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Abstract

In-context learning (ICL) has become one of
the most popular learning paradigms. While
there is a growing body of literature focusing on
prompt engineering, there is a lack of system-
atic analysis comparing the effects of prompt
techniques across different models and tasks.
To address this, we present a comprehensive
prompt analysis based on sensitivity. Our anal-
ysis reveals that sensitivity is an unsupervised
proxy for model performance, as it exhibits a
strong negative correlation with accuracy. We
use gradient-based saliency scores to empiri-
cally demonstrate how different prompts affect
the relevance of input tokens to the output, re-
sulting in different levels of sensitivity. Further-
more, we introduce sensitivity-aware decod-
ing which incorporates sensitivity estimation
as a penalty term in the standard greedy decod-
ing. We show that this approach is particularly
helpful when information in the input is scarce.
Our work provides a fresh perspective on the
analysis of prompts, and contributes to a better
understanding of the mechanism of ICL.1

1 Introduction

In-context learning (ICL) has become a popular
learning paradigm in natural language processing
(NLP) due to the rapid development of large lan-
guage models (LLMs) (Brown et al., 2020; Dong
et al., 2022; Liu et al., 2023). With carefully con-
structed prompts, ICL achieves impressive per-
formance on various tasks (Kojima et al., 2022;
Lampinen et al., 2022; Wei et al., 2022b; Srivas-
tava et al., 2023). As a result, prompt engineering,
which aims to find prompts that lead to optimal per-
formance, has emerged as a crucial research topic
in ICL (White et al., 2023; Zhou et al., 2023b).
Although effort has been made to understand the
effectiveness of certain prompt techniques (Feng
et al., 2023; Gonen et al., 2023; Wang et al., 2023a),

1Our code is available at https://github.com/UKPLab/
naacl2024-prompt-sensitivity.

there is no systematic analysis of them across vari-
ous tasks and models (Ajith et al., 2023). Such an
analysis is crucial for prompt engineering, prompt
selection, and gaining a deeper understanding of
the working mechanism of ICL.

In this paper, we present a systematic and com-
prehensive analysis of prompts based on the sen-
sitivity of a function (Hahn et al., 2021). We hy-
pothesize that certain prompts are more effective
for a given task because they decrease the level of
sensitivity. Based on the recent findings that ICL
implements gradient descent implicitly (Akyürek
et al., 2023; Li et al., 2023; Von Oswald et al., 2023;
Zhang et al., 2023), an effective prompt can be seen
as one that facilitates the learning of a new func-
tion with lower sensitivity compared to the original
function learnt by the model. The sensitivity of a
function enables a novel framework to analyze the
effect of different prompts. See Figure 1 for more
details.

We did extensive experiments to validate our
hypothesis. We chose five widely used natural lan-
guage understanding and common sense reason-
ing tasks. We selected models with varying sizes
from three popular families: GPT, LLaMA, and
T5. We tested different prompts, including both
human-designed prompts and prompts generated
by an LLM. The results strongly support our hy-
pothesis that models exhibit different levels of sen-
sitivity depending on the prompts used, and sensi-
tivity is an unsupervised proxy of performance as it
has a strong negative correlation between accuracy
and sensitivity. With the help of gradient-based
saliency scores, we find that tokens in the prompt
(e.g., instructions) are more relevant to the output
than tokens in the input where perturbations took
place, which explains how different prompts lead
to varying levels of sensitivity. Furthermore, we
introduce sensitivity-aware decoding, which incor-
porates sensitivity estimation as a penalty term in
greedy decoding. We show that sensitivity-aware
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(a) data synthesis (b) sensitivity estimation

Figure 1: (a) We generate synthetic data for testing instances using Hahn et al. (2021)’s framework. (b) We perform
inference multiple times using the original and synthetic data, and calculate sensitivity based on the predictions.

decoding is particularly effective when the prompt
contains scarce information. Our work provides a
fresh perspective for comparing the effects of dif-
ferent prompts and enhances our understanding of
the mechanism of ICL.

Our contributions are summarized as follows:

• We present a systematic and comprehensive
analysis of prompts based on the sensitivity
of a function (Hahn et al., 2021).

• We show that sensitivity is an unsupervised
proxy of accuracy as it exhibits a strong nega-
tive correlation with accuracy.

• We use gradient-based saliency scores to show
empirically why certain prompts lead to lower
sensitivity.

• We introduce sensitivity-aware decoding and
show that it is effective when the prompt con-
tains limited information.

2 Background

2.1 In-context learning
In-context learning (ICL) is a popular learning
paradigm that emerged with the advent of LLMs
(Brown et al., 2020; Liu et al., 2023). It typically
involves prompting the LLM with several demon-
strations or exemplars in natural language. Com-
pared to previous learning approaches, ICL has a
more interpretable interface and it is more compu-
tationally efficient (Dong et al., 2022; Zhou et al.,
2023b). ICL has demonstrated strong performance
on various natural language tasks (Kojima et al.,
2022; Lampinen et al., 2022; Wei et al., 2022a;
Srivastava et al., 2023).

A considerable amount of recent work focuses
on revealing the mechanism of ICL. A line of
work suggests that ICL is facilitated when the pre-
training distribution has certain properties, such as

containing compositional structures and latent tasks
(Chan et al., 2022; Hahn and Goyal, 2023; Wies
et al., 2023). Empirical evidence shows that ICL
implicitly implements gradient descent and con-
structs a function at inference time (Akyürek et al.,
2023; Li et al., 2023; Zhang et al., 2023), which
may be related to gradient-based meta-learning
(Von Oswald et al., 2023). Similarly, Dai et al.
(2023) argue that Transformers are meta-optimizers
which produce meta-gradients according to the
demonstrations through forward pass, and these
meta-gradients are applied to the model through
attention.

2.2 Prompt engineering
Prompt engineering is essential to effectively re-
trieving information from an LLM (Reynolds and
McDonell, 2021; Schick and Schütze, 2021; White
et al., 2023; Zhou et al., 2023b). An LLM usually
requires careful prompt engineering, since a model
may not understand prompts in the way a human
does (Webson and Pavlick, 2022).

In this work, we focus on discrete prompts, i.e.,
prompts that are described in natural language
phrases (Liu et al., 2023). We follow Dong et al.
(2022) and categorize discrete prompts into human-
designed and LM-generated prompts, depending
on whether they are written by humans or generated
by a language model (LM).

2.3 Prompt analysis
Most of the existing analytical work concentrates
on understanding a particular type of prompt (Feng
et al., 2023; Gonen et al., 2023; Wang et al., 2023a).
However, there is a lack of systematic analysis that
compares the effects of different prompts across
various models and tasks. As far as we are aware,
Ajith et al. (2023) is the only work that presents
a systematic analysis of prompts. They evaluate
the effect of popular instruction selection methods,
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whereas our work examines a broader range of
prompts.

2.4 Sensitivity

Previous studies have primarily focused on ana-
lyzing sensitivity at the instance level. These in-
vestigations reveal that ICL performance is highly
dependent on demonstrations, such as the selection
of exemplars and the order in which they are pre-
sented (Zhao et al., 2021; Liu et al., 2022a; Lu et al.,
2022; Ajith et al., 2023; Chang and Jia, 2023; Chen
et al., 2023; Wang et al., 2023b; Sclar et al., 2024).
Moreover, Chen et al. (2023) observe that predic-
tions sensitive to perturbations are more likely to
be incorrect.

Based on the theory of Boolean function sensi-
tivity, Hahn et al. (2021) propose sensitivity as a
theory of complexity for sequence classification
tasks. The sensitivity of a function quantifies the
number of disjoint subsets of the input sequence
that can be changed in such a way as to change
the output. In the setting of sequence classifica-
tion, sensitivity measures the non-linearity of the
decision boundary. Low-sensitivity tasks are those
where low-sensitivity functions, such as linear clas-
sifiers, are most successful. High-sensitivity tasks,
on the other hand, require high-sensitivity methods,
which are more complex. The amount of informa-
tion in the input is a key factor of sensitivity. Intu-
itively, if a single change in the input completely
changes the output, it is believed that the input
does not contain sufficient information, resulting in
high sensitivity. An output is more stable if there
is redundant information in the input, which is an
indicator of low sensitivity.

Sensitivity is an indicator of both architectural
and task complexity, and thus it is used as a hard-
ness measure in many NLP tasks (Richardson and
Sabharwal, 2022; Zhao et al., 2022; Bhattamishra
et al., 2023).

3 Experiment settings

Data generation We use Hahn et al. (2021)’s
framework to generate perturbed data.2 Each of
the synthetic data agrees on the original instance
on all indices outside a subset. We notice that the
synthetic data for one particular dataset are noisier
(see Table 8 in A.1 for a manual inspection of the
data). This does not pose an issue because this
dataset is our control variable.

2See https://github.com/m-hahn/sensitivity.

Sensitivity estimation The sensitivity estimation
proposed in Hahn et al. (2021) uses the variance of
the outputs. We adopt a more straightforward alter-
native, variation-ratio (Freeman, 1965), to estimate
sensitivity. Given an original input and n synthetic
inputs, sensitivity is calculated as

s = 1− fm
n+ 1

, (1)

where fm is the frequency of the mode of the n+1
predictions, i.e., the prediction for the original input
plus n predictions for the synthetic inputs. The
lower s is, the less sensitive a model is to an input.
Dataset We picked five commonly used natural
language understanding and reasoning tasks: CoLA
(Warstadt et al., 2019), MultiNLI (Williams et al.,
2018), RTE (Wang et al., 2019), SST2 (Socher
et al., 2013), and CSQA (Talmor et al., 2019). We
experimented with GSM8K (Cobbe et al., 2021),
a collection of arithmetic reasoning problems, to
assess sensitivity in open-ended generation.
Model We tested models with different architec-
tures and sizes selected models from three popu-
lar model families: OpenAI text-davinci-003
(GPT3.5-175B), GPT-JT-6B (Wang and Komat-
suzaki, 2021), LLaMA2-13B-chat, LLaMA2-7B-
chat (Touvron et al., 2023b), Flan-T5-11B, and
Flan-T5-770M (Chung et al., 2022).
Prompt Table 1 shows the prompts we used in our
experiments. We experimented with both human-
designed and LM-generated prompts. We designed
base_a and base_b as two baseline prompts.
Compared to the simplest base_a which contains
plain input-target pair, base_b includes a human-
designed instruction. We designed zero_a and
zero_b to test an extreme case, where the ground
truth is included in the prompt. We tested two
popular prompts, i.e., context faithful prompting
(CFP) (Zhou et al., 2023a) and Chain-of-Thought
prompting (CoT) (Wei et al., 2022b).3 For LM-
generated prompts, we tested automatic prompt
engineer (APE) (Zhou et al., 2023b) and generated
knowledge prompting (GKP) (Liu et al., 2022b).4 In
addition, we map each option to an index, so that
we can better control the format of the output.

See A.1 for more details regarding the setup of
experiments.

3CoT prompting was only tested with the larger models,
i.e., GPT3.5-175B, Flan-T5-11B, and LLaMA2-13B-chat.

4APE was only tested on CoLA and RTE using GPT3.5-
175B due to budget constraints. GKP was only tested on CSQA,
and we used the knowledge generated by Liu et al. (2022b).
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prompt text

base_a
I’m glad I saw anybody.
{target}

base_b

SENTENCE: I’m glad I saw anybody.
QUESTION: Is this (0) unacceptable, or (1)
acceptable?
ANSWER: {target}

zero_a
I’m glad I saw anybody. The answer is 0.
{target}

zero_b
SENTENCE: I’m glad I saw anybody. The an-
swer is 0.
ANSWER: {target}

CFP

Bob said, “I’m glad I saw anybody.”
QUESTION: Is this (0) unacceptable, or (1) ac-
ceptable in Bob’s opinion?
ANSWER: {target}

CoT

SENTENCE: I’m glad I saw anybody.
QUESTION: Is this (0) unacceptable, or (1) ac-
ceptable?
ANSWER: Let’s think step by step. This sen-
tence is ungrammatical because “anybody” is
used as the object in an affirmative clause. So
the answer is {target}

APE

INSTRUCTION: determine whether each sen-
tence was (1) acceptable or (0) unacceptable
based on its structure and grammar.
INPUT: I’m glad I saw anybody.
OUTPUT: {target}

GKP

KNOWLEDGE: Electronic maps are the mod-
ern version of paper atlas.
INPUT: Google Maps and other highway and
street GPS services have replaced what?
OPTIONS: (0) united states, (1) mexico, (2)
countryside, (3) atlas, (4) oceans
OUTPUT: {target}

Table 1: Examples of prompts used in our experiments.
Contents that are characteristic to a prompt are bolded.

4 Results

Figure 2 shows the average accuracy and sensitiv-
ity of each model using various prompts across
different datasets.5 The Pearson correlation coeffi-
cient shows a strong negative correlation between
accuracy and sensitivity (r = −0.8764, p-value
≪ 0.01). Sensitivity can be viewed as an unsu-
pervised proxy of accuracy given such a strong
correlation.

It is interesting to note that both Flan-T5 models
failed with zero_a and zero_b. We discuss this
further in Section 4.2.

5Due to limited space, we did not include the standard
deviations of the statistics in the following plots and tables. For
more results, please refer to https://github.com/UKPLab/
naacl2024-prompt-sensitivity.

Figure 2: The average accuracy and sensitivity of each
model using various prompts across different datasets.
* indicates prompts that are not tested on all datasets.

4.1 Instruction, knowledge, chain-of-thought

This section compares the effects of instruction
(human-designed instructions in base_b and LM-
generated instructions in APE), reasoning chain (in
CoT), and knowledge (in GKP).

Table 2 compares the performance of models
using base_b and APE. The two prompts lead to
similar accuracy and sensitivity on CoLA and RTE,
suggesting that human-designed and LM-generated
instructions have similar effects on the model. At
least for CoLA and RTE, there is no need to gener-
ate instructions using an LM.

dataset prompt accuracy↑ sensitivity↓

CoLA base_b 0.8235 0.1830
APE 0.8216 0.1960

RTE base_b 0.6931 0.1377
APE 0.7509 0.1603

Table 2: The accuracy and sensitivity of GPT3.5-175B
using base_b and APE.

Table 3 shows that GKP leads to a higher accu-
racy and lower sensitivity in most cases. This
suggests that the effects of instructions and LM-
generated knowledge are cumulative, i.e., plac-
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model accuracy↑ sensitivity↓
base_b GKP base_b GKP

GPT3.5-175B 0.8000 0.7459 0.3133 0.1982
GPT-JT-6B 0.2413 0.3202 0.4912 0.4831
LLaMA2-13B 0.6085 0.6109 0.3257 0.2511
LLaMA2-7B 0.5276 0.5456 0.3649 0.2804
Flan-T5-11B 0.8057 0.7697 0.3435 0.2491
Flan-T5-770M 0.2607 0.7601 0.2345 0.3141

AVERAGE 0.5082 0.6103 0.3485 0.3082

Table 3: The accuracy and sensitivity using base_b
and GKP on CSQA. LLaMA2-13B and LLaMA2-7B are
LLaMA2-13B-chat and LLaMA2-7B-chat.

ing LM-generated knowledge before instructions
yields better results.

Table 4 shows that CoT leads to a similar accu-
racy but higher sensitivity compared to base_b. As
shown in Table 1, instructions are also contained in
CoT. Unlike LM-generated knowledge, reasoning
chains do not bring performance gain on top of
instructions.

model accuracy↑ sensitivity↓
base_b CoT base_b CoT

GPT3.5-175B 0.7549 0.7758 0.1899 0.2636
LLaMA2-13B 0.5642 0.6179 0.2564 0.2939
Flan-T5-11B 0.8134 0.7943 0.2328 0.2509

AVERAGE 0.7108 0.7293 0.2264 0.2695

Table 4: The accuracy and sensitivity of GPT3.5-175B,
LLaMA2-13B-chat (LLaMA2-13B), and Flan-T5-11B
using base_b and CoT across different tasks.

We designed CoT_base_a to isolate the effect of
reasoning chains. CoT_base_a is a combination of
chain-of-thought and the most basic base_a (see
Table 12 in A.3).

Figure 3 shows that CoT_base_a outperforms
base_a, but it performs worse than base_b in most
cases. This suggests that for CoLA and RTE, while
reasoning chains do help improve performance, it
is not as effective as instructions.

We note that models using CoT_base_a perform
relatively better on CoLA than on RTE. We spec-
ulate that this is because the demonstrations in
CoT_base_a for CoLA contain an equivalent of an
instruction. Since CoLA is a binary classification
task with GRAMMATICAL and UNGRAMMATICAL

being the labels, a reasoning chain, such as the
one exemplified in Table 12, contain an explicit
label mapping, which may function similarly to an
instruction.

Figure 3: The accuracy and sensitivity of different mod-
els using base_a, base_b, CoT_base_a, and CoT.

4.2 What happened to Flan-T5 with zero?

As shown in Figure 2, unlike other models,
both Flan-T5-11B and Flan-T5-770M failed with
zero_a and zero_b. We examine the outputs of
Flan-T5-11B closely to investigate this counter-
intuitive phenomenon, and find that Flan-T5-11B
tends to produce text answers instead of numeric
indices with zero_a and zero_b (see Figure 8 in
A.4). Our observations suggest that Flan-T5 mod-
els are not good at mapping the numeric indices in
the examplars to their output spaces, unless explic-
itly instructed via instructions such as in base_b
and APE, or in the form of OPTIONS, such as in GKP.
This conclusion is also supported by the observa-
tion that Flan-T5 models fail to produce numeric
indices with base_a (see Table 14 in A.4), where
explicit instructions are also lacking.

4.3 The effect of decoding strategies

It has been shown that decoding strategies influ-
ence the quality of LLM generations (Lee et al.,
2022; Wang et al., 2023d). We also observe that
decoding strategies have an effect on sensitivity.
Figure 4 shows that the overall sensitivity calcu-
lated from predictions obtained using greedy de-
coding is lower than that of those obtained using
Top-k sampling (Fan et al., 2018). A strong nega-
tive correlation between accuracy and sensitivity is
still observed in this case (r = −0.5507, p-value
≪ 0.01). This is lower than that of Top-k sam-
pling (r = −0.8764, p-value ≪ 0.01), suggesting
that Top-k sampling has a “magnifying” effect on
sensitivity.
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Figure 4: The accuracy and sensitivity of predictions
obtained using greedy decoding and Top-k sampling
across different models.

In Top-k sampling, the next token is sampled
from a probability mass redistributed among to-
kens that have the highest k probabilities. The
observation that Top-k sampling leads to a higher
level of sensitivity indicates that for instances with
high sensitivity, the output probabilities of different
labels are close.

4.4 Open-ended generation
Measuring (or even defining) sensitivity in open-
ended generation can be challenging. Two pieces of
generated text can convey the same meaning even
if they vary significantly in terms of word choices
and length. We circumvent this issue by select-
ing an open-ended generation task where the out-
put is more “controllable.” Specifically, we chose
GSM8K, an arithmetic reasoning task in which the
outputs are numbers (Cobbe et al., 2021). Despite
being an open-ended generation task, the numerical
format of the outputs in GSM8K allows us to use
variation-ratio to measure sensitivity. Our results
reveal that there is also a negative correlation be-
tween accuracy and sensitivity in the open-ended
setting. See A.5 for more details.

5 Gradient-based saliency scores

In light of recent studies that link ICL and implicit
gradient descent (Akyürek et al., 2023; Li et al.,
2023; Von Oswald et al., 2023; Zhang et al., 2023),
we investigate the relationship between sensitiv-
ity and gradient. We use gradient-based saliency
scores, which reveal the relevance of input tokens
to the model prediction (Simonyan et al., 2014; Li
et al., 2016; Yin and Neubig, 2022). The higher the
score is, the more a token is supposed to contribute
to the model output. We compute gradient-based

saliency scores based on the norm of the gradient
of the model output. The gradient g for a token xi
in an input x is calculated as follows:

g(xi) = ∇xiM(y|x), (2)

where M(y|x) is the logit for the output token y.
The saliency score S(xi) is obtained by taking the
L1 norm of g(xi):

S(xi) = ∥g(xi)∥L1. (3)

We calculate the saliency scores using GPT-JT-
6B, GPT-J-6B, Flan-T5-770M, and T5-770M. Fig-
ure 5 gives an example of saliency scores over
tokens, which shows that the tokens in the prompt
are more relevant to the output than tokens in the
input (see Figure 10 in A.6 for more examples).

To perform a quantitative analysis, we segment
an instance into several parts. Take Figure 6 as an
example.

Figure 6: An example of token segmentation for in-
stances with base_b.

For a sentence X , tokens where perturbations hap-
pen are referred to as Xinput or input tokens (such
as the input in Figure 6), and the rest of the sen-
tence is referred to as Xprompt or prompt tokens.6

We calculate the mean saliency score, denoted as
S, for input tokens and prompt tokens respectively:

S =

∑
xi∈X S(xi)

n
,X ∈ {Xinput, Xprompt},

(4)
where n is the number of tokens in Xinput or
Xprompt.

Table 5 shows the average mean saliency scores
of instances in different datasets. Similar to Figure
5, the mean saliency scores of input tokens are con-
sistently lower than those for prompt tokens. There
is a strong negative correlation between Sp − Si

and sensitivity (r = −0.7596, p-value ≪ 0.01).7

This explains why base_b, zero_b, and CFP lead
to lower levels of sensitivity: perturbations are only
done to input tokens, which are less relevant to

6For the segmentation of other prompts, please refer to
Figure 9 in A.6.

7The Pearson correlation coefficient for Sp − Si and sen-
sitivity without zero_b results is −0.5733 (p = 0.0831).
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Figure 5: Saliency scores over tokens of CoLA instances with base_b obtained using GPT-6B-JT.

the outputs than prompt tokens. We also find that
instruction tuned models “focus” more on prompt
tokens than their non-instruction tuned counterparts
(see Table 16 in A.6).

dataset prompt Si Sp Sp − Si sens.↓

CoLA
base_b 4.17 12.74 8.57 30.15
zero_b 7.65 23.66 16.01 0.00
CFP 3.75 11.43 7.68 28.39

CSQA
base_b 2.68 7.41 4.73 48.84
zero_b 2.25 8.02 5.77 0.00
CFP 2.37 7.06 4.69 49.94

MNLI
base_b 3.10 12.79 9.69 43.78
zero_b 3.61 17.18 13.57 3.06
CFP 1.68 6.71 5.03 42.70

RTE
base_b 1.95 9.48 7.53 30.61
zero_b 3.22 18.95 15.73 0.36
CFP 1.53 7.32 5.79 29.82

SST2
base_b 3.09 12.59 9.50 28.17
zero_b 4.99 22.32 17.33 0.25
CFP 2.77 10.70 7.93 28.83

Table 5: The average mean saliency scores of input
tokens (Si, in permillage), prompt tokens (Sp, in per-
millage) of instances, the difference between the two
scores (∆), and sensitivity (sens., in percentage) ob-
tained using GPT-JT-6B.

For GKP, we perform a more detailed segmenta-
tion for a better analysis, which is shown in Figure
7. We segment an instance with GKP to knowledge,
input, option, and prompt tokens.

Figure 7: An example of token segmentation for in-
stances with GKP.

Table 6 shows the average mean saliency scores
of tokens in CSQA instances using GKP. Similar
to Table 5, input tokens are less relevant to the
predictions. Note that knowledge tokens have the
lowest average mean saliency scores, suggesting
that generated knowledge is not very relevant to
the predictions.

Sinput Sknowledge Soption Sprompt

4.33 2.56 6.37 12.86

Table 6: The average mean saliency scores (S) of in-
put, knowledge, option, and prompt tokens of CSQA
instances with GKP obtained using GPT-JT-6B.

The percentage of Sinput for base_b (27.2%) is
higher than that for GKP (16.6%), which indicates
that input tokens in base_b are relatively more
relevant to the predictions than those in GKP. This
is consistent with the observation in Table 3, that
GKP leads to a lower level of sensitivity in most
cases.

We also examine the mean saliency scores of
ground truth tokens in zero_b (see Table 17 in A.6).
The results show that Flan-T5-770M “focuses” less
on ground truth tokens than GPT-JT-6B, which
explains the failure of Flan-T5 models with zero
prompts discussed in Section 4.2.

Prompt tokens are important in the sense that
they provide information such as instructions and
external knowledge, which are necessary for the
model to produce outputs that the user expects.
However, it is counter-intuitive that the mean
saliency scores for prompt tokens are much higher
than those for input tokens, as input tokens con-
tain essential information as well. This observation
may imply that memory plays an overwhelming
role in ICL (Chen et al., 2022; Merullo et al., 2023;
McKenna et al., 2023; Štefánik and Kadlčík, 2023;
Singh et al., 2023)–LLMs were trained on similar
instances, so they do not need to rely on input to-
kens in the test instances too much. In this sense,
prompt tokens are more relevant because they trig-
ger memories, and models implicitly infer task
information from them (Reynolds and McDonell,
2021; Hendel et al., 2023; Wang et al., 2023c; Wolf
et al., 2023). Over-emphasis on prompt tokens may
lead to hallucination as well. A recent study discov-
ers that instruction tuning significantly increases
sycophancy in LLMs, that they follow user’s opin-
ion or agree with user’s claim even when they know
it is false (Wei et al., 2023).
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dataset prompt GPT-JT-6B LLaMA2-13B-chat LLaMA2-7B-chat Flan-T5-11B Flan-T5-770M

sad greedy sad greedy sad greedy sad greedy sad greedy

CoLA
base_a 45.16 38.71 59.20 59.20 52.37 52.56 29.41 29.41 41.75 40.99
base_b 48.01 47.82 70.21 70.40 62.62 63.38 77.42 81.59 71.54 71.92
CFP 38.71 34.91 67.93 67.74 68.31 68.88 77.61 80.65 69.45 69.45

CSQA
base_a 26.48 26.56 45.49 46.80 33.20 33.93 57.79 55.82 79.02 83.77
base_b 30.74 30.74 61.97 62.13 54.59 55.49 78.85 82.30 24.92 25.41
CFP 27.70 28.20 60.98 61.72 54.59 54.51 77.30 81.64 22.79 22.87

MNLI
base_a 14.90 11.50 9.20 3.40 16.90 17.20 23.50 25.80 9.10 3.70
base_b 27.30 27.00 34.30 30.30 37.00 34.10 81.60 82.30 59.80 65.10
CFP 33.50 34.20 43.90 39.70 39.90 40.40 81.40 82.90 14.60 9.10

RTE
base_a 37.55 31.05 38.99 39.71 34.66 32.85 24.19 23.83 22.38 21.66
base_b 58.12 58.48 53.07 37.55 62.82 63.18 82.31 87.00 50.54 54.15
CFP 52.71 50.18 56.32 43.68 56.32 56.32 75.09 85.56 44.77 53.79

SST2
base_a 25.34 27.29 59.98 59.52 61.12 61.47 50.80 50.80 40.14 40.94
base_b 76.95 78.44 77.64 77.41 78.10 78.44 90.02 95.64 91.63 91.97
CFP 53.56 54.13 88.07 88.19 77.06 76.49 91.17 95.87 77.87 78.10

Table 7: The highest accuracy reached using sensitivity-aware decoding (sad) and the accuracy of greedy decoding
(greedy). Cases where sensitivity-aware decoding has a better accuracy than greedy decoding are highlighted.

6 Sensitivity-aware decoding

We showed in Section 4 that sensitivity can be
viewed as an unsupervised proxy of accuracy. In
this section, we further show that including sensi-
tivity in decoding improves model performance.
Specifically, we add sensitivity as a penalty to
greedy decoding:

ŷ = argmax
y∈V

[αP (y|x)− (1− α)s], (5)

where x is an input, V is a vocabulary, and ŷ is the
output. P (y|x) is the probability of an output y
given x, and s is a sensitivity estimation, calculated
as the variance of the output logits of the synthetic
data for x. We reweight P (y|x) and s using α and
(1− α).

Table 7 summarizes the performance of
sensitivity-aware decoding compared to greedy de-
coding. Sensitivity-aware decoding works better
on CoLA, MNLI, and RTE, and model-wisely, it
works better with GPT-JT-6B and LLaMA2-13B-
chat. Sensitivity-aware decoding works much bet-
ter with base_a than the other prompts. See A.7
for more implementation details and results.

The results show that penalizing outputs with
high sensitivity in decoding has an effect on model
performance. We show that sensitivity-aware de-
coding works better with the most basic prompt,
base_a, that contains plain input-target pairs. We
believe this prompt represents those truly challeng-
ing problems in real life that have almost no clues
or hints, and require very strong reasoning abilities

to solve. Apparently, none of the models we tested
possess such abilities. Therefore, sensitivity-aware
decoding, which helps improve model performance
under this “extreme condition,” is highly meaning-
ful in the present context.

However, sensitivity-aware decoding is more
computationally expensive compared to standard
greedy decoding as it requires multiple inference
passes. This makes it impractical for tasks that
demand low latency.

7 Conclusion

This work provides a novel perspective on prompt
analysis, examining the effects of prompts in terms
of the sensitivity of a function. We conducted a
systematic and comprehensive analysis, and high-
light how certain prompts are more effective due
to their ability to reduce sensitivity levels. We
show that sensitivity can serve as an unsupervised
proxy of model performance, making it a valuable
tool for evaluating model performance without us-
ing labeled data or ground truth. By introducing
sensitivity-aware decoding, we show that incorpo-
rating sensitivity in greedy decoding is particularly
helpful in cases where the input is less informative.
Since none of the models we tested performs well
when there is limited information in the input, we
believe sensitivity-aware decoding is highly practi-
cal in the current context. Our work not only sheds
light on prompt engineering, but also provides in-
sight into the working mechanism of ICL.
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Limitations

The measurement of sensitivity is currently quite re-
stricted to close-ended generation. It is challenging
to extend this framework to tasks such as text sum-
marization. While we demonstrate the effective-
ness of sensitivity-aware decoding, it requires mul-
tiple inferences, which may be impractical for tasks
that require low latency. In order to manage costs,
we limited the use of OpenAI text-davinci-003
(GPT3.5-175B) in our experiments. Due to its
closed source nature, the reproducibility of the re-
sults related to GPT3.5-175B may be a concern as
well.
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A Appendix

A.1 More on experiment settings
All experiments were done in the few-shot setting.8 We set temperature=0.8 for all experiments. We set
max_new_tokens=2, except for experiments with CoT, where it was set to 64, and 128 for experiments with
GSM8K. For local models, we set batch_size=16 and seeds=[2266,105,86379], and all experiments
were run on either an NVIDIA A100 or H100. The experiments with OpenAI text-davinci-003 were
done between July 8 and July 18, 2023.

We notice that the synthetic data for CSQA are noisier than those for other datasets. We manually
checked the synthetic data for the first 50 instances in CSQA (a total of 1220 instances). There are 223
synthetic data for the first 50 instances, among which 44 are considered to be noisy (see Table 8).

We designed base_a, base_b, zero_a, and zero_b in an intuitive way. We did not rely on any formal
theories or guidelines related to prompt engineering. Table 9 shows examples of demonstrations with
different prompts.

original synthetic

Where would you find magazines along side many other
printed works? :-Where would you waste your Spanish ?? !?

Where are you likely to find a hamburger? prime over byEL are you "happy" hamburger?

James was looking for a good place to buy farmland.
Where might he look?

ei– What look is for a good place to buy – like a restaurant?

<..."What might he look?

In what Spanish speaking North American country can you
get a great cup of coffee?

Balkan Kingdom <Meditation a French speaking North
American country can you explain the ways components
are used?

///5// Does insurance cover a car, Sears, or a cup of coffee?

What do animals do when an enemy is approaching?

19:: What do animals do when an enemy is spotted?

com... What is an enemy of HTML?

p-0 What do you do when an enemy moves in?

Reading newspaper one of many ways to practice your
what?

=- Your WHERE? Your ARE. Your what?

an tissues/Reading newspaper/What is a red/aloe?

If you want harmony, what is something you should try to
do with the world?

Sept: 5If you want to have a process then what do you now
do with the system?

Where does a heifer’s master live? =- does a heifer take in valuables?

/Jazeeraio "What’s a Maru?

Aside from water and nourishment what does your dog
need? / Purity Utah Prison of 2015?

Janet was watching the film because she liked what? ///Janet was watching the film because she liked what?

08/Janet was watching the film "Sha what?

What are you waiting alongside with when you’re in a
reception area?

27.9What are you waiting alongside with when you’re in a
job interview?

1: ⊠⊠ hat are you going to do while on the street a day like
now?

When drinking booze what can you do to stay busy?

When drinking : When more can you do then pleasure ?

When drinking ? When being a kid/ Young man ?

=-Bin Bak Allah? Bern Abd Ja Tih?

A fencing thrust with a sharp sword towards a person
would result in what?

2, 45A fencing thrust with a sharp sword towards a person
would result in pain?

Video Audio AudioA fencing thrust from the guitarist/band
member whether way or the other?

8See https://github.com/UKPLab/naacl2024-prompt-sensitivity/tree/main/prompts.
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original synthetic

Unlike a spider and his many sight seers, people only have
what?

") cards Of the spider spider and his many sight seers. We
Who See Everything?

What could go on top of wood? {50 What you could go wrong with this title?

The artist was sitting quietly pondering, then suddenly he
began to paint when what struck him?

=- Imagine an artist was sitting quietly pondering, then
taking a break to paint when what struck him?

Where could you find a toilet that only friends can use? =—Where could you find a toilet maker with a slot under-
neath?

What is someone who isn’t clever, bright, or competent
called?

1. Why are aren ⊠⊠ clever, bright, or competent called?

s// ? Him who isn’t clever, ? peculiar, ?

When wildlife reproduce we often refer to what comes out
as what?

( Do we often refer to wha comes out as what?

div 2: were you aware we often refer to what comes out as
what?

",.."?

Blue read material outside of his comfort zone because he
wanted to gain what?

//Blue read material/ text/ flag/ license/ licensing/ gain
what?

After he got hired he hoped for success at his what? /2011-2012-2013. Who is his what?

Committing perjury is a serious what? ned!? ⊠?perjury is involved here??

///committing test ? Now what?

The lock kept the steering wheel from moving, but the thief
still took his chances and began to work on the what?

=– Maybe one lock kept the steering wheel from moving,
but the thief still had the gun. If not, what was it?

Who is a police officer likely to work for? based? Do you consider them likely to be sustainable?

Where is a doormat likely to be in front of? Pop RSWhere is a substitute to an already terminated sys-
tem in comparison?

He needed more information to fix it, so he consulted the
what?

1. 13He needed more information to fix information, but
defacto what?

Where can you put a picture frame when it’s not hung
vertically?

%%%Where can you put a picture frame when it’s not
nesting?

min "Where can you be if your wife or any other object is
hung vertically?

What must someone do before they shop? /// How must someone conduct their work daily?

Table 8: Noisy synthetic data for the first 50 instances in CSQA.
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dataset prompt text

CSQA

base_a
Google Maps and other highway and street GPS services have replaced what?
(0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans
3

base_b
SENTENCE: Google Maps and other highway and street GPS services have replaced what?
QUESTION: Is it (0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans?
ANSWER: 3

zero_a

Google Maps and other highway and street GPS services have replaced what?
(0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans
The answer is 3.
3

zero_b

SENTENCE: Google Maps and other highway and street GPS services have replaced what?
OPTIONS: (0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans
The answer is 3.
ANSWER: 3

CFP

Bob said, "Google Maps and other highway and street GPS services have replaced what?"
QUESTION: Is it (0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans in Bob’s
opinion?
ANSWER: 3

CoT

SENTENCE: Google Maps and other highway and street GPS services have replaced what?
QUESTION: Is it (0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans?
ANSWER: Let’s think step by step. Google Maps and other highway and street GPS services
help people find their location and navigate streets and highways, and atlas is a software that
is designed to help users navigate. So the answer is 3.

GKP

KNOWLEDGE: Electronic maps are the modern version of paper atlas.
INPUT: Google Maps and other highway and street GPS services have replaced what?
OPTIONS: (0) united states, (1) mexico, (2) countryside, (3) atlas, (4) oceans
OUTPUT: 3

MNLI

base_a

He thought about ways to achieve this life goal for a long time, which means until he learned
the basics of text editing, which happened at his first job at a firm trading in plastic bags
landfill disposal permits.
He thought about ways to achieve his life goals for a long time.
1

base_b

SENTENCE1: He thought about ways to achieve this life goal for a long time, which means
until he learned the basics of text editing, which happened at his first job at a firm trading in
plastic bags landfill disposal permits.
SENTENCE2: He thought about ways to achieve his life goals for a long time.
ANSWER: 1

zero_a

He thought about ways to achieve this life goal for a long time, which means until he learned
the basics of text editing, which happened at his first job at a firm trading in plastic bags
landfill disposal permits.
He thought about ways to achieve his life goals for a long time.
The answer is 1.
1

zero_b

SENTENCE1: He thought about ways to achieve this life goal for a long time, which means
until he learned the basics of text editing, which happened at his first job at a firm trading in
plastic bags landfill disposal permits.
SENTENCE2: He thought about ways to achieve his life goals for a long time.
The answer is 1.
ANSWER: 1

CFP

Bob said, "sentence 1 is ’He thought about ways to achieve this life goal for a long time,
which means until he learned the basics of text editing, which happened at his first job at a
firm trading in plastic bags landfill disposal permits,’ and sentence 2 is ’He thought about
ways to achieve his life goals for a long time.’"
QUESTION: Are the two sentences (0) contradiction, (1) entailment, or (2) neutral in Bob’s
opinion?
ANSWER: 1

CoT

SENTENCE1: He thought about ways to achieve this life goal for a long time, which means
until he learned the basics of text editing, which happened at his first job at a firm trading in
plastic bags landfill disposal permits.
SENTENCE2: He thought about ways to achieve his life goals for a long time.
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dataset prompt text

QUESTION: Is this (0) contradiction, (1) entailment, or (2) neutral?
ANSWER: Let’s think step by step. Sentence 1 states that he thought about ways to achieve
his life goal for a long time, and then states that he learned the basics of text editing at his
first job. Sentence 2 states that he thought about ways to achieve his life goal for a long time.
Both sentences state the same thing, so the answer is 1.

RTE

base_a

The Federal Bureau of Investigation started an independent probe of the circumstances
shortly after the White House made plain that President Bill Clinton considered industrial
espionage a particular threat to US economic interests.
President Clinton thinks that industrial espionage is a threat to America’s well being.
0

base_b

SENTENCE1: The Federal Bureau of Investigation started an independent probe of the
circumstances shortly after the White House made plain that President Bill Clinton considered
industrial espionage a particular threat to US economic interests.
SENTENCE2: President Clinton thinks that industrial espionage is a threat to America’s well
being.
QUESTION: Are the two sentences (0) entailment, or (1) not_entailment?
ANSWER: 0

zero_a

The Federal Bureau of Investigation started an independent probe of the circumstances
shortly after the White House made plain that President Bill Clinton considered industrial
espionage a particular threat to US economic interests.
President Clinton thinks that industrial espionage is a threat to America’s well being.
The answer is 0.
0

zero_b

SENTENCE1: The Federal Bureau of Investigation started an independent probe of the
circumstances shortly after the White House made plain that President Bill Clinton considered
industrial espionage a particular threat to US economic interests.
SENTENCE2: President Clinton thinks that industrial espionage is a threat to America’s well
being.
The answer is 0.
ANSWER: 0

CFP

Bob said, "sentence 1 is ’The Federal Bureau of Investigation started an independent probe
of the circumstances shortly after the White House made plain that President Bill Clinton
considered industrial espionage a particular threat to US economic interests.’, and sentence 2
is ’President Clinton thinks that industrial espionage is a threat to America’s well being.’"
QUESTION: Are the two sentences (0) entailment, or (1) not_entailment in Bob’s opinion?
ANSWER: 0

CoT

SENTENCE1: The Federal Bureau of Investigation started an independent probe of the
circumstances shortly after the White House made plain that President Bill Clinton considered
industrial espionage a particular threat to US economic interests.
SENTENCE2: President Clinton thinks that industrial espionage is a threat to America’s well
being.
QUESTION: Are the two sentences (0) entailment, or (1) not_entailment?
ANSWER: Let’s think step by step. The first sentence provides information about President
Clinton’s belief, which directly leads to the FBI conducting an investigation. Therefore, the
second sentence necessarily follows the information provided in the first sentence. So the
answer is 0.

APE

INSTRUCTION: determine whether the given statement logically follows from the preceding
statement, and the output is either (0) entailment if the statement logically follows, or (1)
not_entailment if the statement does not logically follow.
INPUT: The Federal Bureau of Investigation started an independent probe of the circum-
stances shortly after the White House made plain that President Bill Clinton considered
industrial espionage a particular threat to US economic interests.
President Clinton thinks that industrial espionage is a threat to America’s well being.
OUTPUT: 0

SST2

base_a
None of this is meaningful or memorable , but frosting is n’t , either , and you would n’t turn
down a big bowl of that , would you ?
0

base_b

SENTENCE: None of this is meaningful or memorable , but frosting is n’t , either , and you
would n’t turn down a big bowl of that , would you ?
QUESTION: Is this (0) negative, or (1) positive?
ANSWER: 0

zero_a

None of this is meaningful or memorable , but frosting is n’t , either , and you would n’t turn
down a big bowl of that , would you ?
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The answer is 0.
0

zero_b

SENTENCE: None of this is meaningful or memorable , but frosting is n’t , either , and you
would n’t turn down a big bowl of that , would you ?
The answer is 0.
ANSWER: 0

CFP

Bob said, "None of this is meaningful or memorable , but frosting is n’t , either , and you
would n’t turn down a big bowl of that , would you ?"
QUESTION: Is this (0) negative, or (1) positive in Bob’s opinion?
ANSWER: 0

CoT

SENTENCE: None of this is meaningful or memorable , but frosting is n’t , either , and you
would n’t turn down a big bowl of that , would you ?
QUESTION: Is this (0) negative, or (1) positive?
ANSWER: Let’s think step by step. "None of this is meaningful or memorable" suggests that
whatever is being referred to is not significant or noteworthy, indicating a negative sentiment.
So the answer is 0.

GSM8K

base_b

SENTENCE: Sally and Bob have made plans to go on a trip at the end of the year. They both
decide to work as babysitters and save half of what they’ve earned for their trip. If Sally
makes $6 per day and Bob makes $4 per day, how much money will they both have saved for
their trip after a year?
ANSWER: 1825

zero_b

SENTENCE: Sally and Bob have made plans to go on a trip at the end of the year. They both
decide to work as babysitters and save half of what they’ve earned for their trip. If Sally
makes $6 per day and Bob makes $4 per day, how much money will they both have saved for
their trip after a year? The answer is 1825.
ANSWER: 1825

CoT

SENTENCE: Sally and Bob have made plans to go on a trip at the end of the year. They both
decide to work as babysitters and save half of what they’ve earned for their trip. If Sally
makes $6 per day and Bob makes $4 per day, how much money will they both have saved for
their trip after a year?
ANSWER: Let’s think step by step. Saly saves 1/2 * $6/day = 3/day. Since each year have
365 days, the total amount of money Sally will save in a year is $3/day * 365 days/year =
1095/year. Bob saves 1/2 * $4/day = 2/day. The total amount of money Bob will have saved
in a year is $2/day * 365 days/year = 730/year In total, Sally and Bob would have saved $730
+ $1095 = 1825. So the answer is 1825.

Table 9: Examples of demonstrations with different prompts. Demonstrations for CoLA are exemplified in Table 1,
so they are not included here.
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A.2 More on LLaMA results

LLaMA2 models were not available when we began our experiments. As a result, we conducted our initial
experiments using LLaMA-7B, LLaMA-13B, and LLaMA-30B (Touvron et al., 2023a). Table 10 shows a
comparison between LLaMA2 and LLaMA models.

model accuracy↑ sensitivity↓
LLaMA2-13B-chat 0.6961 0.1883
LLaMA2-7B-chat 0.6843 0.1951
LLaMA-30B 0.6835 0.2324
LLaMA-13B 0.6177 0.2327
LLaMA-7B 0.6010 0.2457

Table 10: The average accuracy and sensitivity of LLaMA models across different tasks.

A.3 More on instruction, chain-of-thought, and knowledge

Table 11 shows the average performance across different models using base_a and base_b. Table 12
shows examples of CoT_base_a.

dataset prompt accuracy sensitivity accuracy +/- sensitivity +/-

CoLA base_a 0.4215 0.3317 0.2275 0.1125
base_b 0.6490 0.2192

CSQA base_a 0.4652 0.4107 0.0235 0.0587
base_b 0.4887 0.3520

MNLI base_a 0.1317 0.4498 0.3258 0.1405
base_b 0.4575 0.3094

RTE base_a 0.2332 0.5120 0.3487 0.2763
base_b 0.5819 0.2357

SST2 base_a 0.3841 0.4198 0.3992 0.2318
base_b 0.7833 0.1880

Table 11: The average accuracy and sensitivity across different models, and the difference between the accuracy
(accuracy +/-) and sensitivity (sensitivity +/-) of models using base_a and base_b.

dataset text

CoLA
I’m glad I saw anybody.
Let’s think step by step. This sentence is ungrammatical because “anybody” is used as
the object in an affirmative clause. So the answer is 0.

RTE

The Federal Bureau of Investigation started an independent probe of the circumstances
shortly after the White House made plain that President Bill Clinton considered indus-
trial espionage a particular threat to US economic interests.
President Clinton thinks that industrial espionage is a threat to America’s well being.
Let’s think step by step. The first sentence provides information about President
Clinton’s belief, which directly leads to the FBI conducting an investigation. Therefore,
the second sentence follows the information provided in the first sentence. So the
answer is 0.

Table 12: Examples of CoT_base_a for CoLA and RTE.

A.4 More on Flan-T5 with zero

Figure 8 shows the performance of Flan-T5-11B using the zero prompts. Flan-T5-11B fails to output a
numeric index on CSQA, MNLI, and RTE instances in most cases. Table 13 shows the performance of
Flan-T5 models using zero_b. Table 14 shows the original number of instances in each dataset and the
number of instances where Flan-T5 models output a numeric index using base_a.
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Figure 8: The accuracy and sensitivity of Flan-T5-11B on the full dataset using zero_a and zero_b, and the
accuracy and sensitivity of Flan-T5-11B on instances where it outputs a numeric index as what is exemplified in the
prompt. #instances shows the number of instances in a dataset (#instances (original)) and the number of
instances where Flan-T5-11B outputs a numeric index (with numeric outputs).

dataset accuracy↑ sensitivity↓
Flan-T5-11B Flan-T5-770M Flan-T5-11B Flan-T5-770M

CoLA 0.9620 0.4307 0.0467 0.3970
CSQA 0.3090 0.7833 0.2668 0.3516
MNLI 0.7787 0.2397 0.1659 0.4619
RTE 0.6498 0.1264 0.2366 0.4864
SST2 0.9881 0.3612 0.0203 0.3624

AVERAGE 0.7375 0.3883 0.1473 0.4119

Table 13: The accuracy and sensitivity of Flan-T5-11B and Flan-T5-770M on different tasks with zero_b. Flan-T5-
11B reaches comparable performance to GPT and LLaMA models only on CoLA and SST2.

dataset #original #numeric

Flan-T5-11B Flan-T5-770M

CoLA 527 496 495
CSQA 1220 806 1218
MNLI 1000 639 924
RTE 277 169 208
SST2 872 848 497

Table 14: The original number of instances in each dataset (#original) and the number of instances where Flan-T5-
11B and Flan-T5-770M output a numeric index using base_a (#numeric).
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A.5 More on open-ended generation
GSM8K is an arithmetic reasoning task in which the outputs are numbers (Cobbe et al., 2021):

QUESTION: Sally and Bob have made plans to go on a trip at the end of the year. They both decide to work as
babysitters and save half of what they’ve earned for their trip. If Sally makes $6 per day and Bob makes $4 per day,
how much money will they both have saved for their trip after a year?
ANSWER: 1825

See Table 9 in A.1 for more examples. Table 15 shows the performance of LLaMA2-13B-chat and Flan-
T5-11B on GSM8K. There is also a negative correlation between accuracy and sensitivity in open-ended
generation. Note that Flan-T5-11B again fails to perform using zero_b, which is consistent with the
results in Section 4.2.

model prompt accuracy↑ sensitivity↓

LLaMA2-13B-chat
base_b 0.0612 0.6226
zero_b 0.9007 0.0015
CoT 0.2570 0.6115

Flan-T5-11B
base_b 0.0425 0.6635
zero_b 0.5868 0.2802
CoT 0.1208 0.6779

Table 15: The accuracy and sensitivity of LLaMA2-13B-chat and Flan-T5-11B on GSM8K.

A.6 More on gradient-based saliency scores
Figure 9 show examples of token segmentation for instances with zero_b and CFP. Figure 10 shows the
saliency scores over input tokens of CoLA and CSQA instances with zero_b, CFP, and GKP. Table 16
shows the average mean saliency scores of input tokens and prompt tokens, calculated using GPT-JT-6B,
GPT-J-6B, Flan-T5-770M, and T5-770M. Table 17 shows the average mean saliency scores of input
tokens and ground truth tokens (i.e., tokens in “The answer is [].”) of instances with zero_b.

(a) zero_b (b) CFP

Figure 9: Examples of token segmentation in zero_b and CFP.

(a) zero_b

(b) CFP

(c) GKP

Figure 10: Saliency scores over input tokens of the 5 CoLA and CSQA instances with zero_b, CFP, and GKP using
GPT-6B-JT.
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dataset prompt Si Sp Si/Sp

CoLA
base_b 4.17 12.74 32.73
zero_b 7.65 23.66 32.33
CFP 3.75 11.43 32.81

CSQA
base_b 2.68 7.41 36.17
zero_b 2.25 8.02 28.05
CFP 2.37 7.06 33.57

MNLI
base_b 3.10 12.79 24.24
zero_b 3.61 17.18 21.01
CFP 1.68 6.71 25.04

RTE
base_b 1.95 9.48 20.57
zero_b 3.22 18.95 16.99
CFP 1.53 7.32 20.90

SST2
base_b 3.09 12.59 24.54
zero_b 4.99 22.32 22.36
CFP 2.77 10.70 25.89

AVERAGE - 3.25 12.56 26.48

(a) GPT-JT-6B

dataset prompt Si Sp Si/Sp

CoLA
base_b 2.93 8.32 35.22
zero_b 4.08 14.34 28.45
CFP 2.98 8.35 35.69

CSQA
base_b 1.82 5.01 36.33
zero_b 1.44 4.41 32.65
CFP 1.91 4.64 41.16

MNLI
base_b 2.82 9.86 28.60
zero_b 2.21 10.04 22.01
CFP 1.33 5.20 25.58

RTE
base_b 1.39 6.63 20.97
zero_b 2.01 10.94 18.37
CFP 1.08 5.70 18.95

SST2
base_b 2.31 8.13 28.41
zero_b 3.46 15.23 22.72
CFP 2.19 6.64 32.98

AVERAGE - 2.26 8.23 28.54

(b) GPT-J-6B

dataset prompt Si Sp Si/Sp

CoLA zero_b 7.31 21.83 33.50
CSQA zero_b 6.03 10.27 58.69
MNLI zero_b 8.97 26.15 34.29
RTE zero_b 6.32 24.81 25.45
SST2 zero_b 6.71 24.04 27.91

AVERAGE - 7.07 21.42 35.97

(c) Flan-T5-770M

dataset prompt Si Sp Si/Sp

CoLA zero_b 9.56 14.52 65.84
CSQA zero_b 9.58 10.66 89.93
MNLI zero_b 8.33 11.75 70.89
RTE zero_b 6.49 12.94 50.17
SST2 zero_b 7.54 10.44 72.23

AVERAGE - 8.30 12.06 69.81

(d) T5-770M

Table 16: The average mean saliency scores of input tokens (Si), prompt tokens (Sp), and the ratio between them
(Si/Sp).

dataset Si St Si/St

GPT-JT-6B Flan-T5-770M GPT-JT-6B Flan-T5-770M GPT-JT-6B Flan-T5-770M

CoLA 7.65 7.31 12.82 17.12 59.67 42.72
CSQA 2.25 6.03 13.50 11.60 16.67 51.98
MNLI 3.61 8.97 13.29 23.94 27.16 37.46
RTE 3.22 6.32 14.63 22.74 22.01 27.77
SST2 4.99 6.71 12.60 17.30 39.60 38.79

AVERAGE 3.25 7.07 13.37 18.54 24.34 38.12

Table 17: The average mean saliency scores of input tokens (Si), tokens in “The answer is [].” (St), and the ratio
between them (Si/St) of instances with zero_b.
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A.7 More on sensitivity-aware decoding
Figure 11, 12, and 13 show the performance of GPT-JT-6B, LLaMA2-13B-chat, LLaMA2-7B-chat, Flan-
T5-11B, and Flan-T5-770M using base_a, base_b, and CFP with greedy decoding and sensitivity-aware
decoding. We experimented with different values of α, ranging from 0.1 to 0.9. We did five inferences to
estimate sensitivity, so the computational costs are five times higher than those of greedy decoding, which
only involves a single inference.

Figure 11: Accuracy (%) of GPT-JT-6B using base_a, base_b, and CFP with greedy decoding and sensitivity-aware
decoding (sad).
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Figure 12: Accuracy (%) of LLaMA2-13B-chat and LLaMA2-7B-chat using base_a, base_b, and CFP with greedy
decoding and sensitivity-aware decoding (sad).
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Figure 13: Accuracy (%) of Flan-T5-11B and Flan-T5-770M using base_a, base_b, and CFP with greedy decoding
and sensitivity-aware decoding (sad).
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