d(·) denotes
feature dimension. In this model, α is the lan-
guage modality, and β is the visual modality. In the
cross-modal attention, the textual features are the
keys, and the visual features are the queries and val-
ues, for aligning visual features to textual features.
Let the Query be defined as Qα = XαWQα , the
Keys as Kβ = XβWKβ

, and the Values as Vβ =

XβWVβ
, where WQα ∈ Rdα×dk ,WKβ

∈ Rdβ×dk

and WVβ
∈ Rdβ×dv are learnable weights. The

cross-modal self-attention from β to α is formu-
lated as a latent adaptation Yα ∈ RTα×dv :

Yα = CMβ→α(Xα, Xβ) = softmax

(
QαK

⊤
β√

dk

)
Vβ (1)

The output Yα has the same length as Qα, but it is
represented in the feature space of Vβ . This enables
the model to fuse different modalities, learning an
alignment between the visual and textual features
(see Eq.1). There are different strategies proposed
in the literature for modeling cross-modal inter-
actions and fusing different modalities (Xu et al.,
2023). In our vision and language baseline, we fuse
different modalities via a self-attention layer over
the aligned vision and language features, which are
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Figure 2: Overview of the AVL baseline which integrates image, object-level, audio, and textual features utilizing
two crossmodal attention blocks incorporated within an encoder-decoder Transformer to predict the next utterance.

then fed to a 3-layer Transformer decoder with 4
attention heads that generate the next utterances.

Audio and Language (AL): The Audio and Lan-
guage baseline has the same structure as the VL
baseline. The key difference is that we represent
the additional context using audio features instead
of visual features. The model encodes both the tex-
tual utterances x1:K and the accompanying audio
data a1:K to predict the next utterance xK+1, i.e.
p (xK+1|x1:K ,a1:K). The audio features are 512D
vectors extracted using VGGSound (Chen et al.,
2020), which is pretrained on 200K videos from
YouTube, totaling 550 hours of audio data. Here,
the proposed AL model learns cross-modal atten-
tion over audio and textual features, analogously to
the VL model, as inputs to a Transformer decoder.

Object and Language (OL): The Object and Lan-
guage baseline once again uses the same architec-
ture as VL baseline, but the visual context is repre-
sented using the labels of detected objects instead
of continuous visual features. In this model, we em-
bed object tags as a secondary set of textual features
to our model along with the input utterances. Here,
the object tags are represented as 292D one-hot en-
coded vectors (based on the number of unique tags)
and projected to 256D with a linear layer. In this
case, the cross-modal attention aligns the object tag
features with the language features.

Audio, Vision, and Language (AVL): In the
AVL baseline, we leverage the audio, visual, and
textual data using two cross-modal self-attention
blocks. We use textual utterances x1:K of each

action along with the visual features v1:K from
the keyframes, and the VGGSound audio fea-
tures a1:K to predict the next utterance xK+1, i.e.
p (y = xK+1|x1:K ,v1:K ,a1:K). In this model, the
input to the Transformer decoder is the concatena-
tion of the audio-aligned textual features from the
audio-textual cross-modal block with the visual-
aligned textual features from the visual-textual
cross-modal block (see Fig. 2 for an overview).

Object, Audio and Language (OAL): The OAL
baseline model adds an extra modality to the OL
baseline model to determine whether audio features
affect the performance of a model that uses object
tags. Here, we incorporate the extracted audio fea-
tures from each microsegment into the OL model.

4.3 Pretrained Models

To comprehend the significance of large-scale pre-
training, we conduct an extensive evaluation in-
volving several publicly available models, namely
LLaMA2 (Touvron et al., 2023), IDEFICS (Lau-
rençon et al., 2023), MERLOT Reserve (Zellers
et al., 2022, MerlotR), and ImageBind (Girdhar
et al., 2023). In our setup, we investigate the perfor-
mance of encoder-only models across both tasks,
whereas auto-regressive models are evaluated ex-
clusively through prompting within the context of
the next utterance prediction task. It is worth noting
that interpreting the performance of the pretrained
models can be complicated as they may violate the
distributional consistency between the train and test
splits during their pretraining (Kim et al., 2022).
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Unimodal Models: LLaMA2 is a text-only pre-
trained large language model trained on 500B to-
kens. We evaluate the LLaMA2-Chat 6.7B variant,
as this version results in more coherent and relevant
predictions due to instruction tuning and RLHF.

Multimodal Models: MerlotR learns to extract
representations over video frames, text, and au-
dio. The model is composed of an image encoder,
an audio encoder, and a joint encoder that fuses
textual, visual, and audio representations. This
model employs contrastive span training, where
an aligned span of audio and text is masked. In
its training setup, the objective is to maximize rep-
resentation similarity to an independent encoding
of the masked audio and text spans. We extract
multimodal audio and vision features through its
pretrained encoder utilizing a similar backbone
as in the VL model. ImageBind is a multimodal
model that learns joint embeddings for 6 different
modalities, including language, vision, and audio.
It is trained only on image-paired data to bind the
modalities together. We train a decoder using fea-
tures extracted from the vision, language, and audio
modalities. IDEFICS is a large-scale multimodal
large language model based on Flamingo (Alayrac
et al., 2022) architecture. It is composed of a
frozen language model and a frozen vision encoder
with learnable cross-attention blocks connecting
language and vision modalities. Considering that
Flamingo is not publicly available and IDEFICS
performs better than other open-source Flamingo
implementations such as OpenFlamingo (Awadalla
et al., 2023), we experiment with IDEFICS 9B ver-
sion as the vision LLM. We prompt these models
without any finetuning and report 5-shot results for
LLaMA2 and IDEFICS (see Sec. A.4 for prompt-
ing formats and Sec. E.3 for prompting ablations).

4.4 Task-Specific Changes

For atom classification, we modify the previously
described models by altering their architectures.
Specifically, we replace the decoder Transformer
with two fully connected layers. We train these
models with a classification objective conditioned
on predicting verbs or nouns in atom classification.

5 Experimental Setup

Evaluation Metrics: We use unigram BLEU (Pa-
pineni et al., 2002), Exact Match (EM), Categori-
cal Accuracy (CA) and BERTScore (Zhang et al.,
2019) metrics. The reported values represent the

mean and standard deviation across 3 separate runs.
In LLaMA2 and IDEFICS, we use nucleus sam-
pling instead of separate runs. For EM, we cal-
culate the accuracy between the generated text se-
quence and the ground truth. CA uses the verb
and noun categories in EK-100 and calculates the
accuracy based on category match between the
prediction and ground truth, e.g. the verbs slice,
dice, and chop fall into the same verb category cut,
and the nouns CHEDDAR, PANEER and PARMESAN

are grouped into the same noun category CHEESE.
Therefore, the slice PANEER prediction is deemed
accurate if the ground truth is dice PARMESAN.
Training Procedure: In the next utterance pre-
diction task, models are trained to minimize the
negative log-likelihood of generating the next ut-
terance, where the multimodal models are condi-
tioned on additional modalities. Given microseg-
ment S and model parameters θ, the objective
function is to minimize the negative log-likelihood
of the m tokens in the next utterance: L(θ) =
−∑m

i=1 log p(yi|S; θ). In the atom classification
task, models are trained by attaching an MLP
with a multi-class classification layer to the encod-
ing of a microsegment S. The objective function
is to minimize the cross-entropy loss of predict-
ing the expected atom (verb or noun): L(θ) =
− log p(xC

K+1|S; θ) (see Sec. D for details).

6 Results

6.1 Next Utterance Prediction

Table 1: Next Utterance Prediction results on the test
split. Using audio, visual, or object features consistently
improves performance compared to the language-only
baseline. The best results are bolded, while the second-
best results are underlined. Here, ImageB. and BERTSc.
refer to ImageBind and BERTScore, respectively.

Inputs BLEU EM CA BERTSc.

L 21.75 ± 1.0 2.89 ± 0.3 6.43 ± 0.2 79.06 ± 0.1

VL 31.25 ± 0.3 7.27 ± 0.1 12.95 ± 0.4 81.27 ± 0.1

AL 30.82 ± 0.5 6.81 ± 0.5 13.22 ± 0.9 81.20 ± 0.0

AVL 31.73 ± 0.4 7.04 ± 0.4 12.93 ± 0.8 81.50 ± 0.1

OL 30.79 ± 0.6 6.36 ± 0.2 12.21 ± 0.1 81.23 ± 0.1

OAL 32.02 ± 0.2 7.32 ± 0.6 13.08 ± 0.9 81.51 ± 0.1

MerlotR 31.50 ± 0.3 6.75 ± 0.2 12.85 ± 0.1 81.37 ± 0.2

ImageB. 33.52 ± 0.3 9.45 ± 0.5 15.04 ± 1.0 82.31 ± 0.2

IDEFICS 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1

LLaMA2 27.50 ± 0.6 5.36 ± 0.6 7.41 ± 0.7 78.76 ± 0.2

In Table 1, we present the results of the next ut-
terance prediction experiments. Notably, all mul-

5596



Inputs (utterances and auxiliary modalities) Prediction (next utterance)

clean bowl open dishwasher open drawer

GT : place bowl
L : close dishwasher
OL : place bowl
VL : close dishwasher
AL : close drawer
AVL : dry bowl
OAL : place bowl
MerlotR : close dishwasher
ImageBind : put bowl in dishwasher
LLaMA2 : get clean
IDEFICS : put bowl away.

put pan in drainer pick_up mug pick_up sponge

GT : sponge mug
L : put sponge
OL : sponge mug
VL : sponge mug
AL : sponge mug
AVL : sponge mug
OAL : sponge mug
MerlotR : sponge mug
ImageBind : sponge mug
LLaMA2 : put sponge in sink
IDEFICS : sponge mug

put_down spring_onions take courgettes take pepper

GT : cut pepper
L : cut spring_onions
OL : put_down courgette
VL : put_down spring_onions
AL : put pepper
AVL : cut pepper
OAL : put_down courgette
MerlotR : open pepper
ImageBind : cut pepper
LLaMA2 : take spring onions
IDEFICS : put down knife

Figure 3: Next Utterance Prediction qualitative results. Models consider different combinations of input modality,
as described in Section 4. In the predictions, blue refers to correct, orange incorrect and purple semantically close.

timodal models surpass the language-only base-
line. Our baseline model that incorporates visual
features (VL) exhibits consistent increases, show-
ing gains of up to 9 BLEU, 4 EM, 6 CA, and 1
BERTScore points, compared to the language-only
variant. Furthermore, harnessing a mix of audio,
visual, and language features (AVL) or augment-
ing audio features with object tags (OAL) leads
to additional improvements, emphasizing the con-
tribution of fusing multiple modalities. The most
significant boost in performance is observed when
visual features are utilized in the ImageBind pre-
trained model, resulting in approximate increases
of 11, 6, 8, and 2 points, for BLEU, EM, CA, and
BERTScore metrics, respectively. The fact that
LLaMA2 generates utterances with higher BLEU
but lower BERTScore than IDEFICS might suggest
that LLaMA2 better imitates the required vocab-
ulary than IDEFICS, even though IDEFICS pro-
duces more semantically plausible outputs. Conclu-
sively, ImageBind’s performance shows the advan-
tages of employing pretrained multimodal features
over merely merging separate unimodal encodings.
In Fig. 3, we present a qualitative comparison of the
baseline models via randomly selected examples
from the test set. We believe that these illustra-
tive examples effectively showcase the intricate
and challenging nature of the proposed COMPACT

dataset. During training, the models have never

encountered compounds like place BOWL, or cut
PEPPER. In all of these illustrative examples, the
text-only unimodal model fails to generalize to
these novel compositions. However, in the first
example, the OL and OAL baselines can predict
the target composition correctly. ImageBind and
IDEFICS, even though not exact matches, generate
semantically plausible predictions. In the third ex-
ample, all multimodal models correctly predict the
next utterance by leveraging the auxiliary modali-
ties. Note that, LLaMa2 also fails in this example
whereas IDEFICS can generate correct utterances.
In the fourth example, the AVL model and Im-
ageBind models correctly predict the cut PEPPER

utterances. Interestingly, for this example both au-
dio and vision inputs are needed, indicating that for
sequential compositional generalization, models
might have to leverage the available signal coming
from different modalities at the same time.

6.2 Atom Classification

In Table 2, we present the outcomes of our atom
classification task, which seeks to understand mod-
els’ abilities to predict verb and noun atoms in
isolation.

For predicting verbs, we observe a similar trend
in performance with the next utterance prediction
results. However, all models perform poorly in
predicting nouns compared to the MRH baseline
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Table 2: Quantitative results for Atom Classification.
The best and the second-best performing results are
highlighted in bold and underlined, respectively.

V
er

b
C

la
ss

ifi
ca

tio
n

EM CA BERTScore

L 13.37 ± 0.5 28.47 ± 3.1 75.16 ± 0.6

VL 14.02 ± 0.2 28.68 ± 2.3 75.29 ± 0.5

AL 13.76 ± 0.3 30.05 ± 4.6 76.26 ± 0.5

AVL 14.06 ± 0.7 30.98 ± 2.1 76.12 ± 0.7

OL 12.79 ± 0.1 29.97 ± 1.5 75.66 ± 0.2

OAL 13.91 ± 0.5 29.90 ± 1.3 75.97 ± 0.9

MerlotR 13.71 ± 0.1 33.50 ± 1.8 76.07 ± 0.2

ImageBind 15.40 ± 0.2 31.54 ± 2.5 76.54 ± 0.4

MRH 2.39 9.61 73.60

N
ou

n
C

la
ss

ifi
ca

tio
n

L 44.91 ± 0.3 51.83 ± 0.3 86.27 ± 0.2

VL 42.72 ± 0.7 49.57 ± 0.3 85.81 ± 0.2

AL 43.95 ± 0.2 51.11 ± 0.5 86.08 ± 0.1

AVL 43.34 ± 0.4 50.43 ± 0.9 85.92 ± 0.1

OL 44.35 ± 0.9 51.24 ± 0.8 86.00 ± 0.3

OAL 43.83 ± 0.9 51.03 ± 0.5 85.92 ± 0.2

MerlotR 45.42 ± 0.6 52.24 ± 0.7 86.42 ± 0.1

ImageBind 33.67 ± 0.3 44.55 ± 0.1 83.96 ± 0.1

MRH 57.24 61.15 89.75

(Most Recent Heuristic). This baseline employs
the most recently referenced object in the input mi-
crosegment as a prediction for the target noun, and
the most recently referenced verb as a prediction
for the target verb. While the language-only base-
line outperforms the multimodal baselines in noun
prediction, we observe an improvement over the
language-only model in predicting verbs within the
multimodal models. This subtle, yet noteworthy
improvement underlines the value of leveraging
multiple modalities for verb-related predictions.

6.3 Random Split Experiments

The COMPACT dataset, designed to highlight
out-of-distribution characteristics, features distinct
compositional distributions between training and
testing splits, as delineated in Figure 4. This inten-
tional design underscores the out-of-distribution
characteristics essential for evaluating the mod-
els’ generalization abilities. We expand our anal-
ysis to include both in-domain and out-of-domain
data, enabling a more comprehensive evaluation of
model capabilities and their generalization poten-
tial. This analysis aims to compare baseline models
on two distinct datasets: our original dataset, which
emphasizes compositionality (out-domain), and a
new, non-compositional dataset (in-domain) cre-
ated through random splits of the EK-100 dataset.

Table 3: In-domain Next Utterance Prediction Results

BLEU EM CA BERTScore

L 23.37 8.95 12.01 80.09
VL 36.49 18.74 22.92 82.83
AL 37.04 19.81 23.86 83.07
AVL 36.08 17.88 21.56 82.84
OL 36.62 19.87 24.22 83.11
OAL 38.59 21.86 25.54 83.64
MerlotR 38.53 21.40 25.82 83.64
ImageBind 40.86 22.62 26.86 84.28
IDEFICS 35.09 17.43 19.11 83.61
LLaMA 30.20 12.10 14.09 79.90

Table 4: In-domain Verb Classification Results

EM CA BERTScore

L 20.26 33.90 77.65
VL 21.90 33.19 77.65
AL 21.44 33.73 77.88
AVL 22.19 34.57 78.17
OL 20.04 33.77 77.51
OAL 21.39 33.21 77.55
MerlotR 21.50 34.39 77.86
ImageBind 21.48 34.00 77.77

Table 5: In-domain Noun Classification Results

EM CA BERTScore

L 48.42 53.45 86.83
VL 49.08 54.51 87.11
AL 47.75 53.67 86.76
AVL 47.47 53.05 86.57
OL 48.55 54.02 86.86
OAL 48.99 54.20 87.02
MerlotR 48.07 53.30 86.72
ImageBind 44.45 52.19 86.26

Our in-depth analysis, reflected in Table 3, indi-
cates a marked improvement in model performance
when dealing with in-domain data.

We extend our analysis for the next utterance
prediction task in Table 3, to the atom classifica-
tion task (see Table 4 and Table 5). The results
from these analyses consistently show a signifi-
cant performance improvement for models in the
in-domain (non-compositional) setup compared to
the compositionally challenging split. This high-
lights the added complexity and challenge intro-
duced by compositionality, which is not present in
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standard atomic classification tasks. The results
specifically illustrate that, despite models being
trained with examples that include every individ-
ual primitive (nouns and verbs), their performance
decline when tasked with generalizing to novel
compositions. This picture does not change even
when most similar examples are used as demon-
strations within an in-context learning setup. This
decline in performance is not merely due to un-
familiarity with certain primitives but stems from
the inherent challenge of understanding and pre-
dicting new combinations of these primitives. This
divergence in performance between in-domain (ran-
dom split) and out-of-domain data demonstrates the
unique contribution of our work. It underscores the
challenge we introduce: pushing the boundaries of
current models to not only recognize but also effec-
tively generalize and adapt to novel compositionsal
structures.

7 Related Work

Compositionality. Baroni (2020) studied the lin-
guistic generalization capabilities of artificial neu-
ral networks. Lake et al. (2019) explored compo-
sitionality in a human-like few-shot setting, while
others have studied compositionality at the repre-
sentation level such as (Dasgupta et al., 2018; Et-
tinger et al., 2018). Unimodal compositional gener-
alization datasets such as SCAN (Lake and Baroni,
2017), CFQ (Keysers et al., 2020), and COGS (Kim
and Linzen, 2020) have been widely used in the
literature to assess generalization abilities of neural
networks. In parallel, researchers have been ex-
ploring different directions towards compositional
generalization e.g. meta-learning, (Lake, 2019), al-
tering existing architectures (Akyurek and Andreas,
2021), and data augmentation (Qiu et al., 2022a).
Grounded Learning. Zhou et al. (2023) stud-
ied grounded learning in a multimodal procedu-
ral setup. Wu et al. (2022) benchmarked reason-
ing and sequencing capabilities of models in a
grounded multimodal instructional setting. John-
son et al. (2017) studied systematic generalization
in visual reasoning tasks. Bahdanau et al. (2019)
investigated systematic generalization in a VQA-
like context while Nikolaus et al. (2019) focused
on compositionality to construct unseen combina-
tions of concepts while describing images. Seo
et al. (2020) transcribed speech to rank correct ut-
terances in instructional videos. Surís et al. (2020)
studied compositionality in word acquisition from

narrated videos. Jin et al. (2020) investigated con-
tinual learning in unseen compound acquisition
from paired image-caption streams.

Other existing studies revolve around crafting
conceptual benchmark datasets specifically de-
signed to evaluate compositionality, e.g. (de Vries
et al., 2019; Vani et al., 2021). Grounded compo-
sitional generalization is explored in (Ruis et al.,
2020; Wu et al., 2021) within a 2D grid environ-
ment. Xu et al. (2021); Yun et al. (2023) investi-
gated grounded compositional generalization for
the concept learning problem. Li et al. (2022a)
studied compositionality in a grounded setup with
audio-language, while Chen et al. (2021) leveraged
audio-vision modality pairs.

Foundation Models. Recently, researchers have
been studying foundation models to explore the
possibilities of utilizing different modalities such
as audio, vision, and text to solve grounded real-
world problems (Guzhov et al., 2022; Girdhar et al.,
2023; Driess et al., 2023). More recently, to assess
visually-grounded compositional generalization ca-
pabilities of models, Bogin et al. (2021) proposed
COVR, Zhuo et al. (2023) proposed ViLPAct, Ma
et al. (2023) proposed CREPE. Unlike previous
studies, in this work, we focus on a real-world au-
dio, vision, and language setting for compositional
generalization (see Fig. 1 for an overview). We
believe this study contributes toward a better un-
derstanding of the open challenges in multimodal
sequential compositional generalization for foun-
dation models and spur interest in this direction.

8 Conclusion

In this paper, we investigate linguistic composition-
ality and systematic generalization in a grounded
setting for multimodal sequential compositional
generalization. We show how a multimodal dataset
can be utilized as a challenging test bed for this
purpose. We design next utterance prediction and
atom classification tasks adopting a methodical ap-
proach in generating the training, validation and
test sets for our compositional splits. We experi-
ment with several baseline models and investigate
models’ ability to generalize to novel compositions
and show how multimodal data can contribute to-
wards solving systematic generalization problem
and highlight major challenges. We hope our work
will stimulate further research in these directions.
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9 Limitations

Despite the promising results, there are a few lim-
itations of our work. In our work, we introduce a
novel dataset called COMPACT carefully curated
from the EK-100 dataset (Damen et al., 2022),
which involves videos of daily kitchen activities, to
dissect the impact of visual and auditory signals on
linguistic compositionality. Hence, our conclusions
may hinge upon certain domain-specific variables.
It could be interesting to conduct future studies in
an open-domain setting which might unravel ad-
ditional insights e.g. (Grauman et al., 2022). We
investigate several different multimodal models for
both the next utterance prediction and atom clas-
sification tasks. However, it is important to note
that for multimodal learning how to integrate dif-
ferent modalities is considered as an open research
problem. In the literature, different strategies for
multimodal data fusion have been proposed. Our
experimental analysis could be further extended by
considering some models that fuse the modalities
in a way different than ours. More interestingly,
from a systematic generalization point of view, an
analysis could be carried out to explore the most
effective fusion scheme. Finally, we acknowledge
the textual utterances that we use in our work are
inherently simplistic and do not capture all of the
complexities in natural languages. Consequently,
extending this work to a more natural source of lan-
guage data that mirrors those complexities could
be quite interesting direction for future research.
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Appendix

In the following, we provide a comprehensive set of
supplementary notes that delve deeper into various
aspects of our research:

• Data Curation, Algorithms, and Prepro-
cessing (Section A): This section outlines the
steps taken in data curation, algorithmic pro-
cesses, and preprocessing techniques applied.

• Exploratory Analysis of COMPACT (Sec-
tion B): Here, we present a detailed analy-
sis of the COMPACT dataset, highlighting its
unique characteristics.

• Implementation Details and Reproducibil-
ity (Section D): This section offers a detailed
account of our implementation methodology,
providing valuable information for those in-
terested in replicating or extending our work.

• Further Analysis (Section E): We conduct
additional analyses, expanding on key find-
ings and offering deeper insights into the com-
positional generalization phenomenon.

• Ethics Statement (Section 9): In this section,
we present a comprehensive ethics statement
detailing our commitment to ethical research
practices throughout the study.

A Data Curation, Algorithms and
Preprocessing

A.1 Curating COMPACT: an Overview

In our data curation and preprocessing for COM-
PACT, we leverage the EPIC-Kitchens-100 (EK-
100) dataset, a collection of egocentric kitchen
activity videos, which are split into shorter
clips with accompanying narrations and audio
tracks—referred to as “microsegments".

To curate our sequences of microsegments, we
employ a window of 4 clips, with the initial 3 clips
serving as context and the last one designated for
prediction, yielding a total of 22,136 instances. We
filter out repeated utterances that represent a con-
tinuation of the same action, treating them as dupli-
cates.

Additionally, we exclusively consider text de-
scriptions that share common nouns, ensuring that
the noun mentioned in the target description also
appears in the source text. This heuristic guaran-
tees the presence of the target noun in both input
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Figure 4: Plot on the top demonstrates the distribution
of atoms while the plot on the bottom shows the distri-
bution of compounds for the train/validation/test splits
in compositional split setup.

sequences during both inference and training, al-
lowing our setup to solely evaluate compositional-
ity and systematic generalization.

In our experimental setup, we introduce a sce-
nario where a model must have prior exposure to
all constituent atoms within a test instance, such
as GRAB THE PLATE. WASH CUCUMBER. TAKE

KNIFE., and is then tasked with predicting the sub-
sequent utterance, such as SLICE CUCUMBER, dur-
ing inference. It is important to emphasize that
this target composition has never been encountered
during the model’s training phase (refer to Fig. 5).
This setup allows testing models’ ability to general-
ize to entirely unobserved compositions, even those
with zero probability of occurrence in the training
data. To create such dataset splits, we employ the
Maximum Compound Divergence (MCD) heuris-
tic, crafting distributions that maintain similarity
in the distribution of individual concepts (atoms),
while deliberately introducing disparities in the dis-
tributions of concept combinations. In our case, we
utilize 97 verb classes and 300 noun classes from
the EK-100 dataset as the atoms. In particular,
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Inputs (utterances and auxiliary modalities) Target (next utterance)

Image

Text take_off gloves pick_up knife check butter in bowl

GT : put_down knife

Image

Text put_down water_filter put_down glass pick_up pan from sink

GT : rinse pan

Figure 5: Curating dataset instances for compositional generalization. Targets such as put_down KNIFE and rinse
PAN have never been observed by the learner during the training phase.

each sample is assigned to a specific split based on
the atomic and compound divergence (similarity)
based on weighted distributions using Chernoff co-
efficient (Chung et al., 1989). This process yields
8,766 instances, which are further partitioned into
4,407 for training, 2,184 for validation, and 2,175
for testing.

In Fig. 4, we visualize the atomic and compound
distributions over the constructed training, valida-
tion, and test splits of our proposed compositional
setup. Notably, these splits exhibit similar distribu-
tions concerning atoms while training and val/test
splits do differ in terms of compounds.

A.2 Atom and Compound Selection

In Algorithm 1, we describe the heuristic we use
to create the compositional splits in COMPACT

following the Maximum Compound Divergence
(Keysers et al., 2020)

A.3 Preprocessing

A.3.1 Choosing Keyframes from Videos

We adopt a straightforward yet effective approach
to select representative images from each microseg-
ment. We employ a simple heuristic to identify
which keyframes to be selected for the span of the
video clip. In particular, we run an object detector
on the video frames and select the frames contain-
ing the highest count of object proposals detected
by the object detector. This selection ensures that
we capture the most visually informative frame
from among the available candidates. In the case
of ImageBind, we opt for the middle frame from
each narration video.

Algorithm 1: Split Generation Algorithm
Data: Dataset M
Result: Train split U , Test split W

1 Init U , W ;
2 Init Atom Divergence DA, Compound

Divergence DC ;
3 Init MT with items in M ;
4 Init i to 0;
5 while MT is not empty do
6 Randomly choose T ∈ {U,W} to add

an item;
7 if i = 0 then
8 Randomly select and remove an

item m from MT;
9 Add m to split T ;

10 else
11 Calculate DA for remaining items if

added to T ;
12 Filter items with DA below a

threshold;
13 if no items meet the criteria then
14 Select item with highest DC as

the best candidate;

15 else
16 Calculate DC for items if added

to T ;
17 Select the item with highest DC

as the best candidate;

18 Add the best candidate item to split
T ;

19 Increment i by 1;
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Predict the next narration given 3 sequential previous narrations from a cooking video

put down bowl . move frying pan . pick up spatula => put down spatula

put down bowl . move jar . pick up egg => crack egg

move yoghurt . put down bowl . pick up yogurt => put yoghurt

put down bowl . grab wok . move tap => lather wok

put down bowl . pick up spatula . stir meat pieces with spatula => put down spatula

pick up tins . put down tins . move bowl =>

Figure 6: Prompt template utilized for LLaMA2 evaluation.

Predict the next action narration given 3 sequential previous actions (image-narration pairs) in a

cooking video.

put down bowl <Image 1> . move frying pan <Image 2> . pick up spatula <Image 3> => put down

spatula

pick up tins <Image 1> . put down tins <Image 2> . move bowl <Image 3> =>

Figure 7: Prompt template utilized for IDEFICS evaluation.

A.3.2 Tokenization
As a preprocessing step, we replace multiword to-
kens with a single word. For instance, each oc-
currence of put-down is replaced with put_down,
and each occurrence of OLIVE OIL is replaced with
OLIVE_OIL. This preprocessing step is not applied
to LLaMA2 and IDEFICS, since these models have
their vocabulary. Similarly, LLaMA2 and IDEFICS
use their tokenizers while other models simply use
a whitespace tokenizer.

A.4 Prompt Format

In this section, we describe the heuristic we employ
to formulate the inputs for our evaluation prompts
targeting generative models. It is worth noting
that the prompting templates for IDEFICS and
LLaMA2, though similar, are not interchangeable
as IDEFICS can harness both visual and language
data.

First, for both LLMs, we include an instruction
at the start of the prompt as our language models
are instruction-tuned. Then, we enumerate a set of
few-shot examples. Finally, we provide the source
section at the end of the prompt, leaving the target
to be predicted.

A.4.1 LLaMA2 Prompt Example
An example LLaMA2 5-shot prompt can be seen
in Fig. 6.

A.4.2 IDEFICS Prompt Example
An example IDEFICS 1-shot prompt can be seen
in the Fig. 7. <Image n> denotes the image for
the nth narration scene.

B Exploratory Analysis of COMPACT

In this section, we share an exploratory analysis
of the COMPACT. Fig. 8 illustrates the verb and
noun distributions in the COMPACT dataset where
the validation and test splits are jointly stacked on
top of the train split occurrences and displayed in a
lighter color.

C Choice of EK-100 for COMPACT

The EPIC-Kitchens-100 (EK-100) dataset was cho-
sen due to its established reputation in the research
community and its densely annotated instructions,
offering a rich and diverse dataset. It also has a
clear segmentation of instructions, including verb
and noun annotations, making it an ideal candi-
date for curating the COMPACT dataset, allowing
us to leverage audio, vision, and text modalities
effectively. Previously proposed datasets in the lit-
erature such as CrossTask (Zhukov et al., 2019)
and GAIN (Li et al., 2022b) also consists of text
instructions and multimodal components. Unlike
CrossTask, which focuses on cross-task generaliza-
tion, our study centers on compositional general-
ization. Similarly, while sharing similarities with
GAIN in dataset formulation and the use of instruc-
tional videos, COMPACT differs in the description
of atomic concepts and the mathematical definition
of out-of-distribution (OOD) scenarios. We also
conduct further analysis to evaluate whether the
proposed benchmarks such as CrossTask or GAIN
could be considered for a compositional generaliza-
tion benchmark. Nevertheless, the lack of proper
annotations for atoms and compounds and the num-
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Figure 8: Distribution of verbs (top) and nouns (middle and bottom) from COMPACT

ber of instances seem to be a challenge to generate
compositional splits for these benchmarks.

D Implementation Details and
Reproducibility

For the reproducibility of our results, we plan to
make the code, models, COMPACT splits, and ex-
tracted features publicly available under CC BY-
NC 4.0 DEED license. All models are imple-
mented with PyTorch. We use torchtext library
for the BLEU metric and evaluate library for the
BERTScore metric.

D.1 Training Regime and Hyperparameters

We use the AdamW optimizer (Loshchilov and Hut-
ter, 2017) with ReduceLROnPlateau learning rate
scheduler to reduce the learning rate during training
when validation BLEU plateaus. To train the mod-

els for the next utterance prediction, we employ
cross-entropy loss, and initialize network weights
via uniform distribution for both the encoder and
the decoder. We use an early stopping strategy and
stop the training if validation BLEU does not im-
prove after a certain threshold. We clip gradients
set the gradient threshold to 0.1, and use a 3-layer
multihead attention with 4-heads in the crossmodal
self-attention block in all our multimodal models.
We use the same strategy for atom classification,
with one distinction where we use accuracy for
early stopping and learning rate scheduler.

For both tasks, we use 50 epochs as the early
stopping threshold. We use a dropout rate of 0.3
and the AdamW optimizer with a 3e-4 learning rate
and 5e-5 weight decay. We use the ReduceLROn-
Plateau learning rate scheduler with patience of 40.
Following the insights from Csordás et al. (2021),
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Table 6: Model sizes and their training times for our experiments. Training times are averaged over 3 runs.

Next Utterance Prediction Atom Classification

Model #params Train Time #params Noun Train Time Verb Train Time

L 4.8M 20:45 2.1M 2:45 2:00
OL 12.0M 38:15 9.3M 12:15 8:30
VL 12.5M 49:15 9.7M 26:45 22:00
AL 12.0M 40:00 9.3M 10:45 8:15
AVL 12.6M 52:00 9.9M 15:30 13:00
OAL 12.1M 39:00 9.4M 14:15 10:30

MerlotR 12.1M 18:30 9.4M 6:30 4:45
ImageBind 8.4M 28:15 5.7M 9:45 8:30

we use the performance score as a monitoring met-
ric for the scheduler (also early stopping) rather
than using loss. For the next utterance prediction
and action classification tasks, we use BLEU and
accuracy scores, respectively.

D.2 Model Sizes and Training Time

In Table 6, we present the number of trainable
parameters and training time (MM:SS) for all of
our trainable baseline models for both the next
utterance prediction and atom classification tasks.

LLaMA2 and IDEFICS experiments are run
on NVIDIA Tesla T4 and NVIDIA Tesla V100
GPUs respectively. Other experiments are run on
NVIDIA 1080Ti GPUs.

E Further Analysis

E.1 Generalization on Validation Split

Table 7: Next utterance prediction results on validation
split. Using audio, visual, or object features always
improves performance compared to the language-only
unimodal baseline. We report the mean and the standard
deviation across three runs.

BLEU EM CA BERTScore

L 21.43 ± 0.5 2.88 ± 0.1 6.22 ± 0.2 79.20 ± 0.1

VL 30.59 ± 0.4 7.35 ± 0.6 12.39 ± 1 81.24 ± 0.4

AL 30.47 ± 0.1 7.06 ± 0.3 12.16 ± 0.2 81.19 ± 0.1

AVL 31.22 ± 0.1 7.44 ± 0.4 12.54 ± 0.3 81.44 ± 0.1

OL 30.50 ± 0.4 7.03 ± 0.2 12.42 ± 0.8 81.10 ± 0.1

OAL 31.42 ± 0.1 7.99 ± 0.5 13.36 ± 0.2 81.50 ± 0.1

MerlotR 31.36 ± 0.4 7.17 ± 0.6 12.68 ± 0.5 81.34 ± 0.1

ImageBind 34.13 ± 0.5 10.45 ± 0.8 16.08 ± 0.8 82.45 ± 0.2

IDEFICS 25.15 ± 0.8 5.66 ± 0.5 7.17 ± 0.5 80.75 ± 0.2

LLaMA2 26.52 ± 0.5 5.37 ± 0.3 6.99 ± 0.4 78.59 ± 0.1

In Table 7 we present generalization perfor-
mance on the validation split for the next utterance
prediction task and in Table 8 we demonstrate the
generalization performance on validation split for
the atom classification task.

Table 8: Atom classification results on validation split.
We report the mean across three runs. The best and
second best-performing results are highlighted in bold
and underlined, respectively.

V
er

b
C

la
ss

ifi
ca

tio
n

EM CA BERTScore

L 12.92 ± 0.8 28.96 ± 3.3 74.96 ± 0.4

VL 14.02 ± 0.2 30.23 ± 1.7 75.19 ± 0.5

AL 14.48 ± 0.7 31.07 ± 3.7 76.21 ± 0.2

AVL 14.01 ± 0.3 31.15 ± 2.5 75.84 ± 0.9

OL 12.77 ± 0.3 30.87 ± 1.1 75.53 ± 0.3

OAL 14.30 ± 0.2 30.79 ± 1.5 76.02 ± 0.6

MerlotR 13.15 ± 0.5 32.53 ± 0.6 75.74 ± 0.2

ImageBind 14.91 ± 0.2 31.31 ± 3.1 76.28 ± 0.5

MRH – – –

N
ou

n
C

la
ss

ifi
ca

tio
n

L 44.78 ± 0.8 52.28 ± 0.8 86.35 ± 0.1

VL 42.35 ± 0.3 49.38 ± 0.4 85.88 ± 0.1

AL 43.71 ± 0.2 50.79 ± 0.2 86.05 ± 0.1

AVL 43.48 ± 0.5 50.59 ± 0.8 86.10 ± 0.2

OL 44.03 ± 0.3 51.40 ± 0.1 86.03 ± 0.1

OAL 44.13 ± 0.5 50.86 ± 0.8 86.09 ± 0.2

MerlotR 44.52 ± 0.8 51.31 ± 0.6 86.22 ± 0.2

ImageBind 34.15 ± 0.5 44.59 ± 0.2 84.11 ± 0.1

MRH 57.51 60.90 89.89

E.2 Generalization Performance over Epochs
In Fig. 9, we report the BLEU scores of the mod-
els over the training, validation, and test splits at
different epochs. These plots demonstrate that in
a compositional setup, models can perform well
in the training set but this does not mean they can
generalize to unseen distributions.

E.3 Prompting Ablations
E.3.1 Additional Few-Shot Results
Table 9 and 10 offer interesting insights regarding
few-shot compositional capabilities of IDEFICS
and LLaMA2 models. First, we see a signifi-
cant performance discrepancy between IDEFICS
and LLaMA2 on zero-shot prediction results. As
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Figure 9: Generalization performance of the AL, VL, and AVL models over the epochs. Even though the training
performance of a model improves on COMPACT, this does not necessarily mean that its validation and test
performance will also become better due to the compositional nature of the COMPACT dataset.

IDEFICS additionally utilizes visual information
over LLaMA2, it displays better zero-shot general-
ization capabilities. While LLaMA2 outperforms
IDEFICS in one-shot and few-shot BLEU scores,
contrastingly, IDEFICS outperforms LLaMA2 on
BERTScores. As LLaMA2 outperforms the LLM
of IDEFICS (instruct-tuned LLaMA1) on many
benchmarks (Touvron et al., 2023), we infer that
LLaMA2 can imitate the vocabulary of few-shot
examples better than IDEFICS, resulting in higher
BLEU scores. However, higher BERTScores im-
ply that IDEFICS can reflect the semantics of the
ground truth prediction better.

Table 9: Next utterance prediction results on test split
for IDEFICS. As the few-shot example count increases,
performance improves on every metric consistently.

k-shot BLEU EM CA BERTScore

0-shot 8.98 ± 0.2 0.06 ± 0.1 0.12 ± 0.0 75.58 ± 0.1

1-shot 20.25 ± 0.2 4.12 ± 0.1 5.30 ± 0.1 79.75 ± 0.0

3-shot 24.85 ± 0.7 5.37 ± 0.4 7.20 ± 0.3 80.78 ± 0.1

5-shot 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1

8-shot 26.18 ± 0.3 6.06 ± 0.2 7.92 ± 0.3 81.19 ± 0.1

Table 10: Next utterance prediction results on test split
for LLaMA2. As the few-shot example count increases,
performance improves on every metric consistently.

k-shot BLEU EM CA BERTScore

0-shot 2.02 ± 3.5 0.13 ± 0.1 0.15 ± 0.1 71.68 ± 0.1

1-shot 23.89 ± 0.7 3.98 ± 0.2 5.77 ± 0.1 77.90 ± 0.2

3-shot 26.17 ± 0.6 5.07 ± 0.1 7.00 ± 0.1 78.35 ± 0.1

5-shot 27.50 ± 0.6 5.36 ± 0.6 7.41 ± 0.7 78.76 ± 0.2

8-shot 27.58 ± 0.3 5.60 ± 0.2 8.01 ± 0.4 78.95 ± 0.1

E.3.2 Few-Shot Example Selection
For few-shot example selection, rather than ran-
domly picking k-shot examples, we employ a sim-
ple heuristic. As Liu et al. (2022) highlights that se-

lecting similar examples improves in-context learn-
ing performance, we select the most similar k exam-
ples as few-shot examples. The similarity measure
between the two examples is based on the noun and
verb overlap. First, the intersection between the
set of nouns and the set of verbs between the main
example and all training examples is computed. If
the sum of the cardinality of these sets is the largest
between the main example and a few-shot example,
the few-shot example is the most similar example
of the main example. We provide a validation com-
parison between the random example selection and
our heuristic in Table 11.

Table 11: Next utterance prediction BLEU scores on
validation split for IDEFICS for a single run. Greedy
decoding is used and the best score is bolded.

Strategy 0-shot 1-shot 3-shot 5-shot

Random selection 28.5 31.0 18.7 19.3
Our heuristic 28.5 34.8 23.4 23.5

E.3.3 Prompt Template Selection

For IDEFICS, as images should be included in
the prompt, the selection of a prompt template is
important. We compared two prompt templates
(see Fig. 7 and Fig. 10) and after preliminary
analysis, used the best-performing template in our
paper (see Table 12).

Table 12: Next utterance prediction results on validation
split for IDEFICS. Overall, the used template outper-
forms unused template.

Template BLEU EM CA BERTScore

Used 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1

Unused 22.19 ± 0.3 5.91 ± 0.4 7.14 ± 0.5 80.53 ± 0.1
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Predict the next action narration given 3

sequential previous actions (image-narration

pairs) in a cooking video.

Narration 1: put down bowl Image 1: <Image 1>

Narration 2: move frying pan Image 2: <Image 2>

Narration 3: pick up spatula Image 3: <Image 3>

Narration 4: put down spatula

Narration 1: pick up tins Image 1: <Image 1>

Narration 2: put down tins Image 2: <Image 2>

Narration 3: move bowl Image 3: <Image 3>

Narration 4:

Figure 10: The unused alternative prompt template for
IDEFICS evaluation.

E.4 Unseen Compositions for Pre-trained
LLMs

We recognize the challenge of ensuring that pre-
trained LLMs have not been exposed to certain
compositions during training. Our motivation to
explore pre-trained LLMs is inspired by these mod-
els’ recent successes in various tasks, and to un-
derstand how these models succeed in compo-
sitional generalization, we conduct experiments
with in-distribution data (randomly generated train-
ing/validation/test splits), to implicitly determine
the extent of prior exposure to unseen compositions
in these models.

Our comprehensive analysis, depicted in Table 3,
showcases significant performance improvements
in in-domain setting for various baseline models
and multimodal LLMs. This contrasts with their
performance in out-of-domain setting, highlighting
the rigorous nature of our compositional task. The
difficulty these models face in generalizing to novel
compositions, despite the possibility of exposure
to similar examples, indicates a crucial challenge
in current multimodal learning.

E.5 Video-Based Baseline Experiments

We expand our evaluation to understand the video-
based baseline performance through an analysis
with the Otter model Li et al. (2023). This
instruction-tuned Video Language Model (VLM)
processes videos as sequential images and was as-
sessed using few-shot prompting. Our findings,
detailed in Table 13, indicate that while Otter per-
forms similarly over OpenFlamingo-9B, the gains
with increased context examples are not as substan-
tial as anticipated.

Table 13: Otter Model Results

BLEU EM CA BERTScore

0-shot 9.31 0.01 0.03 74.54
1-shot 9.26 0.16 0.26 73.30
3-shot 9.95 0.45 0.54 74.21
5-shot 10.5 0.41 0.49 74.83
8-shot 10.85 0.34 0.43 74.38

Table 14: Model size comparison results for Open-
Flamingo

BLEU EM CA BERTScore

OpenFlamingo-3B 8.96 0.09 0.15 73.34
OpenFlamingo-9B 11.15 0.75 0.87 72.38

E.6 Comparison of Model Sizes

We conduct additional experiments to compare
model performance across different scales us-
ing different sizes of the OpenFlamingo model,
specifically OpenFlamingo-3B-vitl-mpt1b and
OpenFlamingo-9B-vitl-mpt7b. Using a 5-shot
prompting approach, we present our evaluation re-
sults in Table 14.

Interestingly, the OpenFlamingo-9B’s perfor-
mance is substantially lower than the IDEFICS
results (11 BLEU for OpenFlamingo vs. 24 BLEU
for IDEFICS). We attribute this discrepancy pri-
marily to the models’ differing abilities to integrate
interleaved images and to the instruction-tuned na-
ture of IDEFICS’s LLM, enhancing its prompt ad-
herence. Although scaling up model size shows
some performance improvement, the disparities
with other baselines are noteworthy. This obser-
vation aligns with ongoing discussions in the field
about the impact of model scale on performance,
as thoroughly investigated by Qiu et al. (2022b).

E.7 Analysis of the Failure Cases

We delve deeper into failure cases, particularly ex-
amining instances where a correctly predicted verb
is paired with a misclassified noun. Our analysis
focus on whether these nouns are more likely to
match with training compositions. Additionally,
we want to reiterate that our train/val/test split cura-
tion in CompAct was meticulously designed to en-
sure similar primitive coverage across splits while
varying compound compositions (see Fig. 4).

In particular, in Table 15, we share the percent-
age of the misclassified nouns for correctly pre-
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Table 15: Percentage of misclassified nouns in train and
test split V-N compositions

Train Ratio Test Ratio

L 9.97% 7.63%
VL 10.64% 8.04%
AL 10.98% 8.34%
AVL 10.65% 8.21%
OL 10.47% 8.06%
OAL 10.44% 8.12%
MerlotR 10.58% 8.13%
ImageBind 10.39% 8.01%

dicted verbs for the training and test compositions.
These ratios are averaged across 3 runs for each
model.

E.8 t-SNE Visualization for Audio and Visual
Embeddings

To understand the features we extracted via VG-
GSound and ResNet50 backbones and how well
they encode the audio and visual spaces, we visual-
ized the raw feature embeddings by projecting them
to 2D space via t-SNE. In Fig. 11, we highlight the
compounds with the verb rinse and observe that
audio features can meaningfully encode activities.
Similarly, we analyzed the raw global visual em-
beddings and highlighted the compounds with the
noun FRIDGE, the visualization shows the extracted
global visual embeddings can effectively encode
visual surroundings.

Figure 11: Feature projection to 2D space with t-SNE
using raw audio and global visual features. At the top,
audio space is shown with the verb rinse being specifi-
cally highlighted. At the bottom, visual space is given
with noun FRIDGE being particularly highlighted. Sam-
pled by most common compounds appearing at least
25 times in COMPACT, equally distributed for each
compound (N = 25).
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