@inproceedings{uddin-etal-2024-generating,
title = "Generating Uncontextualized and Contextualized Questions for Document-Level Event Argument Extraction",
author = "Uddin, Md Nayem and
George, Enfa and
Blanco, Eduardo and
Corman, Steven",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.312",
doi = "10.18653/v1/2024.naacl-long.312",
pages = "5612--5627",
abstract = "This paper presents multiple question generation strategies for document-level event argument extraction. These strategies do not require human involvement and result in uncontextualized questions as well as contextualized questions grounded on the event and document of interest. Experimental results show that combining uncontextualized and contextualized questions is beneficial,especially when event triggers and arguments appear in different sentences. Our approach does not have corpus-specific components, in particular, the question generation strategies transfer across corpora. We also present a qualitative analysis of the most common errors made by our best model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="uddin-etal-2024-generating">
<titleInfo>
<title>Generating Uncontextualized and Contextualized Questions for Document-Level Event Argument Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Nayem</namePart>
<namePart type="family">Uddin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enfa</namePart>
<namePart type="family">George</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Corman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents multiple question generation strategies for document-level event argument extraction. These strategies do not require human involvement and result in uncontextualized questions as well as contextualized questions grounded on the event and document of interest. Experimental results show that combining uncontextualized and contextualized questions is beneficial,especially when event triggers and arguments appear in different sentences. Our approach does not have corpus-specific components, in particular, the question generation strategies transfer across corpora. We also present a qualitative analysis of the most common errors made by our best model.</abstract>
<identifier type="citekey">uddin-etal-2024-generating</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.312</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.312</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>5612</start>
<end>5627</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Uncontextualized and Contextualized Questions for Document-Level Event Argument Extraction
%A Uddin, Md Nayem
%A George, Enfa
%A Blanco, Eduardo
%A Corman, Steven
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F uddin-etal-2024-generating
%X This paper presents multiple question generation strategies for document-level event argument extraction. These strategies do not require human involvement and result in uncontextualized questions as well as contextualized questions grounded on the event and document of interest. Experimental results show that combining uncontextualized and contextualized questions is beneficial,especially when event triggers and arguments appear in different sentences. Our approach does not have corpus-specific components, in particular, the question generation strategies transfer across corpora. We also present a qualitative analysis of the most common errors made by our best model.
%R 10.18653/v1/2024.naacl-long.312
%U https://aclanthology.org/2024.naacl-long.312
%U https://doi.org/10.18653/v1/2024.naacl-long.312
%P 5612-5627
Markdown (Informal)
[Generating Uncontextualized and Contextualized Questions for Document-Level Event Argument Extraction](https://aclanthology.org/2024.naacl-long.312) (Uddin et al., NAACL 2024)
ACL