
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5657–5667

June 16-21, 2024 ©2024 Association for Computational Linguistics

Exploring Key Point Analysis with
Pairwise Generation and Graph Partitioning

Xiao Li⋄, Yong Jiang†∗, Shen Huang†, Pengjun Xie†
Gong Cheng⋄∗, Fei Huang†

⋄State Key Laboratory for Novel Software Technology, Nanjing University
†Institute for Intelligent Computing, Alibaba Group

xiaoli.nju@smail.nju.edu.cn, gcheng@nju.edu.cn
{yongjiang.jy,pangda,chengchen.xpj,f.huang}@alibaba-inc.com

Abstract

Key Point Analysis (KPA), the summarization
of multiple arguments into a concise collection
of key points, continues to be a significant and
unresolved issue within the field of argument
mining. Existing models adapt a two-stage
pipeline of clustering arguments or generating
key points for argument clusters. This approach
rely on semantic similarity instead of measur-
ing the existence of shared key points among
arguments. Additionally, it only models the
intra-cluster relationship among arguments, dis-
regarding the inter-cluster relationship between
arguments that do not share key points. To
address these limitations, we propose a novel
approach for KPA with pairwise generation and
graph partitioning. Our objective is to train a
generative model that can simultaneously pro-
vide a score indicating the presence of shared
key point between a pair of arguments and gen-
erate the shared key point. Subsequently, to
map generated redundant key points to a con-
cise set of key points, we proceed to construct
an arguments graph by considering the argu-
ments as vertices, the generated key points as
edges, and the scores as edge weights. We then
propose a graph partitioning algorithm to parti-
tion all arguments sharing the same key points
to the same subgraph. Notably, our experi-
mental findings demonstrate that our proposed
model surpasses previous models when evalu-
ated on both the ArgKP and QAM datasets.

1 Introduction

Analyzing a large number of arguments and mak-
ing decisions is a long standing issue present in real
life scenarios such as product review analysis (Bar-
Haim et al., 2021; Cattan et al., 2023), opinion
surveys (Bar-Haim et al., 2020a), etc. However,
manually reading through a vast amount of argu-
ments is not a feasible solution. In this context,

∗ Yong Jiang and Gong Cheng are the corresponding
authors.

School uniform reduces
bullying.

School uniform keeps everyone looking the
same and prevents bullying.

It is cheaper for parents to buy school
uniforms, which is helpful to parents that are
struggling financially.

Students wearing uniforms are not made fun
of because they are not wearing name brand
clothing so it is less likely they will be bullied.

School uniforms saves
costs.

Arguments Key Points

……

We should abandon the
use of school uniform.

Topic

𝒌𝒑𝟏

𝒌𝒑𝟐

School uniforms make life so much easier.
there's less for parents to buy, a lot can't
afford name brand clothing. less bullying due
to clothing. it's easier to get ready in the
morning.

Having a school uniform can reduce bullying
as students who have no style or cannot afford
the latest trends do not stand out.

Figure 1: An example in the ArgKP dataset. Only a sub-
set of arguments and key points are shown due to space
limitation. Our goal is to generate key points (right
side) within a specific topic based on the provided argu-
ments (left side). A single argument may correspond to
multiple key points.

key point analysis (KPA, Bar-Haim et al., 2020a)
has been proposed. KPA involves distilling a multi-
tude of arguments into a concise set of key points,
followed by a quantitative evaluation, typically by
calculating the frequency of each key point related
to arguments. An example is shown in Figure 1.

Existing Methods and Limitations. The gener-
ation of key points from arguments represents the
most pivotal and challenging aspect of the KPA
task. Initially, a straightforward approach (Cattan
et al., 2023) involves selecting a few short argu-
ments as key points and then determining whether
other arguments match these key points. Subse-
quently, advanced model (Li et al., 2023) divides
the KPA task into two stages. Firstly, a semantic
feature based clustering model is utilized to cluster
arguments into multiple clusters. Then, a gener-
ation model is employed to generate correspond-

5657

ing key points for arguments in each cluster by
concatenating the arguments. However, these ex-
isting methods possess certain limitations. Cattan
et al., 2023 posits that the mere presence of appro-
priate key points within arguments is insufficient.
Li et al., 2023’s approach is based on clustering
arguments using their semantic features and then
positing that arguments within a cluster share the
same key point. However, this approach does not
fully align with the objectives of the KPA task. It
is possible for arguments that are not semantically
similar to still share a key point, as an argument
can correspond to more than one key point. More-
over, Li et al., 2023’s approach only models the
relationships between arguments that share a key
point (i.e., intra-cluster arguments) and neglects the
relationships between arguments that do not share
a key point (i.e., inter-cluster arguments).

Our Approach. In order to address the deficien-
cies mentioned above, we present an approach
which trains a generative model to simultaneously
utilize the relationships between intra-cluster and
inter-cluster arguments. This model generates a
key point for a pair of inter-cluster arguments and
provided a score indicating whether there exists
shared key points between the pair of arguments.
During the prediction phase, we utilize the score
provided by the generative model, which indicates
whether a pair of arguments is inter-cluster argu-
ments, rather than the semantic similarity of the
arguments, to partition the arguments into multiple
clusters. This score is provided by a fine-tuned
generative model, which is aligned with the data
distribution within the domain, rather than employ-
ing a clustering model that is unrelated to the do-
main. We then construct an argument graph and
formulate the relationships among arguments as a
graph-based problem. Specifically, we represent
arguments as vertices in the graph, the shared key
point between two arguments as edges, and the
scores as edge weights, resulting in a weighted
argument graph. We introduce an iterative graph
partitioning algorithm, which generates several sub-
graphs, each representing a collection of arguments
that share the same or similar key point. From these
subgraphs, we select a representative key point for
further analysis and utilization.

To summarize, our contributions include

• proposing a pairwise generation approach
that simultaneously utilizes the information
between intra-cluster arguments and inter-

cluster arguments and providing a score to
indicate the presence of the shared key point
between a pair of arguments, and

• introducing a weighted graph partition algo-
rithm designed specifically for the KPA task.
Our algorithm evaluates the connections be-
tween arguments by the scores provided by
the generative model, as semantic similarity
may not fully align with the objectives of the
KPA task.

Outline. We elaborate our approach in Section 2,
present experiments in Section 3, discuss related
work in Section 4, and conclude in Section 5.

Code. Our code and data are available on
GitHub: https://github.com/Alibaba-NLP/Key-
Point-Analysis.

2 Approach

On the KPA task, the input con-
sists of a set of arguments A =
{(arg1, stance1), (arg2, stance2), · · · } un-
der a given topic T , where argi is the argument
text and stancei is the stance for argi. The
stance (“pro” or “con”) indicate the stance of
argument towards the topic. The ideal outcome is
a concise set of key points K = {kp1, kp2, · · · },
where each key point in K corresponds to one
or more arguments in A. That is, our objective
is to learn a surjective function f : A, T → K.
Afterwards, the importance of each key point can
be expressed by calculating the percentage of
arguments corresponding to each key point.

Figure 2 provides an overview of our proposed
method, which comprises two principal compo-
nents. The initial component is dedicated to the
generation of key points, as depicted at the bot-
tom of Figure 2. During this phase, we process
the given topic T and pairs of arguments A × A
to ascertain if each pair shares a key point and,
if so, generate the corresponding key point. The
subsequent component entails graph partitioning,
illustrated at the top of Figure 2. In this stage,
we construct a graph of arguments, key points, and
their associated scores. We then apply our specially
developed graph partitioning algorithm to divide
the graph into multiple subgraphs, allowing for the
possibility of the same argument being present in
more than one subgraph, as a single argument may
relate to multiple key points. Finally, we select
a representative key point from each subgraph to

5658

https://github.com/Alibaba-NLP/Key-Point-Analysis
https://github.com/Alibaba-NLP/Key-Point-Analysis

Generative Model (Flan-T5)

𝑠𝑐𝑜𝑟𝑒!" key	point	(kp#$)

Key Point Generation

arg%

arg&

arg'arg(

⋯

𝑠𝑐𝑜𝑟𝑒!"
kp!"

…

Graph Partitioning Algorithm

Graph Partitioning

𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ% 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ& ⋯

Argument graph

𝑠𝑐
𝑜𝑟
𝑒 #"

kp
#"

𝑠𝑐𝑜𝑟𝑒#!

kp
#!

𝑠𝑐𝑜𝑟𝑒#$kp#$…

𝐚𝐫𝐠𝐢: Having a school uniform can reduce
bullying as students …

topic:
We should

abandon the
use of school

uniform.
𝐚𝐫𝐠𝐣: School uniform keeps everyone looking
the same and prevents bullying.

𝐤𝐩: School uniform reduces bullying.⋯

Edge selection Edge selection Edge selection

⋯

Figure 2: Overview of our approach. Each argument
possesses a stance representing its polarity (“pro” or
“con”). For the sake of brevity, it has been omitted in the
figure.

form the final concise set of key points K. Notably,
unlike previous pipeline approaches, we transmit
the scores generated by the first stage to the second
stage, avoiding issues such as feature propagation
interruption and error accumulation that may arise
in multi-stage pipelines.

2.1 Key Point Generation

Inspired by contrastive learning (Khosla et al.,
2020; Gao et al., 2021), our approach takes a fine-
grained perspective by pairing arguments and de-
termining whether a pair of arguments shares the
same key point. We posit that it is equally impor-
tant to model the relationships between inter-cluster
arguments that possess different key points and
intra-cluster arguments that share a key point. The
previous models either mapped each argument to a
single key point (Alshomary et al., 2021; Kapadnis
et al., 2021) or clustered arguments together and
concatenated multiple arguments within a cluster
to generate a key point (Li et al., 2023).

Construction of Training Data. We pack a pair
of arguments into an input text

inputij = topic | stancei argi | stancej argj ,

and prefix the output text with a special word to
indicate whether the input pair of arguments are
intra-cluster arguments or inter-cluster arguments,
which is

outputij =

{
Yes. {kpij}, for intra-cluster arguments,
No., for inter-cluster arguments.

We construct training data by pairing arguments,
disregarding the order between a pair of arguments.
That is, we consider inputij while discarding
inputji (where i < j). We determine whether
a pair of arguments are intra-cluster arguments or
inter-cluster arguments by assessing if the corre-
sponding key points of the arguments are identical.
To avoid overfitting, we limit the occurrence of
each argument as an intra-cluster argument in the
training data to no more than five times.

input A We should adopt atheism. | positive. if
we adopt atheism then maybe people will
start believing in the scientific community
again. | positive. we should adopt atheism
because science can explain how we got
here without needing a god to explain it.

output A Yes. Science can adequately explain the
Universe

input B We should ban the use of child actors. |
positive. child actors do not get to live a
proper young persons life and experience
childhood play, education and social inter-
action, so should be banned | positive. the
use of child actors should be banned as chil-
dren are not capable of making important
decisions and some do not have trustworthy
parents to make rationale decisions.

output B No.

Table 1: Training examples. The two arguments in
example A share a key point, whereas the two arguments
in example B do not.

To facilitate a better understanding of the con-
struction of the training data, we present two exam-
ples in Table 1.

Generation Model. Subsequently, we feed
inputij to the generative model 1,

h1,h2, · · · ,hn = Decoder(Encoder(inputij)),

where hk denotes the representation obtained from
the Decoder during the k-th decoding step and n
is the decoder output length. During the decod-
ing phase, a linear transformation LM_Head is em-
ployed to map the representations outputted by the

1In our paper, we exemplify our approach by employing a
model based on the encoder-decoder architecture. However,
our approach can also be applied to decoder-only models.

5659

Decoder to the probability distribution for the to-
kens in the vocabulary at step k, denoted as

Sk = LM_Head(hk).

The k-th token is decoded by

tokenk = vocab[argmax(Sk)],

where vocab is the vocabulary.
We extract scores for token “Yes” and “No” from

S1 (i.e., S1[Yes] and S1[No], respesctively) and
obtain the score indicating whether argi and argj
sharing the same key point by

scoreij =
exp(S1[Yes])

exp(S1[Yes]) + exp(S1[No])
. (1)

The loss during the training process is

L = − 1

n

∑

1≤k≤n

log
exp(Sk[outputij [k]])∑

t∈vocab exp(Sk[t])
,

where outputij [k] is the k-th token in outputij .
By employing this approach, we have integrated

the binary classification task of determining the
presence of shared key points and the task of gen-
erating key points into a single generative model,
thereby mitigating potential information loss that
may arise from coupling two different models.

2.2 Graph Partitioning
After the generation of key points, it is necessary
to aggregate all intra-cluster arguments and deter-
mine the shared key point. We transform this is-
sue into a graph partitioning problem, such that
each partition yields a subgraph representing a
cluster of arguments that share key points. Previ-
ous approaches (Li et al., 2023) relied on semantic
similarity-based clustering methods. However, it
is important to recognize that two arguments shar-
ing the same key point may not always exhibit
high semantic similarity, since an argument can en-
compass multiple key points. An alternative direct
approach involves clustering the key points directly.
However, the semantic gap between the generative
models and the clustering models may introduce
performance drop in this approach. We have mit-
igated this issue by transferring scoreij between
the two stages. Specifically, in Equation 1, we cal-
culate the score scoreij to quantify the presence
of a shared key point between argument kpi and
argument kpj . The score scoreij is then used to
guide the partitioning process.

Argument Graph Construction. We employ ar-
guments A as vertices and each edge possesses two
attributes, an edge weight

score ∈ S = {scorei,j |1 ≤ i, j ≤ |A|, i ̸= j},
which indicates the probability of the presence of
a shared key point, and the generated shared key
point

kp ∈ K̂Gen = {kpij |1 ≤ i, j ≤ |A|, i < j}.
We have removed the edges for which the model
outputs “No”, corresponding to the edges between
argument vertices that do not share a key point.

In doing so, we construct a weighted argument
graph

G = ⟨A, (S, K̂Gen)⟩.
Partitioning by Local Search. We employ local
search algorithm to partition argument graph. We
use the BAAI-bge-large (Xiao et al., 2023) model
to obtain representations of arguments, and then
apply k-means clustering (Lloyd, 1982) to cluster
the arguments, which serves as the initial partition-
ing for our graph. We then obtain the initial sub-
graphs Gsubgraph = {g1, g2, · · · , gs}, where s is a
hyperparameter. Subsequently, we iteratively move
vertices across the current subgraphs by optimizing
a cost function, until no improvement of cost is
possible or the limit of iteration steps denoted by
l is reached. We finally obtain subgraphs G′

subgraph
and form the concise set of key points KGen from
each subgraph by choosing the key points with the
highest edge weights.

Cost Function. We define the weight wt(g) of
a subgraph g as the average weight of all edges in
g. For a randomly selected subgraph and within
it, a randomly selected vertex arg, we calculate
the change in the graph weight resulting from the
movement of vertex arg from the subgraph gout to
another subgraph g by our cost function

cost(g, gout, arg) =

wt(gout \ {arg})− wt(gout)+

wt(g ∪ {arg})− wt(g).

We then search for a target subgraph gin by

gin = arg max
g∈Gsubgraph\{gout}

cost(g, gout, arg),

which means that moving the selected vertex arg
from gout to gin would result in the maximum
change in graph weight and the selected vertex will
only be moved when the weight change is positive.

5660

Soft Partition. Furthermore, since an argument
may encompass multiple key points, it is permis-
sible to allow an argument to belong to multiple
subgraphs simultaneously, which we refer to as
soft partition. We set a threshold h, such that if the
removal of the selected argument from its original
subgraph would cause the weight of the subgraph
to decrease beyond the threshold h, we will retain
the argument within the original subgraph. This
means that the selected argument can contribute a
weight gain greater than h in the original subgraph.

It is worth noting that we have not imposed any
restrictions on the connectivity of subgraphs in our
algorithm. This is because, given a specified num-
ber of subgraphs, we cannot guarantee that all the
resulting subgraphs will be connected (as the num-
ber of connected components in G may be less than
the number of subgraphs). However, it is impor-
tant to note that our optimization objective (i.e.,
graph weight) tends to favor connected subgraphs
or subgraphs with higher connectivity.

3 Experiments

3.1 Datasets

We conducted experiments on ArgKP (Friedman
et al., 2021) and QAM (Guo et al., 2023). ArgKP
is a KPA dataset annotated by crowd sourcing, with
training/validation/test sets consisting of 24/4/3 top-
ics, 5583/932/724 arguments, and corresponding
207/36/33 key points. Each argument and key point
possess a stance attribute, either “pro” (i.e., posi-
tive) or “con” (i.e., negative), indicating whether
they support the current topic. The QAM dataset
is originally designed for extracting quadruples
⟨key point, stance, argument, evidence type⟩ from
documents with a given topic. QAM is annotated
through crowdsourcing, and we have transformed
the QAM dataset into the format required for the
KPA task. The training/validation/test sets consists
96/52/53 topics, 6635/808/948 arguments, and cor-
responding 2366/314/337 key points.

3.2 Evaluation Metrics

We employed Rouge (Lin, 2004) and soft-
Precision/Recall/F1 as metrics. Following Li et al.,
2023, we obtained Rouge scores by comparing the
concatenation of generated key points and the con-
catenation of reference key points. We reported
the scores of Rouge-1 and Rouge-2. For soft-
Precision/Recall/F1 (denoted by sP, sR and sF1,
respectively), we employed BLEURT (Sellam et al.,

2020) to measure the similarity between individual
generated key point and the reference key point.
The sP, sR and sF1 to compare the similarity be-
tween the sets of key points were given by

sP =
1

|KGen|
∑

kpGen∈KGen

max
kp∈K

BLEURT(kp, kpGen),

sR =
1

|K|
∑

kp∈K
max

kpGen∈KGen
BLEURT(kp, kpGen) and

sF1 =
2× sP × sR

sP + sR
.

3.3 Implement Details
We conducted experiments on NVIDIA
A100 (80GB) GPUs. Our implementa-
tions were based on PyTorch 2.0.1 and
HuggingFace Transformers 4.30.2. We
set learning rate = 1e − 5 selected from
{1e− 5, 3e− 5, 6e− 5}, batch size = 64 selected
from {32, 64, 128, 256}, random seed = 42,
maximum sequence length = 512, epoch = 5. We
set h = 0.008 for ArgKP, h = 0.006 for QAM and
l = 200 for ArgKP, l = 80 for QAM. In order to
ensure a fair comparison with previous work (Li
et al., 2023), we set the number of selected key
points, which is the number of subgraphs s, to be
equal to the number of reference key point set.

3.4 Previous State-of-the-Art Approaches
We compared with three state-of-the-art models:
graph based summarization (GBS, Alshomary
et al., 2021), Enigma (Kapadnis et al., 2021) and
supervised key point modelling (SKPM, Li et al.,
2023). The GBS model was a representative of
the extractive key point generation models. It em-
ployed arguments to establish a graph, where each
argument vertex was examined to determine their
suitability as a key point. The PageRank (Page
et al., 1999) algorithm was then utilized to choose
the key points. Enigma generated a key point for
each argument based on PEGASUS (Zhang et al.,
2020) and selected the highest-scoring key point
using the precision of Rouge-1 compared with ref-
erence key point set. SKPM was a two-stage model
that first clusterd arguments and then generated key
points for arguments within each cluster.

3.5 Comparison with Previous
State-of-the-Art Approaches

In comparison with the existing methods as shown
in Table 2, our approach demonstrated advantages
over the previous SOTA approaches. Specifically,
on the ArgKP dataset, we observed improvements

5661

ArgKP QAM
Model Rouge-1 Rouge-2 sP sR sF1 Rouge-1 Rouge-2 sP sR sF1

Previous SOTA Approaches
GBS 19.60 3.40 53.00 52.00 52.00 - - - - -
EnigmaPEGASUS 20.00 4.80 58.00 57.00 57.00 32.61 7.17 46.96 44.43 45.51
SKPMFlan-T5-base 30.30 8.90 59.00 58.00 59.00 - - - - -
SKPMFlan-T5-large 31.40 9.10 57.00 62.00 60.00 - - - - -

Ours
w/ Flan-T5-base 37.38 11.39 61.29 58.08 59.59 30.31 7.44 48.62 43.81 45.96
w/ Flan-T5-large 50.91 21.23 62.57 60.26 61.34 30.44 8.02 49.38 45.27 47.11

Table 2: Comparison with previous state-of-the-art approaches. The best results are in bold and the second best
results are underlined. The dash signifies that we did not obtain the results due to issues such as code availability.
The results of previous state-of-the-art approaches on ArgKP are taken from Li et al., 2023.

of 19.51–31.31 points in Rouge-1 and 1.34–9.34
points in sF1. On the QAM dataset, our approach
yielded an improvement of 1.60 points in sF1.
The results demonstrated the effectiveness of our
method, which were analyzed in detail in the sub-
sequent sections.

3.6 Effectiveness of Key Point Generation

We conducted several experiments to evaluate the
effectiveness of our generative model in identifying
and generating the shared key point between a pair
of arguments. These experiments were structured
around two research sub-questions. SQ1 (Shared
Key Point Detection) focused on the ability of our
model to determine the presence of a shared key
point, which was essentially a binary classifica-
tion task. SQ2 (Key Point Generation) assessed
the model’s capability to generate high-quality key
points that effectively covered the reference key
point set. In tackling these research sub-questions,
we prioritized the recall metric because our sub-
sequent step involves selecting a concise subset
from an extensive set of key points, as explained in
Section 3.7).

3.6.1 SQ1: Shared Key Point Detection

We applied a representative model RoBERTa-
large (Liu et al., 2019) to classify whether two
arguments shared a key point and compared its per-
formance with that of our generative model. In our
generative model, if a key point was generated for
a pair of arguments, the output was classified as
positive (i.e., the output began with “Yes”). Con-
versely, if no key point was generated, the output
was classified as negative (i.e., the output began
with “No”). For the RoBERTa-large model, we
utilized the CLS vector, followed by a linear layer

that produced two scores, one for positive and one
for negative, to serve as the classifier.

Figure 3: Shared key point detection on ArgKP.

We evaluated the recall and accuracy of two mod-
els in a binary classification task aimed at identify-
ing whether a pair of arguments shared a key point
on ArgKP. As indicated in Figure 3, our approach
outperformed by 10.56 points in recall, the metric
of greater significance in our scenario. Generating
key points may also help in determining whether
there are shared key points among arguments. With
pairwise generation, despite the Flan-T5-large be-
ing an encoder-decoder model primarily intended
for generative tasks, it still delivered satisfactory
performance in the classification task.

3.6.2 SQ2: Key Point Generation
In this section, we designed an experiment to verify
that the relationship between a pair of intra-cluster
arguments with shared key points and inter-cluster
arguments without shared key points is beneficial
for key point generation. We removed the pairs of
arguments that did not share key points from our
training data as ablation experiment, which is the
result of the “Ours w/o inter-cluster argument pairs”
row in Figure 4. To verify the effectiveness of pair-

5662

wise generation, we trained a Flan-T5-large model
with the concatenation of the topic, stance and a sin-
gle argument (i.e., input = topic | stance | arg)
as the input, and an output of concatenated key
points implied by the single argument. We denoted
this approach as “One2KP”. Here, we also focused
on the recall metric (i.e., sR), which reflected the
coverage of the reference key point set during the
key point generation stage.

Figure 4: Comparison of different models on key point
generation on ArgKP. All the models were based on
Flan-T5-large.

From Figure 4, it can be seen that our method
had an advantage over the One2KP method, lead-
ing by 9.21 points on the sR metric. After separat-
ing inter-cluster argument pairs from the training
set, a decrease of 5.84 point on the sR metric was
observed. Experiments in Figure 4 validated that
generating key points from pairwise arguments was
effective. It was not only necessary to consider the
relationships among intra-cluster arguments, but
also inter-cluster arguments.

Additionally, addressing two related tasks simul-
taneously within the same model did not introduce
a drop on the model performance. In our task, as
seen in Figure 3 and Figure 4, the carefully de-
signed tasks and the use of pairwise generations
method brought about a gain in model performance.
This allowed our model to not only exhibit supe-
rior performance in key point generation but also
achieve satisfactory discriminative ability in intra-
cluster arguments and inter-cluster arguments clas-
sification.

3.7 Effectiveness of Graph Partitioning

In this section, we aimed to validate the effective-
ness of our graph partitioning method. We com-
pared our graph partitioning method with existing
clustering methods and graph partitioning meth-
ods in Section 3.7.1. Additionally, we investigated
the influence of the number of iterations of our
graph partitioning method on the performance in
Section 3.7.2.

3.7.1 Comparison with Clustering and Graph
Partitioning Methods

We substituted our graph partitioning algorithm
with either clustering methods or graph partition-
ing methods. Our key point generation model, ex-
emplified by the Flan-T5-large model, produced
key points for these methods and provided scores
to determine if two arguments shared a key point
for graph partitioning methods. The clustering
algorithms we compared were of two types, one
clustered arguments to obtain argument subgraphs
and then selected key points with highest edge
weights, and the other directly clustered key points
and then selected the key point at the center of
the cluster. We utilized well-established cluster-
ing algorithms, namely k-means (Lloyd, 1982) ,
for our analysis. Two models were utilized to de-
rive representations for arguments: 1) the renowned
RoBERTa-large (Liu et al., 2019) and 2) BAAI-bge-
large (Xiao et al., 2023), which is the state-of-the-
art model in sentence representation. Furthermore,
we employed three well-known graph partitioning
methods, including

• Greedy Modularity Maximization (Clauset
et al., 2004), which is a graph partitioning
algorithm that utilizes a greedy strategy to
maximize modularity and identify community
structures,

• Louvain Community Detection (Blondel et al.,
2008), which is a heuristic method based on
modularity optimization by iteratively merg-
ing similar vertices to uncover community
structures, and

• Asynchronous Label Propagation (Raghavan
et al., 2007), which relies on label propagation
iterations to divide the graph into communities
by updating vertex labels.

From Table 3, our model exhibited superior per-
formance compared to the three sets of baseline
models on Rouge-2, sR and sF1 metrics. Specifi-
cally, on the ArgKP dataset, our model exhibited
a lead of 0.60–6.27 points in sF1. On the QAM
dataset, our model demonstrated a lead of 0.58–
11.88 points in sF1.

Our approach amalgamated the strengths of both
by identifying shared key points through our gener-
ative model, taking into account semantic informa-
tion, while simultaneously utilizing graph structure
information via the graph partitioning method, re-
sulting in improved outcomes.

5663

ArgKP QAM
Model Rouge-1 Rouge-2 sP sR sF1 Rouge-1 Rouge-2 sP sR sF1

Clustering Methods (on arguments)
k-meansRoBERTa-large 50.70 21.01 59.38 59.49 59.34 29.30 7.26 48.30 44.67 46.28
k-meansBAAI-bge-large 49.01 18.64 60.94 60.08 60.47 30.13 7.85 47.75 44.99 46.21

Clustering Methods (on key points)
k-meansRoBERTa-large 52.71 20.16 61.30 60.21 60.74 28.28 6.77 48.35 43.48 45.67
k-meansBAAI-bge-large 51.75 19.57 61.42 58.80 59.99 29.40 7.50 48.79 44.70 46.53

Graph Partitioning Methods
Greedy Modularity Maximization 40.85 14.75 56.15 54.04 55.07 18.59 4.79 39.34 33.85 36.19
Louvain Community Detection 43.01 18.03 56.81 56.65 56.69 17.96 4.68 38.28 32.97 35.23
Asynchronous Label Propagation 17.32 5.54 63.76 53.31 58.01 14.71 4.41 54.40 40.62 46.04

Ours 50.91 21.23 62.57 60.26 61.34 30.44 8.02 49.38 45.27 47.11

Table 3: Comparison with clustering and graph partitioning methods with Flan-T5-large. The best results are in
bold and the second best results are underlined.

3.7.2 Analysis of Iterations Steps (l)

#steps Rouge-1 Rouge-2 sP sR sF1

0 49.01 18.64 60.94 60.08 60.47
50 51.46 20.55 61.38 60.63 60.96
100 47.53 19.77 60.92 59.25 60.03
150 52.13 22.39 61.22 60.52 60.85
200 50.91 21.23 62.57 60.26 61.34
250 49.23 19.45 62.32 59.93 61.09

Table 4: Analysis of iterations steps (l).

We conducted an analysis on the impact of the
number of iterations steps in the graph partition
algorithm. When the number of steps equaled 0, it
represented a ablation experiment, indicating the
exclusion of any execution of the graph partition
algorithm. As shown in Table 4, it could be seen
that, excluding the subtle fluctuations in the data,
the overall trend of sF1 was first an increase and
then a stabilization. Additionally, it could be seen
that as the algorithm iterations progress, sR did not
change much overall, and our graph partitioning
algorithm improved the overall performance by
improving sP.

4 Related Work

4.1 Key Point Analysis

Unlike multi-document summarization (Mani and
Bloedorn, 1997; Xiao et al., 2022), KPA (Bar-Haim
et al., 2020a) requires the production of a concise
collection of key points rather than a cohesive para-
graph. Furthermore, KPA entails a quantitative
analysis of these key points, involving quantifying
their prevalence within the arguments.

Existing methods for key points generation in
KPA rely on extractive summarization and abstrac-
tive summarization techniques. Extractive summa-

rization methods (Bar-Haim et al., 2020b, 2021;
Alshomary et al., 2021) involve selecting short and
representative arguments as key points. However,
extractive summarization approaches are limited by
the quality of the arguments and do not ensure the
presence of an optimal key point within the argu-
ments. On the other hand, abstractive summariza-
tion methods utilize generative models to produce
key points for the arguments. Kapadnis et al., 2021
generates key points for each argument individually
and then select a collection of key points based on
the Rouge (Lin, 2004) scores. Li et al., 2023 first
employs clustering methods to group semantically
similar arguments into the same cluster, and then
concatenates the arguments within the cluster to
generate key points.

In contrast, our approach simultaneously takes
into account the relationships between arguments
with shared key points and those without shared
key points. Additionally, by replacing semantic
similarity scores with scores for the presence of
shared key points between arguments, we address
the shortcomings of existing models.

4.2 Graph Partitioning
Unlike clustering methods which depends on the
similarity or distance of clustering objects, graph
partitioning aims to optimize a certain metric of the
resulting subgraphs (Buluç et al., 2013), which is
the probability that the arguments within a common
subgraph share a common key point in the KPA sce-
nario. The algorithms (Kernighan and Lin, 1970;
Krauthgamer et al., 2009; Margo and Seltzer, 2015)
based on optimizing the minimum vertex/edge cuts
has been extensively utilized. Additionally, algo-
rithms (Clauset et al., 2004; Blondel et al., 2008;
Dugué and Perez, 2015; Traag et al., 2018) have

5664

approached graph partitioning by optimizing the
modularity of subgraphs. Another avenue (Ragha-
van et al., 2007; Cordasco and Gargano, 2010) in-
volves achieving graph partitioning through vertex
labels propagation.

In the KPA task, our objective is to maximize the
probability that arguments within a subgraph share
the same key point while allowing arguments that
contain more than one key point to exist in multiple
subgraphs simultaneously. Given this requirement,
the aforementioned graph partitioning algorithms
are not suitable for the KPA task.

5 Conclusion

This paper presents a method that merges pairwise
generation with graph partitioning to efficiently
produce key points within arguments. Our inte-
grated approach models both the relationships be-
tween arguments sharing key points and those that
do not, aiding in key point generation. We em-
ploy an iterative algorithm to partition the argument
graph and extract representative key points from
subgraphs, yielding a concise set of key points.
In the future, we will continue to explore better
ways to utilize generative models to model the re-
lationships among arguments. For instance, we
will investigate improved methods of outputting
scores indicating whether arguments share key
points and develop graph partition algorithms that
better align with generative models. Our approach
may provide inspiration for tasks including cluster-
ing tasks based on generative models (Zhang et al.,
2023; Viswanathan et al., 2023), set generation
tasks (Madaan et al., 2022), and so forth.

Limitations

The input consists of pairwise arguments, which in-
creases the amount of training data and the compu-
tational cost of training. Currently, training time of
Flan-T5-large (780M) on ArgKP is approximately
12 hours, and on QAM it is about 6 hours. Our
model does not fully utilize the graph structure
during the graph partitioning process, and we plan
to incorporate more graph structural information
into the model in the future. The datasets currently
used for experiments are related to survey review
topics, and there is a lack of datasets from other
fields (such as product reviews in the e-commerce
scenario) in the research community. Future re-
search could explore the effectiveness on datasets
from different domains.

References
Milad Alshomary, Timon Gurcke, Shahbaz Syed,

Philipp Heinisch, Maximilian Spliethöver, Philipp
Cimiano, Martin Potthast, and Henning Wachsmuth.
2021. Key point analysis via contrastive learning and
extractive argument summarization. In Proceedings
of the 8th Workshop on Argument Mining, pages 184–
189, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kan-
tor, Dan Lahav, and Noam Slonim. 2020a. From ar-
guments to key points: Towards automatic argument
summarization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4029–4039, Online. Association for
Computational Linguistics.

Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Fried-
man, and Noam Slonim. 2021. Every bite is an ex-
perience: Key Point Analysis of business reviews.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3376–3386, Online. Association for Computational
Linguistics.

Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Fried-
man, Dan Lahav, and Noam Slonim. 2020b. Quanti-
tative argument summarization and beyond: Cross-
domain key point analysis. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 39–49, On-
line. Association for Computational Linguistics.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment,
2008:P10008.

Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter
Sanders, and Christian Schulz. 2013. Recent ad-
vances in graph partitioning. In Algorithm Engineer-
ing.

Arie Cattan, Lilach Eden, Yoav Kantor, and Roy Bar-
Haim. 2023. From key points to key point hierarchy:
Structured and expressive opinion summarization.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 912–928, Toronto, Canada.
Association for Computational Linguistics.

Aaron Clauset, Mark E. J. Newman, and Cristopher
Moore. 2004. Finding community structure in very
large networks. Physical review. E, Statistical, non-
linear, and soft matter physics, 70 6 Pt 2:066111.

Gennaro Cordasco and Luisa Gargano. 2010. Commu-
nity detection via semi-synchronous label propaga-
tion algorithms. In 2010 IEEE International Work-
shop on: Business Applications of Social Network
Analysis (BASNA), pages 1–8.

5665

https://doi.org/10.18653/v1/2021.argmining-1.19
https://doi.org/10.18653/v1/2021.argmining-1.19
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2021.acl-long.262
https://doi.org/10.18653/v1/2021.acl-long.262
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://api.semanticscholar.org/CorpusID:334423
https://api.semanticscholar.org/CorpusID:334423
https://api.semanticscholar.org/CorpusID:3619914
https://api.semanticscholar.org/CorpusID:3619914
https://doi.org/10.18653/v1/2023.acl-long.52
https://doi.org/10.18653/v1/2023.acl-long.52
https://api.semanticscholar.org/CorpusID:8977721
https://api.semanticscholar.org/CorpusID:8977721
https://doi.org/10.1109/BASNA.2010.5730298
https://doi.org/10.1109/BASNA.2010.5730298
https://doi.org/10.1109/BASNA.2010.5730298

Nicolas Dugué and Anthony Perez. 2015. Directed lou-
vain : maximizing modularity in directed networks.

Roni Friedman, Lena Dankin, Yufang Hou, Ranit
Aharonov, Yoav Katz, and Noam Slonim. 2021.
Overview of the 2021 key point analysis shared task.
In Proceedings of the 8th Workshop on Argument
Mining, pages 154–164, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jia Guo, Liying Cheng, Wenxuan Zhang, Stanley Kok,
Xin Li, and Lidong Bing. 2023. AQE: Argument
quadruplet extraction via a quad-tagging augmented
generative approach. In Findings of the Association
for Computational Linguistics: ACL 2023, pages 932–
946, Toronto, Canada. Association for Computational
Linguistics.

Manav Kapadnis, Sohan Patnaik, Siba Panigrahi, Varun
Madhavan, and Abhilash Nandy. 2021. Team enigma
at ArgMining-EMNLP 2021: Leveraging pre-trained
language models for key point matching. In Pro-
ceedings of the 8th Workshop on Argument Mining,
pages 200–205, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

B. W. Kernighan and S. Lin. 1970. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291–307.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673. Curran Associates, Inc.

Robert Krauthgamer, Joseph (Seffi) Naor, and Roy
Schwartz. 2009. Partitioning graphs into balanced
components. In Proceedings of the Twentieth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’09, page 942–949, USA. Society for Indus-
trial and Applied Mathematics.

Hao Li, Viktor Schlegel, Riza Batista-Navarro, and
Goran Nenadic. 2023. Do you hear the people sing?
key point analysis via iterative clustering and abstrac-
tive summarisation. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14064–
14080, Toronto, Canada. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Stuart P. Lloyd. 1982. Least squares quantization in
pcm. IEEE Trans. Inf. Theory, 28:129–136.

Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yim-
ing Yang, and Antoine Bosselut. 2022. Conditional
set generation using seq2seq models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 4874–4896,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Inderjeet Mani and Eric Bloedorn. 1997. Multi-
document summarization by graph search and match-
ing. In AAAI/IAAI.

Daniel Margo and Margo Seltzer. 2015. A scalable
distributed graph partitioner. Proc. VLDB Endow.,
8(12):1478–1489.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation ranking
: Bringing order to the web. In The Web Conference.

Usha Nandini Raghavan, Réka Albert, and Soundar
Kumara. 2007. Near linear time algorithm to detect
community structures in large-scale networks. Phys.
Rev. E, 76:036106.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation. In Proceedings of ACL.

Vincent Antonio Traag, Ludo Waltman, and Nees Jan
van Eck. 2018. From louvain to leiden: guaranteeing
well-connected communities. Scientific Reports, 9.

Vijay Viswanathan, Kiril Gashteovski, Carolin (Haas)
Lawrence, Tongshuang Sherry Wu, and Graham Neu-
big. 2023. Large language models enable few-shot
clustering. ArXiv, abs/2307.00524.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. ArXiv,
abs/2309.07597.

Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman
Cohan. 2022. PRIMERA: Pyramid-based masked
sentence pre-training for multi-document summariza-
tion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5245–5263, Dublin,
Ireland. Association for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

5666

https://api.semanticscholar.org/CorpusID:55194616
https://api.semanticscholar.org/CorpusID:55194616
https://doi.org/10.18653/v1/2021.argmining-1.16
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2023.findings-acl.59
https://doi.org/10.18653/v1/2023.findings-acl.59
https://doi.org/10.18653/v1/2023.findings-acl.59
https://doi.org/10.18653/v1/2021.argmining-1.21
https://doi.org/10.18653/v1/2021.argmining-1.21
https://doi.org/10.18653/v1/2021.argmining-1.21
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.786
https://doi.org/10.18653/v1/2023.acl-long.786
https://doi.org/10.18653/v1/2023.acl-long.786
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:10833328
https://api.semanticscholar.org/CorpusID:10833328
https://doi.org/10.18653/v1/2022.emnlp-main.324
https://doi.org/10.18653/v1/2022.emnlp-main.324
https://api.semanticscholar.org/CorpusID:6025826
https://api.semanticscholar.org/CorpusID:6025826
https://api.semanticscholar.org/CorpusID:6025826
https://doi.org/10.14778/2824032.2824046
https://doi.org/10.14778/2824032.2824046
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://api.semanticscholar.org/CorpusID:53041707
https://api.semanticscholar.org/CorpusID:53041707
https://api.semanticscholar.org/CorpusID:259317075
https://api.semanticscholar.org/CorpusID:259317075
https://api.semanticscholar.org/CorpusID:261823330
https://api.semanticscholar.org/CorpusID:261823330
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360

Yuwei Zhang, Zihan Wang, and Jingbo Shang. 2023.
Clusterllm: Large language models as a guide for
text clustering. ArXiv, abs/2305.14871.

5667

https://api.semanticscholar.org/CorpusID:258866119
https://api.semanticscholar.org/CorpusID:258866119

