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Abstract

Existing federated learning (FL) studies usually
assume the training label space and test label
space are identical. However, in real-world ap-
plications, this assumption is too ideal to be
true. A new user could come up with queries
that involve data from unseen classes, and such
open-vocabulary queries would directly defect
such FL systems. Therefore, in this work, we
explicitly focus on the under-explored open-
vocabulary challenge in FL. That is, for a new
user, the global server shall understand her/his
query that involves arbitrary unknown classes.
To address this problem, we leverage the pre-
trained vision-language models (VLMs). In
particular, we present a novel adaptation frame-
work tailored for VLMs in the context of FL,
named as Federated Multimodal Prototyping
(Fed-MP). Fed-MP adaptively aggregates the
local model weights based on light-weight
client residuals, and makes predictions based
on a novel multimodal prototyping mechanism.
Fed-MP exploits the knowledge learned from
the seen classes, and robustifies the adapted
VLM to unseen categories. Our empirical eval-
uation on various datasets validates the effec-
tiveness of Fed-MP.

1 Introduction

Federated learning (FL) emerges as a new machine
learning (ML) paradigm that trains ML models
from decentralized data sources (McMahan et al.,
2017). The decentralized nature of FL makes it
a promising solution for privacy-sensitive applica-
tions across numerous domains (e.g., natural lan-
guage processing (Liu et al., 2021), multimodal
learning (Che et al., 2023), visual recognition (Liu
et al., 2020)). In FL, there exists a central server
storing a global model, and a set of clients. The
clients will collaboratively train the global model
without sharing their private data. While numerous
FL studies have been proposed, the elusive open-
vocabulary challenge is largely under-explored.

Client 1

Server 

Data:
Dog 
Deer 

Data:
Car  
Ship

Q: What are these?

A: Deer11

Existing FL approaches 
can only predict from 
previously seen class. 

😞

Heterogeneous FL

Client 2

User: Unseen class

Figure 1: A non open-vocabulary FL model could only
return a prediction from the seen classes for an open-
vocabulary query.

Traditional FL studies (e.g., domain-generalized
federated learning) usually assume that the label
space of training data and test data is identical.
Based on this assumption, the proposed FL meth-
ods are not open-vocabulary by design. However,
in real-world applications, new users might send
queries that involve novel classes, e.g., identifying
an object in a photo. If the category of this object
is never seen in the training data, then traditional
FL systems simply fail and can only predict from
previously seen classes as shown in Figure 1.

Indeed, in centralized ML, there exist methods
to predict unseen classes (Shu et al., 2018; He et al.,
2022; Changpinyo et al., 2017). However, they usu-
ally require a huge amount of the training data and
could not tackle new addition of unseen classes
over time (Kuchibhotla et al., 2022). More impor-
tantly, the unique challenge of data heterogeneity
in FL makes centralized methods inapplicable to
train FL models (Jiang et al., 2022; Xu et al., 2022;
Zhang et al., 2023). The data heterogeneity in FL
is the heterogeneity in client data distributions. For
instance, in Figure 1, there are only images of dog
and deer in client 1, and client 2 only has images
of car and ship. Such non-i.i.d. data across clients
is heterogeneous data. Therefore, in this work, we
explicitly focus on the open-vocabulary challenge
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in FL: how can we build an FL framework that is
open-vocabulary?

On the other hand, exploiting the pre-trained
vision-language models (VLMs) (e.g., CLIP) for
FL has recently gained increased attention for their
strong generalization ability (Lu et al., 2023). With
CLIP, the community could address data hetero-
geneity, personalization and generalization in FL
(Lu et al., 2023; Yang et al., 2023; Guo et al.,
2023a). Technically, to adapt CLIP for specific
FL applications, existing methods mainly adopt
prompt learning. Prompt learning optimizes a set
of learnable soft prompt vectors, and prepends
them to input embeddings (Lu et al., 2023; Yang
et al., 2023; Guo et al., 2023a). As such, domain-
specific knowledge is integrated into the features
extracted by CLIP, leading to improved perfor-
mance on downstream tasks. Unfortunately, these
learned prompts usually suffer from generalizing
well to novel unseen classes during test, and yet,
no proper solution has been developed.

Therefore, in this work, we focus on addressing
the elusive open-vocabulary challenge in FL. To the
best of our knowledge, we are the first to propose
a CLIP-based FL framework that is explicitly tai-
lored for the open-vocabulary setting. To achieve
open-vocabulary FL, we propose a federated fine-
tuning framework tailored for VLMs: Federated
Multimodal Prototyping or Fed-MP. Intuitively,
Fed-MP has two design objectives: 1) low commu-
nication overhead between the server and clients
in FL: given the large size of CLIP, Fed-MP must
be light-weight and affordable in terms of model
training in an FL application; 2) open-vocabulary:
the global model shall understand the queries that
involve arbitrary unseen classes.

To this end, Fed-MP consists of two modules.
Firstly, Fed-MP adaptively aggregates the local
model weights based on the similarity between new
queries and perturbed client prompt representations.
These prompt representations are perturbed by a set
of learnable parameters, which is defined as client
residuals. Client residuals protect clients’ class in-
formation by perturbing the text representations.
In addition, with client residuals, locally learned
visual concepts are integrated into the perturbed
prompt representations as well. This similarity-
based design is realistic and practical in terms of
real-world applications: a user comes to use the
FL system, and she/he sends a set of queries to
the server. In return, the server should adaptively
obtain an aggregated model that is aligned with the

interest of the user. Secondly, we design a multi-
modal prototyping mechanism to make predictions
for the open-vocabulary queries. The multimodal
prototypes include text prototypes and visual pro-
totypes. The text prototypes are the original en-
coded text prompts in the new queries. As for the
visual prototypes, they are normalized visual fea-
tures extracted by CLIP image encoder with pseudo
labeling. During inference, Fed-MP predicts for
a query image based on its weighted distance to
text prototypes and visual prototypes. Both mod-
ules are designed to exploit the knowledge learned
from the seen classes during training. Under Fed-
MP, the adapted CLIP model generalizes well to
test images from unseen classes, achieving open-
vocabulary federated learning.

We summarize the contributions of our paper as
follows1:

1. To the best of our knowledge, Fed-MP is the
first VLM-based FL framework that explicitly
addresses the open-vocabulary challenge in
FL applications.

2. Technically, to build Fed-MP, we present a
novel adaptive aggregation protocol and a
novel multimodal prototyping mechanism.

3. Extensive experimental results on 6 image
classification datasets suggest that Fed-MP
can effectively improve model performance
on test data from unseen categories, outper-
forming the state-of-the-art baselines.

2 Related Work

2.1 Federated Learning with Domain
Generalization

Domain generalization (DG) in FL aims to im-
prove model’s generalization on the unknown test
clients or the unknown global data with domain
shifts. Due to privacy concerns (no data exchange)
and data heterogeneity, existing centralized DG
methods become inapplicable and infeasible in FL
(Jiang et al., 2022; Zhang et al., 2023; Xu et al.,
2022; Sun et al., 2023). Therefore, a few studies
start to investigate DG in FL. For instance, Jiang
et al. (2022) propose to establish a harmonized
feature space on the frequency domain and aggre-
gate local models with flat optima, so that both
local shift and global shift could be rectified. In

1We adopt publicly available datasets and release the code
at https://github.com/huiminzeng/Fed-MP.git.
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comparison, for generalization, Zhang et al. (2023)
introduce a variance reduction regularizer to en-
courage fairness of the generalization gap among
the clients. Finally, in (Sun et al., 2023), feature
distribution matching is proposed to learn domain-
invariant client features, so that the model general-
izes to unseen clients. However, the above methods
all assume that the label space of training data and
test data is identical: all tested categories have to be
seen during training despite domain shifts. In other
words, these methods are not open-vocabulary, and
could not handle queries with unseen classes.

2.2 Federated Learning with Vision-Language
Models

Recently, integrating vision-language models (e.g.,
CLIP) into FL has gained increased attention for
their strong generalization ability. For instance,
Guo et al. (2023a,b) focus on learning soft tex-
tual prompts to personalize CLIP on client data
by extending (Zhou et al., 2022) into the feder-
ated setting, whereas Li et al. (2023) leverage vi-
sual prompts to achieve the same goal. In addi-
tion to prompt learning, Lu et al. (2023); Chen
et al. (2023); Qiu et al. (2023) fine-tune CLIP
with light-weight neural networks (i.e., adapters)
to adapt CLIP to FL applications. However, the
above methods are not deliberately designed for
open-vocabulary settings. Even though the method
presented in (Qiu et al., 2023) was tested with open-
vocabulary queries, its performance purely counts
on the unreliable generalization of the learned
adapter. In comparison, in this work, we explicitly
focus on addressing the open-vocabulary challenge
in FL, and present the first FL framework that is
tailored for open-vocabulary queries.

3 Preliminaries

3.1 Federated Learning

Assume there are K clients in an FL application.
For all clients, each data point is characterized by
an input feature x ∼ X and a label y ∼ Y . On
client k, its local dataset D(k) is denoted as D(k) =
{(x(k)1 , y

(k)
1 ), ...|(x(k)i , y

(k)
i ) ∼ p(k)}, where p(k)

represents the local data distribution on client k.
For simplicity, if not specified, we use the nota-
tions without the client index k to represent an
arbitrary client.

To find the optimal global model f∗
θ in an FL

application, McMahan et al. (2017) propose Feder-
ated Averaging (FedAvg). Under FedAvg, at each

round, each local client firstly receives a copy of
the global model fθ from the central server and
trains the model with its own data. This leads to
different local models (f (1)

θ , f
(2)
θ , ..., f

(K)
θ ). Then,

clients send the trained model weights to the cen-
tral server. Finally, on the central server, the global
model will be updated using a weighted-average
of the received model weights based on the size of
each local dataset.

Note that, the local data distributions on differ-
ent clients could be non-i.i.d. and have exclusive
label spaces. More importantly, in a real-world ap-
plication, a new user of the FL system might send
queries that involve objects from unseen categories.
For instance, in Figure 1, the training classes are
dog, deer, car, and ship, whereas the test query is
an image of horse.

3.2 CLIP: Contrastive Language-Image
Pre-training

CLIP is a language-grounded image classifier. It
predicts which images are paired with which texts.
Formally, we use fI to denote the CLIP image
encoder, and fT for the CLIP text encoder. The
inference process and training process of CLIP are:

• Inference: For a query image x and |Y|
classes, we firstly craft a set of candidate
prompts that contain class information (e.g.,
{a photo of [class 1], a photo of
[class 2]...}). Then, CLIP encodes x into
a visual representation z, and encodes the
candidate prompts into text representations
{tcandidate1 , tcandidate2 , ..., tcandidate|Y|}. Af-
ter computing cosine similarity between the z
and candidate prompt representations, CLIP
selects the prompt with the highest cosine sim-
ilarity as the final prediction:

ŷ = argmax
c

exp
(
cos(z, tcandidatec)/τ

)
∑

c′ exp
(
cos(z, tcandidatec′ )/τ

) ,

where z = fI(x),

tcandidatec = fT (a photo of [class c]),

c ∈ {1, 2, ..., |Y|}.
(1)

• Training: For a training set D, we construct a
ground truth prompt tgti for each image xi.
For xi, its ground truth prompt contains tex-
tual description of its class label yi. Then, the
CLIP contrastive loss (Radford et al., 2021) is
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computed over all visual representations zis
and text representations tgtis:

LCLIP =
1

|D|

|D|∑

i=1

− log
ezi·tgti

∑|D|
j=1 e

zi·tgtj

+
1

|D|

|D|∑

i=1

− log
ezi·tgti

∑|D|
j=1 e

zj ·tgti
.

(2)

4 Algorithm

4.1 Parameter-Efficient Adaptation
Given existing parameter-efficient finetuning
(PEFT) methods, any of them could be used by
Fed-MP to adapt the CLIP model in FL. In our im-
plementation, we choose to add a small two-layer
fully connected network for the visual modality
as in (Lu et al., 2023). Formally, we define the
adapter as fA. As shown in Figure 2, for an in-
put image x, fA takes its visual representation as
input, i.e., fA(z), z = fI(x). fA returns a vector
of normalized importance scores with the same
dimensionality of z. Finally, the adapted visual
representation z′ is computed by multiplying fA(z)
with z element-wisely:

z′ = fA(z)⊙ z, where z = fI(x). (3)

Note that during training, the weights of visual
adapter are sent to the global server for aggregation
instead of the entire CLIP model.

4.2 Client Residuals
In an open-vocabulary setting, a new user will send
test queries that involve unseen data categories.
Thus, to fully exploit the learned knowledge from
client data, it is critical to consider the semantic
closeness between the clients and the new user
when performing model aggregation. Intuitively,
the importance weights of local clients should be
increased if they are semantically closer to the new
user. For instance, client 1 only contains images
and prompts of ’Doberman’, and client 2 only has
images and prompts of ’Tabby cat’. Assume a test
query contains an image of a dog, and the candi-
dates prompts are ’a photo of German shepherd’
and ’a photo of Welsh Corgi’. In this example, the
test class names ’German shepherd’ and ’Welsh
Corgi’ are unseen during training. However, it is
intuitive that client 1 is semantically closer to the
test query than client 2. The reason is that the
prompts of client 1 and the test prompts are all

related to dog. Therefore, when aggregating the
global model, the importance weight of client 1
should be higher than client 2.

However, existing studies mainly use FedAvg
without considering such semantic closeness, and
therefore, are not adaptive to open-vocabulary
queries. Moreover, directly comparing client class
names and the test classes causes privacy leakage:
it requires the clients to share class information
with the server. Therefore, inspired by (Yu et al.,
2023), we proposed to add a set of learnable pertur-
bations to perturb the encoded text prompts for all
clients. Such design protects class information on
clients. More importantly, these perturbations will
interact with images during training. As such, they
provide aligned semantic information from both
texts and images.

Formally, we define such perturbations as client
residuals. The client residuals on a specific
client are a set of learnable perturbations ∆ =
{δ1, δ2, ..., δ|Y|}. Each δc ∈ ∆ corresponds to a
specific class c, and has the same dimensional-
ity of a prompt representation. When computing
the prompt presentations with residuals, CLIP will
element-wisely add them to the prompt represen-
tations of corresponding classes. For instance, for
the ground truth prompt of sample (xi, yi), its
prompt representation with residual is computed as

t
′
gti

= tgti + αδyi , (4)

where δyi is the perturbation for class yi (Figure 2),
and α is a non-negative scaling factor.

With both trainable adapter and client residuals,
the adaptation loss of CLIP on the training set D =
{(xi, yi)} is computed as follows:

Ladp(fA, δ) =
1

|D|

|D|∑

i=1

− log
ez

′
i ·t

′
gti

∑|D|
j=1 e

z
′
i ·t

′
gtj

+
1

|D|

|D|∑

i=1

− log
ez

′
i ·t

′
gti

∑|D|
j=1 e

z
′
j ·t

′
gti

.

(5)

In Equation 5, z
′

represents the adapted visual rep-
resentation. t

′
gt is the perturbed text presentation.

After training, the client residuals are added to
the encoded candidate prompts, according to the
class names. This process returns a set of perturbed
representations of candidate prompts:

T ′ = {t′candidate1 , t
′
candidate2 , ..., t

′
candidate|Y|},

(6)
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Text  
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Residual Adp
Loss

Addition

CLIPCLIPCLIP
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Figure 2: The training and aggregation process of Fed-MP. On clients, the adapters and residuals are trained using
local data. In adaptive aggregation, only the adapter weights are aggregated.

where t
′
candidatec

= tcandidatec + δc. The client
will send T ′ to the central server along with the up-
dated adapter. This process will not lead to privacy
leakage, as the class names and the training data
are not shared with the server.

4.3 Adaptive Model Aggregation with Client
Residuals

After receiving f
(1)
A , f (2)

A , ..., f (K)
A and T ′(1), T ′(2),

..., T ′(K), the central server will then aggregate
the adapter weights based on the queries from the
new user. The aggregation protocol is based on the
similarity between the queries of the new user and
the perturbed prompt representations of different
clients, namely T ′(1), T ′(2), ..., T ′(K).

In particular, assume the new user has a set of
unlabeled test images Dtest and a set of candidate
prompts. Note that the test label space Ytest and
the client label space Y(k) is mutually exclusive:
Ytest ∩ Y(k) = ∅, k = 1, ...,K.

The first step of adaptive aggregation is to en-
code the test candidate prompts using the CLIP text
encoder. This returns a set of prompt representa-
tions that correspond the test classes:

Ttest = {ttest1 , ttest2 , ..., ttest|Ytest|
},

where ttestc = fT (a photo of [test class c]).

(7)

For instance, in Figure 1, test prompts could be "a
photo of [horse]" and "a photo of [cat]",
where both [horse] and [cat] are classes never
seen during training.

Next, the server measures the semantic closeness
between the new user and all clients. Specifically, it
computes the expected similarity between Ttest and
T ′(1), T ′(2), ..., T ′(K), respectively. For instance,
we define the expected similarity between the new

user and client k as ξk. It is computed via:

ξk = E
ttest∼Ttest,t′candidate∼T ′(k)

[
cos(ttest, t

′
candidate)

]

=
1

|Ytest||Y(k)|

|Ytest|∑

l=1

|Y(k)|∑

m=1

cos(ttestl , t
′(k)
candidcatem

).

(8)

Note that Equation 8 computes the averaged cosine
similarity between any two encoded prompts, one
from the new user and one from client k. More-
over, Equation 8 does not cause privacy leakage as
elaborated in Section 4.2.

After computing the expected similarity for all
clients, the server aggregates the adapter weights:

θ∗A =
1∑
k e

ξk

K∑

k=1

eξk · θ(k)A . (9)

In Equation 9, θ∗A is the aggregated adapter weights.
θ
(k)
A represents the adapter weights uploaded by

client k. Compared to FedAvg, Equation 9 takes
the semantic closeness of the new user and the
clients into account. The rationale behind this de-
sign is that semantically closer clients have learned
more useful visual concepts related to the open-
vocabulary queries, whereas other clients may only
learned irrelevant concepts. As such, useful visual
concepts should be highlighted and integrated to
the adapted CLIP by up-weighting corresponding
adpater weights.

4.4 Multimodal Prototyping
Recall that during inference, for a query image,
CLIP will compare the cosine similarity between
its visual representation and the representations of
candidate prompts (Equation 1). In this context,
these prompt representations are by default text
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prototypes for the test classes. This is because the
predictions are produced by measuring the distance
(cosine similarity) between the text prototypes and
the representation of the input image. Thus, the
representations of candidate prompts are defined as
the textual prototypes {p1, p2, ..., p|Ytest|}:

{p1, p2, ..., p|Ytest|}, where pi = ttesti . (10)

However, the global model has never seen textual
prototypes of unseen classes. This leads to poor
generalization.

Therefore, based on the aggregated global model,
we further propose to develop a new set of visual
prototypes. In particular, inspired by (Iwasawa
and Matsuo, 2021), for each test class, we define a
visual prototype set. Formally, for test class c, its
visual prototype set is defined as Qc.

If the new user send an extensive amount of
queries, the global server may need to process them
in mini-batches. In this case, we introduce a time
stamp n to denote the temporal order of the test
process. Meanwhile, the update process follows the
same temporal order. At n = 0, Qs are initialized
as empty sets. Then, for a test sample x at time step
n, the visual prototypes are updated as follows:

Qn+1
ŷ =

{
Qn

ŷ ∩ { z′
||z′||}, if H(x) ≤ ϵ

Qn
ŷ , otherwise

(11)

where z′ is the adapted representation of x. ŷ is the
pseudo prediction calculated by the adapted CLIP:

ŷ = argmaxc
exp

(
cos(z′,ttestc )/τ

)
∑

c′ exp
(
cos(z′,ttestc′ )/τ

) . H(x) is

the entropy of the predictive probabilities, eval-
uating the quality of the prediction: H(x) =∑|Ytest|

c=1 −P (ŷ = c|x)logP (ŷ = c|x) as in (Iwa-
sawa and Matsuo, 2021). ϵ is confidence threshold.

According to Equation 11, only one prototype
set (class ŷ) would be updated based on the pseudo
prediction. Moreover, in our implementation, we
implemented Equation 11 in an efficient way, so
that there is no need to save all the visual represen-
tations (Appendix A).

Eventually, with the visual prototypes, Fed-MP
computes the prediction for the next x based on its
distance towards the centroids of the multimodal
prototypes. Specifically, under multimodal proto-
typing, CLIP makes the prediction for x by select-
ing the closest multimodal prototypes:

ŷ = argmax
c

[
cos(z′, pc) + cos(z′, q̄c)

]
, (12)

Wrong predictions

(a) w/o Prototyping (b) with Prototyping

Figure 3: T-SNE visualization on test classes from Cal-
tech101.

where pc is the textual prototype of [test class
c] and q̄c is the centroid of visual prototypes of
[test class c]:

q̄c =
1

|Qc|
∑

q∈Qc

q. (13)

The rationale behind multimodal prototyping is:
if a test sample obtains a high-quality prediction,
then it could serve as a template for other test sam-
ples. Moreover, under Fed-MP, the adapted visual
representations are semantic-aware, because the
global model aggregation is based on the seman-
tic closeness between the clients (training classes)
and new user (test classes). Therefore, in addition
to textual prototypes, the visual prototypes could
also contribute to the model generalization on test
data from unseen classes. For instance, in Figure 3
(a), there are many errors for the green class if
only textual prototypes are used. In contrast, after
performing multimodal prototyping, many wrong
predictions are corrected (Figure 3 (b)). The overall
framework is summarized in Appendix B.

5 Experiments

We evaluate the proposed Fed-MP mainly on open-
vocabulary image classification, which is one of
the prevailing applications for VLMs. In addition,
we also provide an ablation study to understand the
function of the modules within Fed-MP. Finally,
we conduct robustness studies to evaluate the ro-
bustness of Fed-MP in regards to the number of
training samples per class.

5.1 Experimental Setup
Dataset We use 6 different image classification
datasets in our experiments. They cover a wide
range of classification challenges, which includes
Caltech101(Fei-Fei et al., 2004) for generic objects
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Dataset Metrics FedAvg (NN) FedKA (NN) PromptFL FedTPG FedCLIP Fed-MP (ours)

Caltech101
A ↑ 0.5090±0.0627 0.5652±0.0526 0.9920±0.0015 0.9909±0.0037 0.9185±0.0285 0.9936±0.0010

ΦP ↑ 0.6172±0.0064 0.6542±0.0472 0.9799±0.0044 0.9806±0.0043 0.8746±0.0253 0.9848±0.0030

ΦR ↑ 0.6613±0.0053 0.6962±0.0477 0.9785±0.0044 0.9721±0.0148 0.9740±0.0050 0.9908±0.0014

ΦF1 ↑ 0.6071±0.0047 0.6472±0.0522 0.9784±0.0047 0.9741±0.0122 0.9106±0.0213 0.9876±0.0020

UCF101
A ↑ 0.6491±0.0869 0.6465±0.0312 0.8582±0.0093 0.8473±0.0424 0.8855±0.0178 0.9127±0.0225

ΦP ↑ 0.6622±0.0989 0.6823±0.0596 0.8231±0.0038 0.8168±0.0715 0.8841±0.0258 0.9212±0.0238

ΦR ↑ 0.6491±0.0869 0.6564±0.0312 0.8502±0.0093 0.8473±0.0424 0.8855±0.0178 0.9127±0.0255

ΦF1 ↑ 0.6318±0.0921 0.6404±0.0385 0.8318±0.0093 0.8185±0.0576 0.8760±0.0229 0.9086±0.0298

Food101
A ↑ 0.5521±0.0055 0.5474±0.0046 0.9240±0.0203 0.9257±0.0359 0.9719±0.0008 0.9828±0.0005

ΦP ↑ 0.5888±0.0048 0.5876±0.0038 0.9438±0.0104 0.9430±0.0229 0.9731±0.0007 0.9829±0.0005

ΦR ↑ 0.5521±0.0055 0.5474±0.0046 0.9240±0.0203 0.9257±0.0359 0.9719±0.0008 0.9828±0.0005

ΦF1 ↑ 0.5655±0.0054 0.5624±0.0044 0.9162±0.0260 0.9124±0.0463 0.9721±0.0008 0.9828±0.0005

Flower102
A ↑ 0.6365±0.0421 0.7462±0.0258 0.8628±0.0826 0.9025±0.0394 0.8829±0.0215 0.9098±0.0251

ΦP ↑ 0.6649±0.0419 0.7992±0.0350 0.9026±0.0348 0.9013±0.0464 0.8734±0.0063 0.9175±0.0224

ΦR ↑ 0.6916±0.0594 0.8209±0.0408 0.9132±0.0323 0.9051±0.0420 0.8977±0.0143 0.9289±0.0205

ΦF1 ↑ 0.6421±0.0435 0.7902±0.0361 0.8872±0.0485 0.8883±0.0525 0.8696±0.0135 0.9132±0.0253

FGVC
A ↑ 0.3369±0.0182 0.3476±0.0216 0.7682±0.0193 0.7661±0.0065 0.7841±0.0089 0.8082±0.0199

ΦP ↑ 0.3512±0.0225 0.3633±0.0257 0.7324±0.0511 0.7932±0.0032 0.8007±0.0034 0.8225±0.0119

ΦR ↑ 0.3499±0.0128 0.3646±0.0239 0.7387±0.0256 0.7404±0.0089 0.7657±0.0131 0.8014±0.0292

ΦF1 ↑ 0.3338±0.0185 0.3480±0.0228 0.7063±0.0224 0.7328±0.0093 0.7408±0.0134 0.7842±0.0336

StanfordCars
A ↑ 0.2844±0.0076 0.2842±0.0123 0.9635±0.0063 0.9519±0.0164 0.9590±0.0025 0.9721±0.0032

ΦP ↑ 0.3190±0.0056 0.3125±0.0048 0.9624±0.0078 0.9596±0.0125 0.9640±0.0021 0.9751±0.0026

ΦR ↑ 0.2822±0.0084 0.2823±0.0124 0.9636±0.0064 0.9506±0.0168 0.9598±0.0024 0.9716±0.0033

ΦF1 ↑ 0.2861±0.0090 0.2833±0.0092 0.9619±0.0076 0.9505±0.0172 0.9586±0.0025 0.9720±0.0032

Average
A ↑ 0.4947±0.1394 0.5245±0.1621 0.8948±0.0746 0.8974±0.0734 0.9003±0.0618 0.9299±0.0634

ΦP ↑ 0.5339±0.1433 0.5665±0.1739 0.8907±0.0873 0.8991±0.0709 0.8950±0.0588 0.9340±0.0571

ΦP ↑ 0.5310±0.1591 0.5613±0.1877 0.8947±0.0809 0.8902±0.0776 0.9091±0.0730 0.9314±0.0646

ΦF1 ↑ 0.5111±0.1449 0.5452±0.1767 0.8803±0.0915 0.8794±0.0820 0.8880±0.0761 0.9247±0.0704

Table 1: Open-vocabulary classification performance with different schemes. We report Accuracy A, Precision ΦP ,
Recall ΦR and F1 score ΦF1. Fed-MP achieves the superior performance over all baseline methods.

classification; Food101(Bossard et al., 2014), Flow-
ers102(Nilsback and Zisserman, 2008), Stanford-
Cars(Krause et al., 2013) and FGVCAircraft(Maji
et al., 2013) for fine-grained classification; UCF101
(Soomro et al., 2012) for action recognition.

Baseline algorithms and models We compare
Fed-MP against to two groups of methods. The
first group is federated learning with traditional
neural networks: (1) FedAvg; (2)FedKA. FedKA
is a state-of-the-art federated domain generalization
method based on feature distribution matching. For
both FedAvg and FedKA, we use a ResNet-18(He
et al., 2016) pre-trained on ImageNet(Deng et al.,
2009). The second group of baselines are meth-
ods that combine CLIP and FL: (1) PromptFL, a
federated prompt tuning method; (2) TPG, a feder-
ated text-driven prompt generation method; (3) Fed-
CLIP, a federated adapter-style finetuning method.
For PromptFL, TPG, FedCLIP, as well as Fed-MP,
CLIP with configuration of ViT-L/14@336px is se-
lected as the backbone model. For all methods, the
aggregated global model is used for the evaluation

on all different datasets.

Federated learning setup To simulate the open-
vocabulary setting, we split the classes of each
dataset into two groups, one as training classes
and the other as test classes. The data from train-
ing classes are available for local model training,
whereas the images from test classes are only avail-
able during test time. Moreover, we consider a
non-i.i.d. heterogeneous FL setting as in (Qiu
et al., 2023). The training classes are disjointly
distributed to different clients. That is, the classes
of one client is mutually exclusive with the classes
of any other clients. In a real-world application,
it is usually hard for all clients to collect a huge
amount of data. As such, we also consider a data-
sparse setting, where all clients only have a few
images per class for training as in (Qiu et al., 2023).
The data is distributed over 10 clients, and there
are 10 training images per class for all datasets (2
for validation). All samples of test classes are used
for validation (20%) and test (80%). In robustness
study, we modified the amount of training images

5650



Dataset Metrics Fed-MP w/o A. A. w/o M. P.

Caltech101

A ↑ 0.9936±0.0010 0.9857±0.0029 0.9332±0.0197

ΦP ↑ 0.9848±0.0030 0.9700±0.0058 0.8898±0.0219

ΦR ↑ 0.9908±0.0014 0.9894±0.0020 0.9784±0.0042

ΦF1 ↑ 0.9876±0.0020 0.9790±0.0038 0.9238±0.0174

UCF101

A ↑ 0.9127±0.0225 0.9073±0.0352 0.8818±0.0100

ΦP ↑ 0.9212±0.0238 0.9105±0.0374 0.8911±0.0126

ΦR ↑ 0.9127±0.0255 0.9073±0.0352 0.8818±0.0100

ΦF1 ↑ 0.9086±0.0298 0.9013±0.0408 0.8702±0.0127

Food101

A ↑ 0.9828±0.0005 0.9827±0.0006 0.9718±0.0005

ΦP ↑ 0.9829±0.0005 0.9828±0.0006 0.9731±0.0005

ΦR ↑ 0.9828±0.0005 0.9827±0.0006 0.9718±0.0005

ΦF1 ↑ 0.9828±0.0005 0.9827±0.0006 0.9720±0.0005

Flower102

A ↑ 0.9098±0.0251 0.9003±0.0340 0.8736±0.0240

ΦP ↑ 0.9175±0.0224 0.8886±0.0353 0.8729±0.0102

ΦR ↑ 0.9289±0.0205 0.9123±0.0319 0.8945±0.0131

ΦF1 ↑ 0.9132±0.0253 0.8875±0.0391 0.8684±0.0131

Table 2: Ablation Study.

per class. We repeat experiments for 5 times and
report the mean and standard deviation in all tables.
Further implementation details are in Appendix A.

5.2 Open-vocabulary Generalization

We report the main results on open-vocabulary gen-
eralization for all baselines and datasets in Table 1.
The best results are highlighted in bold and the
second-best results are highlighted with underlines.
We observe: (1) Traditional FL methods could not
address the open-vocabulary challenge. For exam-
ple, FedKA only achieves an averaged accuracy
of 0.5245 over all datasets. (2) Fed-MP outper-
forms baselines on all datasets w.r.t. all metrics.
For instance, on accuracy, Fed-MP outperforms the
best baseline by 3% on average. (3) Across dif-
ferent datasets, Fed-MP consistently demonstrates
superior performance, while the baseline methods
are sensitive to different datasets. For instance,
PromptFL could achieve comparable accuracy of
0.9920 as Fed-MP’s 0.9936 on Caltech101. How-
ever, on UCF101, PromptFL only achieves 0.8582
accuracy, which is significantly lower than Fed-
MP with 0.9127. We attribute such sensitivity to
the unreliable generalization ability of the base-
lines, as they are not deliberately designed for
open-vocabulary settings. (4) Across different met-
rics, Fed-MP consistently outperforms baselines,
whereas the baselines are sensitive to the evaluation
metrics. For instance, on Flower102, PromptFL
achieves a high precision of 0.9026, but a low ac-
curacy of 0.8628. Similarly, on the same dataset,
TPG achieves a high accuracy of 0.9025, but a low
F1 score.
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Figure 4: Robustness study w.r.t. number of training
samples.
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Figure 5: Scalability study w.r.t. number of clients.

5.3 Ablation Study
Next, we conduct an ablation study to understand
the functionality of adaptive aggregation (A. A.)
and multimodal prototyping (M. P.) in Fed-MP.
Due to space limit, we report the results on 4
datasets. The results are shown in Table 2. We
observe that removing either module could cause
a degradation of the model performance. For in-
stance, without adaptive aggregation, the accuracy
of Fed-MP on Caltech101 drops from 0.9936 to
0.9857. After removing multimodal prototyping,
the accuracy on Caltech101 drops to 0.9332.

5.4 Robustness Study
In this section, we conduct a robustness study w.r.t.
the number of training samples per class. This is
a key factor affecting the finetuning quality. In
particular, we change it from 2 to 16, and keep the
number of clients as 10. The results are shown
in Figure 4. We observe that Fed-MP is generally
robust against the number of training samples. On
Flower102 and FGVC, Fed-MP is relatively more
sensitive to the number of training samples. This is
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Method FedAvg (NN) FedKA (NN) PromptFL FedTPG FedCLIP Fed-MP (ours)

time/img (s) 0.0031 0.0031 0.0366 0.0367 0.0362 0.0369
trainable params. 100.00% 100.00% 0.0140% 0.0549% 0.2745% 0.2783%

Table 3: Averaged processing time per image (in seconds) and ratio of trainable parameters (in percentage).

because that different kinds of flowers and aircraft
are more difficult to distinguish compared to food
types and car makes.

5.5 Scalability Study

Then, we investigate the scalability of Fed-MP w.r.t.
the number of clients, as the number of clients in
an FL application is a key factor affecting data
heterogeneity and training stability. Specifically,
we use the same test classes in our 10-client setting
as the test classes, but re-distribute the training
classes to different number of clients (from 5 to 30).
The results are shown in Figure 5. We observe that
Fed-MP is scalable and achieves consistent high
performance as the number of clients increases.

5.6 Efficiency Evaluation

Finally, we compare the averaged processing time
per image (in seconds) and the ratio of trainable
parameters (in percentage) among different meth-
ods. We show that Fed-MP is a light-weight and
feasible solution for FL applications. From Table 3,
we observe CLIP-based methods need more time
to process image than NN-based methods. More-
over, by comparing the processing time per image
across different methods, our Fed-MP is in general
as fast as other CLIP-based baseline methods. In
terms of memory saving, Fed-MP can be consid-
ered as a parameter-efficient method, because only
less than 0.3% of the model parameters need to be
trained, which is much fewer than FedTPG. How-
ever, we also acknowledge that Fed-MP needs to
train more parameters than FedCLIP. This is ex-
pected, because Fed-MP uses the same adapter for
the visual encoder as FedCLIP, but Fed-MP also
trains the extra client residuals.

6 Conclusion

This work is the first to address the open-
vocabulary challenge in FL applications. In partic-
ular, we present Fed-MP, a novel open-vocabulary
FL framework that is tailored for finetuning VLMs
for FL applications. Fed-MP provides an effec-
tive solution to make high-quality predictions for
queries that involve novel unseen categories. Ex-
tensive experimental results on various datasets

demonstrate the effectiveness of our method.

7 Limitations

One limitation of this work is that our method in-
troduces extra hyperparameters. For different ap-
plications, one might need to finetune these hy-
perparameters, which brings extra computational
cost. As for the actually trainable modules, there
is only a small two-layer network and light-weight
perturbations. Another limitation of this work is
that our method does not take the inherent bias of
the pre-trained VLM into account. However, it is
known that the pre-trained foundation models usu-
ally have encoded the bias in the pre-training data
(e.g., stereotypical data, racism and hate speech).
Such bias could have negative ethical implications
on downstream FL applications. Therefore, a fu-
ture research direction is to develop a benign, fair,
open-vocabulary FL framework.

Ethics Statement

Our work provides a data-efficient and privacy-
aware solution to address the open-vocabulary
problem in federated learning. Our method auto-
matically generalizes to a new user and is capable
of answering her/his queries that involve data from
novel categories. In terms of real-world applica-
tions, with Fed-MP, the update frequency of the
deployed FL model could be drastically reduced,
and there is no need to collect huge amount of
training data for novel classes. The above two ad-
vantages of Fed-MP reduce the risk of collecting
private user data.
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Appendix A: Implementation Details

Hyperparameters For Fed-MP and all baseline methods that use CLIP, the learning rate is initialized
as 1e-5. The learning rate for baseline methods that use ResNet-18 is 5e-4. The models are optimized
via AdamW. The local training epoch is 2 and the global epoch is also 2. For all methods with key
hyperparameters, we firstly performed grid search with the resolution of 0.1 until find the best performance.
Based on that, we further reduce the search resolution to 0.01 until find best performance. In terms of
the confidence threshold ϵ, on Caltech101, UCF101, Flower102, we use 20% of the maximum entropy
given the distribution of the datasets on different clients. As for FGVC, Food101, we set ϵ equal to 30%
of maximum entropy. For StanfordCars, we used 10%. Our hardware is NVIDIA A40.

Baseline Implementation We use ImageNet pre-trained ResNet-18 as the backbone model for FedAvg
and FedKA. Upon implementation, we modify and re-train the classification head of the pre-trained
ResNet-18 to fit it into our classification problem. Moreover, when performing aggregation and inference,
these classification heads are not used, because they can not provide predictions for unseen classes.
Therefore, we only aggregate the feature extraction modules of the finetuned ResNet-18 to obtain the
global model. As for inference, we use the aggregated feature extractor to produce adapted representations.
Using extracted representations, we further perform K-means clustering and linear sum assignment, to
map the representations onto the unseen test classes. K-means and linear sum assignment is implemented
using the SciPy library.

Evaluation Metrics In Table 1, we use the scikit-learn library to compute the macro-averaged F1. Due
to class imbalance, it is likely that F1 score is lower than precision and recall at the same time.

Implementation of Multimodal Prototyping Finally, when implementing multimodal prototyping, we
do not save all the visual prototypes for the sake of efficiency. Instead, we only dynamically update and
save the centroid of each visual prototype set. For each class, this could be done with following steps:

• At time step n, the centroids of all prototypes are computed;

• Save the centroids and the number of prototypes used for each class;

• At the next time step n+1, if there is a new prototype added to the prototype set of a specific class c,
then the sum of previous prototypes of will be reproduced by

∑
q∈Qc

q = q̄c · |Qc|;

• Update the new centroid of the visual prototype for class c: q̄c =
∑

Qc
q+ z′

||z′||
|Qc|+1 .
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A Appendix B: Overall Framework

Algorithm 1: Fed-MP (Training)

1 Input CLIP image encoder fI , CLIP text encoder fT , adapter fA, datasets of local clients
D1,D2, ...,DK ;

2 Hyperparameters Learning rate; Initialize the visual adapter fA ;
3 Clients download fI , fT and fA ;
4 for k=1,2,...,K do
5 Receive trainable models: f (k)

A = fA ;
6 Initialize the client residual ∆(k) ;
7 for local epochs do
8 Compute normal visual representations: z = fI(x) ;
9 Compute adapted visual representations: z′ = z + fA(z);

10 Compute normal text representations: t = fT (A photo of [class c]) ;
11 Compute perturbed text representations: t′ = t+ αδ;
12 Compute CLIP adaptation loss Ladap with Equation 5;

13 Update f
(k)
A and ∆(k) with gradient descent;

14 end
15 Obtain perturbed text representations T ′(k) by adding δ ∈ ∆(k) to t.
16 end
17 Output Send f

(k)
A and T ′(k) to the central server ;

Algorithm 2: Fed-MP (Inference)

1 Input CLIP image encoder fI , CLIP text encoder fT , adapter weights f (1)
A , f (2)

A ,...f (K)
A , perturbed

client text representations T ′(1), T ′(2),...,T ′(K), test data Dtest, test prompts Ttest;
2 Hyperparameters Confidence threhold ϵ; Compute the expected similarity between the test user

and clients using Equation 8;
3 Obtain fA by aggregating the adapter weights using Equation 9;
4 Initialize the visual prototypes as empty sets ;
5 for x ∈ Dtest do
6 Compute the centroids for the visual prototypes with Equation 13;
7 Compute the prediction with Equation 12;
8 Update the corresponding visual prototype set using the original pseudo prediction and

Equation 11;
9 end

10 Output Predictions for Dtest ;
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