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Abstract

Recently, one popular alternative in Multilin-
gual NMT (MNMT) is modularized MNMT
that has both language-specific encoders and
decoders. However, due to the absence of
layer-sharing, the modularized MNMT failed
to produce satisfactory language-independent
(Interlingua) features, leading to performance
degradation in zero-shot translation. To ad-
dress this issue, a solution was proposed to
share the top of language-specific encoder lay-
ers, enabling the successful generation of inter-
lingua features. Nonetheless, it should be noted
that this sharing structure does not guarantee
the explicit propagation of language-specific
features to their respective language-specific
decoders. Consequently, to overcome this chal-
lenge, we present our modularized MNMT ap-
proach, where a modularized encoder is divided
into three distinct encoder modules based on
different sharing criteria: (i) source language-
specific (Encs); (ii) universal (Encall); (iii)
target language-specific (Enct). By employing
these sharing strategies, Encall propagates the
interlingua features, after which Enct propa-
gates the target language-specific features to
the language-specific decoders. Additionally,
we suggest the Denoising Bi-path Autoencoder
(DBAE) to fortify the Denoising Autoencoder
(DAE) by leveraging Enct. For experimental
purposes, our training corpus comprises both
En-to-Any and Any-to-En directions. We adjust
the size of our corpus to simulate both balanced
and unbalanced settings. Our method demon-
strates an improved average BLEU score by
"+2.90" in En-to-Any directions and by "+3.06"
in zero-shot compared to other MNMT base-
lines.

1 Introduction

Neural Machine Translation (NMT) has been a cor-
nerstone of machine translation success (Bahdanau
et al., 2014; Luong et al., 2015b; Vaswani et al.,
2017). The success of NMT systems lies in their

end-to-end encoder-decoder architecture (Kalch-
brenner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014). Furthermore, Multilingual Neu-
ral Machine Translation (MNMT) has gained sig-
nificant attention due to its ability to perform mul-
titasking by translating multiples language pairs
using a single model (Dabre et al., 2020).

Johnson et al. (2017) propose Encoder-Decoder
Full Layer Sharing where a single encoder-decoder
translates multiple language pairs. They also prefix
the input sentence tokens with a target language
token and perform zero-shot translation, where
the model trains with the source and target lan-
guages paired to a pivot language rather than di-
rectly paired with each other.

Modularized MNMT (Lyu et al., 2020; Firat
et al., 2016a) utilizes language-specific encoders
and decoders to alleviate the capacity constraints in
MNMT. By doing so, it demonstrates its potential
to address the capacity limitations in the MNMT
domain.

Nevertheless, it possesses certain drawbacks
such as poor zero-shot performance and increased
training complexity (Dabre et al., 2020; Qu and
Watanabe, 2022). Liao et al. (2021) argued that the
lack of layer sharing hinders encoders from produc-
ing language-independent (interlingua) features,
leading them to develop a modularized encoder
consisting of two distinct encoder modules based
on sharing strategies: (i) source language-specific
(Encs); (ii) universal (Encall), as illustrated in fig-
ure 1 (a). To enhance the zero-shot performance
for English-centric directions, they also introduced
the Denoising Autoencoder (DAE), as illustrated
in figure 2 (a).

However, according to Zhu et al. (2020), the in-
terlingua feature generated by Encall might lose
the language signal, which can potentially lead to
overall possible performance deterioration. More-
over, the DAE of the complete sharing of the upper
encoder layers scarcely produces language-specific
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Figure 1: Illustration of the modularized encoders divided into multiple encoder modules by the sharing strategies.
(a) Encs: source language-specific sharing, Encall: universal sharing (Liao et al. (2021)) (b) Encs: source
language-specific sharing, Encg: source language group sharing, Encall: universal sharing (Purason and Tättar
(2022) (c) Encs: source language-specific sharing, Encall: universal sharing, Enct: target language-specific
sharing (Ours)

Figure 2: Illustration of different Denoising Autoencoders. (a) Denoising Autoencoder (DAE) with Encs and
Encall. (b) Our Denoising Bi-path Autoencoder (DBAE) where output of Encall bifurcates toward both Enct′′
(e.g., English in our case) and Enct′ . Outputs from both Enct′′ and Enct′ are weighted-summed before the
decoder.

features, making it difficult to align with the fea-
tures that the non-pivot language-specific decoders
prefer to accept.

In this work, to alleviate these shortcomings,
we propose a new modularized encoder that is di-
vided into three encoder modules with different
sharing strategies as follows: (i) source language-
specific (Encs); (ii) universal (Encall); and (iii)
target language-specific (Enct). Our proposed
modularized encoder propagates interlingua fea-
tures through Encall, and the target language-
specific language features to the language-specific
decoders through Enct.

Besides, to resolve the alignment issue from the
DAE, we propose a Denoising Bi-path Autoen-
coder (DBAE) as illustrated in Figure 2 (b). In the
DBAE, the output of Encall bifurcates and is prop-
agated to both the target language-specific (Enct′)
and the pivot language-specific (Enct′′) encoder

modules. The outputs of both Enct′ and Enct′′

are weighted-summed, and the decoder utilizes the
weighted-summed features.

By incorporating the Enct′′ , we attempt to align
the encoder output feature with the pivot language-
specific feature that the non-pivot language-specific
decoders prefer. We provide further details regard-
ing the implementation of DBAE in 3.2.

In this work, we use an English-centric dataset
to train all models for experiments. To assess our
method, we make use of other MNMT methods
as baselines for the experiment, which include (i)
Johnson et al. (2017), (ii) Lyu et al. (2020), (iii)
Purason and Tättar (2022), and (iv) Liao et al.
(2021). Through the experiments, we demonstrate
that our modularized MNMT outperforms other
MNMT baselines across both English-centric and
zero-shot test sets.
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2 Related Work

2.1 Modularized Multilingual Neural
Machine Translation

The modularized MNMT uses multiple language-
specific encoders and decoders (Firat et al., 2016a;
Lyu et al., 2020). For example, in the initial phase
of the modularized MNMT, Luong et al. (2015a)
utilized multiple encoders and decoders for single
language pair translation while simultaneously per-
forming multitasking with Autoencoder (AE).

Firat et al. (2016a) introduced the Modularized
MNMT, which was realized via single cross-lingual
attention shared among all language pairs. Lyu
et al. (2020) revisited the modularized MNMT and
investigated interlingual representations by exploit-
ing all possible language directions. Furthermore,
Lyu et al. (2020) concluded that the modularized
MNMT is less vulnerable to the Capacity Bottle-
neck.

2.2 Zero-Shot Translation
Although the modularized MNMT exhibited
promising improvement through supervised learn-
ing, it did not inherently ensure enhancements in
zero-shot performance (Liao et al., 2021). In their
work, Firat et al. (2016b) introduced the Early Av-
erage scheme, wherein a decoder leverages context
vectors obtained by averaging both the source and
pivot language inputs.

They discovered that the Early Average scheme
led to enhanced zero-shot performance. Nonethe-
less, the Early Average approach necessitated ad-
ditional computations to translate the source lan-
guage input into the pivot language. Our DBAE
tackles the problem of extra computations by con-
sidering only the source language input. We delve
deeper into our DBAE in section 3.2.

The interlingua features are crucial for good
zero-shot performance. For example, under the
same model architecture as Firat et al. (2016a), Lu
et al. (2018); Vázquez et al. (2018) explicitly imple-
mented a single interlingua module that converts
embedding outputs to language-agnostic features
immediately before decoders. Simultaneously, Lu
et al. (2018); Vázquez et al. (2018) also utilized
an autoencoder to preserve the language-agnostic
feature for zero-shot performance.

Instead of implementing an additional module,
Liao et al. (2021) suggested a modularized encoder
in which the layers before the decoder are univer-
sally shared (Encall). They also multitasked both

the machine translation and the DAE to enhance
the zero-shot performance.

As an extension of Liao et al. (2021), Purason
and Tättar (2022) developed the modularized en-
coder where middle layers (Encg) are shared based
on the source language group, as shown in Figure
1 (b). Since they did not use English-centric data,
they did not utilize any DAE or AE. They stated
that their modularized encoder ensured zero-shot
performance when training the model with all pos-
sible translation directions.

2.3 Language-Specific Module

Language-Specific (LS) module inserts extra
language-specific modules between each layer of
both the encoder and decoder (Bapna et al., 2019;
Philip et al., 2020; Jin and Xiong, 2022; Zhang
et al., 2021; Üstün et al., 2021) or between the en-
coder and decoder modules (Zhang et al., 2020;
Blackwood et al., 2018). Furthermore, Qu and
Watanabe (2022) implemented the LS modules
within the decoder.

For the modularized MNMT, Purason and Tättar
(2022) developed the modularized encoder where
the middle of the encoders is shared among source
language groups. Instead of layer sharing, Yuan
et al. (2023) introduced a detachable model com-
prising language-specific encoders/decoders and
single multilingual encoder/decoder. Nonetheless,
they did not address the zero-shot translation. Our
modularized encoder addresses the zero-shot trans-
lation by the English-centric directions using the
DBAE that utilizes two Enct modules.

3 Method

This section introduces how to implement our mod-
ularized MNMT. We provide details about our mod-
ularized encoder and then explain our Denoising
Bi-path Autoencoder (DBAE). Lastly, we put forth
different inference hypotheses for zero-shot.

3.1 Universal Sharing in Middle of Encoder

Given N languages such that s, t ∈ {l1, l2 .., lN}
where s, t standing for source and target language
of the parallel corpus, Encs is the encoder layers
shared according to source language s, and Dect
is the decoder layers shared according to target
language t. Encall is the encoder layers shared by
all languages. As illustrated in Figure 1 (c), our
modularized encoder consists of multiple encoder
modules as follows: (i) Encs; (ii) Encall; (iii)
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Enct.
Given M is the number of all possible English-

centric language pairs, let D = {ec1, ec2 .., ecM}
where each eci denotes the English-centric pair.
Given corpus Ceci of the English-centric language
pairs eci from D, our modularized MNMT is
trained by maximizing likelihood Lmnmt:

Lmnmt =
∑

x,y∈Ceci ,eci∈D
log(p(y|x; θ)), (1)

where
p(y|x) = softmax(f(x)) (2)

, given

f(x) = Dect(Enct(Encall(Encs(x)))) (3)

During the training, each training batch only con-
tains single language pair s, t. Then, Encs, Encall,
and Enct are selected to compose the modularized
encoder, after which the modularized encoder prop-
agates output to the Dect. In Equation (3) and Fig-
ure 1 (c), we can see that our modularized encoder
has the encoder modules shared differently com-
pared to other modularized encoders (Liao et al.,
2021; Purason and Tättar, 2022).
Enct propagate the target language-specific fea-

tures to the language-specific decoders. Therefore,
similar to what Zhu et al. (2020) indicated, we ex-
pect the improvement by Enct. In the following
experiment, we verify whether Enct improves the
performance compared to the baselines.

3.2 Denoising Bi-path Autoencoder
Liao et al. (2021); Purason and Tättar (2022) men-
tioned that the DAE is necessary for the zero-shot
on English-centric data. In this work, we pro-
pose Denoising Bi-path Autoencoder (DBAE) to
improve the zero-shot performance. To train the
DBAE, a monolingual dataset of N languages is
first collected. To noise input sentence, we first to-
kenize the input sentence and apply the same noise
function as Liao et al. (2021).

Inspired by the Early Average (Firat et al.,
2016b) wherein two distinct context vectors are
weighted-summed, the DBAE integrates a bi-
path where the output from the Encall bifurcates
to the target language-specific encoder module
(Enct′) and pivot language-specific encoder mod-
ule (Enct′′). Thus, outputs from two encoder mod-
ules are weighted-summed (e.g., by α for Enct′

and 1− α for Enct′′) to form a single-path.

The distinction between the Early Average and
the DBAE lies in the fact that the DBAE uses single
input. Consequently, unlike the Early Average, our
DBAE does not require the additional computation
mentioned in section 2.2. Assume xnoise is a mono-
lingual sentence corrupted by the noise. And, L is
a set of languages for the training. Given monolin-
gual corpus Ci of language i from L, our DBAE is
trained by maximizing the likelihood Ldbae:

Ldbae =
∑

x∈Ci,i∈D
log(p(x|xnoise; θ)), (4)

where

p(x|xnoise) = softmax(f(xnoise)), (5)

given

f(x) = Dect(α ∗ t(x) + (1− α) ∗ v(x))
t(x) = Enct′(Encall(Encs(x)))

v(x) = Enct′′(Encall(Encs(x)))

In every DBAE training, the input language is
uniformly randomly chosen out of N languages.
To train both Lmnmt and Ldbae, we adopt the alter-
nating training method proposed by (Dong et al.,
2015) . With the help of the DBAE, we antici-
pate achieving alignment between the output of our
encoder and the pivot language-specific features
favored by non-pivot language-specific decoders.
In section 5.3, we discuss whether the DBAE can
improve the zero-shot performance compared to
the DAE.

3.3 Inference Hypotheses for Zero-Shot
In this section, we introduce two different infer-
ence hypotheses H1, H2 for the zero-shot of our
approach. First, H1 uses only a single-path from
Enct to the decoder. Second, H2 uses the weighted
sum of the bi-path from both Enct′ and Enct′′ to
the decoder. Regarding hypothesis H2, we use the
same weights as those utilized during the DBAE
training.

4 Experiments

4.1 Dataset
For the training and the experiments, we use Mul-
tiUN1 (Ziemski et al., 2016). The MultiUN is in

1https://conferences.unite.un.org/UNCorpus
1The United Nations Parallel Corpus is made available

without warranty of any kind, explicit or implied. The United
Nations specifically makes no warranties or representations as
to the accuracy or completeness of the information contained
in the United Nations Corpus.
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En->Any
ID Model 1:1:1 1:2:4 1:5:50

Low Med. High Avg. Low Med. High Avg. Low Med. High Avg.
1 Johnson et al. (2017) 41.6 43.2 39.5 41.8 41.4 43.5 40.2 42.0 39.4 44.5 41.6 41.9
2 Lyu et al. (2020) 46.3 46.2 43.4 45.7 46.4 47.1 44.6 46.3 41.1 47.8 45.9 44.8
3 Liao et al. (2021) 46.0 46.3 42.9 45.5 46.3 47.9 44.4 46.6 40.8 47.5 45.3 44.4
4 Purason and Tättar (2022) 46.1 46.8 43.1 45.8 46.3 47.4 44.2 46.3 41.1 47.7 45.5 44.6
5 Ours 48.1 48.7 44.2 47.6 48.4 50.1 45.7 48.5 42.4 49.9 47.2 46.4

Table 1: BLEU scores of En-to-Any MultiUN test set. "Low" denotes average BLEU when the target text is in either
Ar or Zh; "Med." denotes average BLEU when the target text is in either Es or Ru; and "High" denotes average
BLEU when target text is in Fr. "1:1:1" denotes balanced ratio. Both "1:2:4" and "1:5:50" present imbalanced ratio;
every ratio represents "Low:Med.:High". For more detail of the model configuration, please refer to Appendix C.
For more detail of the BLEU scores, please refer to Appendix D

.

Any->En
ID Model 1:1:1 1:2:4 1:5:50

Low Med. High Avg. Low Med. High Avg. Low Med. High Avg.
1 Johnson et al. (2017) 45.9 47.2 41.6 45.6 45.7 47.7 42.1 45.8 48.0 42.9 45.4 43.7
2 Lyu et al. (2020) 52.4 53.3 46.8 51.6 52.6 54.2 48.9 52.5 45.6 55.1 50.6 50.4
3 Liao et al. (2021) 51.3 53.0 47.4 51.2 51.3 54.1 48.9 51.9 46.1 54.6 49.9 50.3
4 Purason and Tättar (2022) 51.1 52.7 47.8 51.1 51.3 53.9 48.9 51.9 46.2 54.6 50.1 50.4
5 Ours 51.0 53.2 48.3 51.3 51.5 54.2 49.3 52.2 46.9 54.9 50.1 50.7

Table 2: BLEU scores of Any-to-En MultiUN test set. For more detail of the model configuration, please refer to
Appendix C. For more detail of the BLEU scores, please refer to Appendix D

.

six languages (En, Ar, Zh, Fr, Ru, Es). And, for
our work, we use the English-centric pairs out of
the entire dataset. In line with Lyu et al. (2020),
we manage the quantity of the dataset to establish
two distinctive settings, balanced and unbalanced
settings. Initially, we categorize all English-centric
pairs into three distinct groups according to their
quantities: Low (En <–> Ar, Zh), Medium (En <–>
Es, Ru), and High (En <–> Fr).

To ensure that each language pair is not
multi-parallel (Al-Shedivat and Parikh, 2019; Lyu
et al., 2020), we gather mutually non-parallel
English-centric pairs from multi-parallel cor-
pus1. For experiments, we create three ratios
by the amount of the English-centric data, which
are as follows: (i) 1:1:1 (Low:Medium:High);
(ii) 1:2:4 (Low:Medium:High); and (iii) 1:5:50
(Low:Medium:High).

Both the balanced (e.g., 1:1:1) and the unbal-
anced settings (e.g., 1:2:4, 1:5:50) are used for the
training of the Lmnmt. For the DBAE task, we
gather the monolingual corpus from the original
multi-parallel data. We make use of both official
devset and testset from MultiUN website1. As the
devset and testset are multi-parallel, we use them
for the English-centric result and the zero-shot. The

devset and testset consist of 4K lines. More infor-
mation regarding the dataset statistics used for the
training can be found in Appendix B.

4.2 Training

For the fundamental model architecture, we use
Transformer(Vaswani et al., 2017). Utilizing Ten-
sorFlow Model Garden2 (Hongkun Yu and Li,
2020), we implement our model and baselines. All
models for the experiments are executed for up to
100 epochs. Additionally, we set the batch size for
the training to 16K tokens. Four NVIDIA Tesla
V100 GPUs are used, distributing 4K tokens per
GPU. Training our model takes roughly three days.

During the Lmnmt, we choose the best check-
point by the minimum averaged devset loss. Unlike
Gu et al. (2019), we only validate our model us-
ing the English-centric devset. When training the
DBAE, we assign the weights of 0.5 to the output
of Enct′ and another weight of 0.5 to Enct′′ .

Similar to Lyu et al. (2020), we preserve
language-specific embeddings for the language-
specific encoders/decoders. We establish the vocab-
ulary size as 16K. With an embedding dimension
of 512, we configure the feed-forward layer to have

2Licensed under the Apache License, Version 2.0
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Zero-Shot: Any->{Low,Med.,High}
1:1:1 1:2:4 1:5:50

Low Med. High Avg. Low Med. High Avg. Low Med. High Avg.
1 Liao et al. (2021) E.12 D.2 33.7 35.3 34.7 34.5 33.9 35.8 34.8 34.8 32.2 35.0 33.5 33.6
2 Ours DBAE(H1) 36.9 36.3 35.8 36.4 36.9 36.3 35.9 36.5 34.0 35.7 35.5 35.0
3 Ours DBAE(H2) 34.8 35.7 35.3 35.3 34.8 35.9 35.5 35.4 31.6 35.2 35.0 33.7

Table 3: BLEU scores of zero-shot MultiUN testset. DBAE(H1) stands for the zero-shot inference by H1 hypothesis.
DBAE(H2) stands for the zero-shot inference by H2 hypothesis. For more detail of the model configuration, please
refer to Appendix C. For more detail of the BLEU scores, please refer to Appendix D.

Zero-Shot: Any->{Low,Med.,High}
1:1:1 1:2:4 1:5:50

Low Med. High Avg. Low Med. High Avg. Low Med. High Avg.
1 Johnson et al. (2017) Piv. 33.0 33.6 33.3 33.3 33.0 33.8 33.6 33.4 31.6 34.2 34.1 33.1
2 Liao et al. (2021) 33.4 34.8 33.5 34.0 33.5 34.3 34.3 34.0 32.0 34.1 33.5 33.1
3 Ours DBAE(H1) 36.9 36.3 35.8 36.4 36.9 36.3 35.9 36.5 34.0 35.7 35.5 35.0
4 Ours DAE(H1) 35.3 35.1 34.7 35.1 36.4 35.8 35.1 35.9 33.6 34.8 33.9 34.2

Table 4: BLEU scores of zero-shot MultiUN testset. DBAE(H1) stands for the inference by H1 hypothesis. "Piv."
stands for the pivot translation. For more detail of the model configuration, please refer to Appendix C. For more
detail of the BLEU scores, please refer to Appendix D.

Zero-Shot: Any->{Low,Med.,High}
1:1:1 1:2:4 1:5:50

Low Med. High Avg. Low Med. High Avg. Low Med. High Avg.
1 DBAE(H1) alph. 0.8 34.5 34.5 34.2 34.4 35.4 34.8 35.0 35.1 31.2 33.8 33.5 32.7
2 DBAE(H1) alph. 0.6 35.3 34.6 34.5 34.8 35.4 34.8 34.7 35.0 32.9 34.1 33.9 33.6
3 DBAE(H1) alph. 0.5 35.5 35.0 35.0 35.2 35.5 34.9 35.1 35.2 32.6 34.4 34.5 33.7
4 DBAE(H1) alph. 0.4 35.3 35.1 34.7 35.1 35.7 35.2 34.8 35.3 32.3 34.3 34.3 33.5
5 DBAE(H1) alph. 0.2 35.0 34.3 33.7 34.5 35.6 35.2 34.9 35.3 32.6 34.1 34.5 33.6

Table 5: BLEU scores of zero-shot MultiUN devset. "alph." represents coefficient used for the Denoising Bi-path
Autoencoder. For example, "alph. 0.8" stands for "α = 0.8" of Enct′ . For more detail of the BLEU scores, please
refer to Appendix D.

a size of 2048. For the learning rate scheduler,
we follow the same learning scheduler as Vaswani
et al. (2017): the learning rate linearly increases
during warm-up step and then decreases propor-
tionally to the square root of global step number
after the warm-up step. We set the warm-up step to
8K. Moreover, we utilize the Adam optimizer with
β1=0.9, β2=0.98, and ϵ=10−9.

Sentencepiece3 (Kudo and Richardson, 2018) is
used to tokenize all sentences utilized for training
and inference. To train the Lmnmt, we append the
target language token (Johnson et al., 2017) to the
beginning of the input sentences for all the methods
in the experiments, except during the training of
the DBAE or the DAE. For the unbalanced settings,
we use temperature sampling with T = 5 to sample
from the corpus (Arivazhagan et al., 2019).

To accelerate the training process, we set the
3https://github.com/google/sentencepiece
3Licensed under the Apache License, Version 2.0 (the

"License")

layer count of the language-specific encoders to
10 and the language-specific decoders to 2 (Kong
et al., 2022; Kasai et al., 2020; Bérard et al., 2021).
For assigning the number of layers to the Encall
(both for our model and the baselines), following
the descriptions provided in Purason and Tättar
(2022); Liao et al. (2021), we set two-thirds of
the number of the language-specific encoder layers
(truncating decimal points), e.g., 6 for this work.
We describe the number of layers and parameters
for the training and the inference across all experi-
ments in Appendix C.

We perform an ablation study with varying num-
bers of layers for both the Encs and the Enct,
and report the findings in Appendix A. To prevent
catastrophic forgetting (Howard and Ruder, 2018)
during the DBAE, we freeze Encs and Encall sim-
ilar to how Ji et al. (2020) froze the initial layers
of the encoder. It should be noted that the DBAE
task is always run under a balanced setting when
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performed alternately with the Lmnmt.

4.3 Evaluation

In both the section 5.1 and 5.3, we evaluate all pos-
sible English-centric directions and non-English
directions (the zero-shot). We also experiment with
performance differences caused by the DAE or the
DBAE. For the baselines on the zero-shot experi-
ment, we try the zero-shot translation by Liao et al.
(2021) and the pivot translation by Johnson et al.
(2017).

For the section 5.1, neither all the baselines nor
our proposed method go through the DAE and
the DBAE during their training. For the section
5.3, the zero-shot baseline by Liao et al. (2021)
goes through the DAE during the training. We also
present our method trained by either the DAE or
the DBAE. Since we prepend the pivot language
token during training on Any–>En directions, we
prepend the pivot language token to the input sen-
tences for the zero-shot inference.

In section 5.2, we experiment with the zero-shot
performance differences caused by the H1 or the
H2 hypothesis. Since the H2 hypothesis incor-
porates the bi-path, we add more encoder layers
(equal to the number layers in Enct′′) to the Liao
et al. (2021) baseline to maintain the approximately
same number of parameters.

In the section 5.4, we discuss how different
weighted summations of Enct′ and Enct′′ during
the DBAE affect the zero-shot performance. Uti-
lizing the devset, we validate whether our weight
selection from the section 4.2 is the most approxi-
mately optimal for the zero-shot. As an evaluation
metric, we use SacreBLEU4 (Post, 2018); we use
various tokenizer options such as Zh for Chinese
and 13a for the remaining languages.

5 Result

In this section, we evaluate our proposed method
against other baselines. For all experiments, the
model configurations are provided in Appendix C
for all experiments. The complete BLEU scores
for all the experiments in this section are presented
in Appendix D.

5.1 English-centric Result

In Table 1, our method outperforms all the baseline
methods for En–>Any directions. It is observed

4Licensed under the Apache License, Version 2.0 (the
"License")

that our modularized encoder with Enct refines the
interlingual features, resulting in improved perfor-
mance.

In Table 2, it is shown that our approach does not
exhibit significant improvements compared to the
"En–>Any" directions. However, we notice that our
encoder modules for the Any–>En directions have
the same structure as those proposed by Liao et al.
(2021), which yields comparable results. Thus, we
deduce that our proposed method does not suffer
from underfitting in "Any–>En" directions based
on these observations.

The upper layers sharing of the language-specific
encoders ( 3 ) exhibits poorer performance com-
pared to our approach or another LS module ap-
proach ( 4 ). In this sense, this result supports
the earlier argument, wherein the deficit language
specific features lead to the performance degrada-
tion. Moreover, we infer that the explicit language-
specific feature is useful.

The Full Layer Sharing ( 1 ) exhibits poorer per-
formance compared to the other baselines includ-
ing our proposed method. This is anticipated as the
modularized MNMT approach utilizes three to five
times more parameters during training.

Additionally, we expect that further developing
the decoder might enhance Any–>En directions.
However, the development of the decoder is out of
the topic of our work, and we leave further devel-
opment on this issue as future work.

5.2 Zero-Shot Hypotheses Result
Table 3 shows the zero-shot performance according
to different zero-shot hypotheses. The hypothesis
H2 ( 3 ) outperforms Liao et al. (2021) ( 1 ) al-
though they have almost the same capacity. From
this, we can conclude that the zero-shot bi-path
setting is still useful for the zero-shot.

Hypothesis H1 ( 2 ) outperforms the hypothesis
H2. Even the H1 hypothesis uses the single path
setting having fewer parameters than the H2 hy-
pothesis. Through this experiment, we conclude
that the H1 hypothesis is good enough to be used
for zero-shot inference.

5.3 Zero-Shot Result
From Table 4, we can see that our proposed
method ( 3 , 4 ) outperforms both the pivot ( 1 )
and the zero-shot translation ( 2 ). In particular,
the DAE utilizing only Enct′ ( 4 ) demonstrates
better performance than the one without any Enct′

( 2 ). Based on this observation, we infer that the
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Enct′ itself aids in aligning the non-pivot language-
specific encoders/decoders.

Moreover, across all data ratios, DBAE ( 3 )
shows enhanced zero-shot performance when com-
pared to all other baselines. Of particular interest,
in comparison to the DAE utilizing just Enct′ ( 4 ),
we can infer that the output of Enct′′ during the
DBAE indeed helps align the non-pivot language-
specific encoders/decoders.

As previously discussed in Section 4.2, the out-
put of Enct′ is assigned equal weights as that
of Enct′′ . Through this weight assignment, we
can infer that the pivot language-specific feature is
equally important as the target language-specific
feature during the DBAE. To support our weight
assignment, Section 5.4 discusses how varying
weights on Enct′ and Enct′′ during DBAE affect
the zero-shot performance.

5.4 Weight Ablation of Encoder Modules
during DBAE

Table 5 demonstrates that our proposed method
achieves better zero-shot performance when both
Enct′′ and Enct′ are assigned equal weights in
the context of DBAE. In contrast, if Enct′ is as-
signed a higher weight than Enct′′ , or vice versa,
the resulting zero-shot performance deteriorates.

We can infer that during the alignment, the pivot
language-specific feature is as important as the tar-
get language-specific feature. This supports the
DBAE outperformance (compared to the DAE) ob-
served in the section 5.3. And, it suggests the need
of the DBAE for the zero-shot improvement.

6 Conclusion

In this work, we propose a new modularized
MNMT with a modularized encoder consisting of
the encoder modules of which each implements
effective sharing strategies. For the zero-shot, we
develop Denoising Bi-path Autoencoder (DBAE)
to train the non-pivot language-specific decoders to
be robust to the output by the non-pivot language.

In the experiment, we demonstrate that our mod-
ularized encoder enhances the overall performance
of the English-centric tests. The DBAE also im-
proves the zero-shot performance. Ultimately, we
hope that our work sheds light on the modularized
MNMT once more and believe that the modular-
ized MNMT can serve as a path to the entrance of
the optimal state of MNMT.

7 Limitations

In this work, we have tried 5 languages (paired
with English in bi-direction) for our modularized
MNMT. Similar to what Firat et al. (2016b) men-
tioned in their Limitation, a total of 10 English-
centric pairs are not suffficient to thoroughly prove
the optimal performance of our method.

We conduct experiments under simulated bal-
anced and unbalanced settings, so our experiments
do not take into account low-resource languages in
the real world as reported by Goyal et al. (2022).
Furthermore, for evaluation purposes, we refrain
from using other publicly available evaluation
benchmarks like FLORES-101 (Goyal et al., 2022),
WMT5 . As a result, our experiments fail to account
for diverse domains.

Despite being evaluated across a limited number
of languages, our languages represent distinct lan-
guage families (e.g., European, Arabic, Chinese).
Given that our model performs well across these
disparate language families, which is unfavorable
for the creation of an interlingua, our findings sug-
gest that modularized MNMT possesses greater
potential and robustness

Our work demonstrates significant improvement
in En–>Any but not in Any–>En directions. Future
work will be required to enhance the performance
of Any->En. Additionally, we do not implement
incremental learning (Liao et al., 2021; Lyu et al.,
2020) specifically designed for our approach.

For the DBAE, we do not develop an expert
module (Shazeer et al., 2017; Zhang et al., 2021) to
obtain automatic weights for the weighted summa-
tion. As a result, it is possible that the α setting for
the DBAE experiment is not ideal. Additionally,
we do not experiment with various cases beyond
the bi-path (e.g., tri-path, quadri-path, and so on)
to observe performance changes.

In the future, we intend to incorporate more lan-
guages into our experiment through the develop-
ment of incremental learning. This will enable us to
overcome the issue of insufficient language kinds.
Rather than relying on simulated data settings, we
will make use of additional public evaluation bench-
marks to better reflect the status of languages in the
real world.

5https://www.statmt.org/wmt22/
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1:1:1 1:2:4 1:5:50
High En<–>Fr 2,200,000 4,400,000 8,900,000

Medium En<–>Ru 2,200,000 2,200,000 875,000
En<–>Es 2,200,000 2,200,000 875,000

Low En<–>Zh 2,200,000 1,100,000 175,000
En<–>Ar 2,200,000 1,100,000 175,000

Table 6: Dataset statistic for MultiUN dataset.

B Dataset Statistic

Table 6 shows the number of lines of each English-
centric corpus. Each ratio column represents the
number of lines distributed by different ratios (e.g.,
1:1:1, 1:2:4, and 1:5:50). The ratio represents
"Low": "Med.": "High". The total number of lines
on each column is 11M lines. Each multi-parallel
monolingual corpus, consisting of 11M lines, is
used for both the DAE and the DBAE tasks.

C Model Configuration

Table 7, 8, and 9 describe the number of layers
of the encoder (e.g., Enc #), the encoder modules
(e.g., Encs #, Encall #, Enct′ #, Enct′′ #, Enct #)
and the decoder (e.g., Dec #). They also show the
number of parameters of all experimenting models
during the training and the inference. Table 7 cor-
responds to the configuration of Table 1, 2. Table 8
corresponds to the configuration of Table 4. Table
9 corresponds to the configuration of Table 3.

D Full BLEU Scores

As we do not show the full BLEU scores of the
experiments in Section 5, we instead provide them
in this Appendix. For Table 1, refer to Table 13.
Refer to Table 14 for the full BLEU scores of Table
2. Check Table 15 for the full BLEU scores of Ta-
ble 3. For Table 4, Table 16 displays the full BLEU
scores. Finally, for Table 5, Table 17 displays the
full BLEU scores.
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ID Model Enc # Encs # Encall # Encg # Enct # Dec # Train Param. # Infer. Param. #
1 Johnson et al. (2017) 10 – – – – 2 56,289,280 56,289,280
2 Lyu et al. (2020) 10 – – – – 2 288,583,680 56,289,280
3 Liao et al. (2021) 10 4 6 – – 2 194,079,744 56,289,280
4 Purason and Tättar (2022) 10 2 6 2 – 2 187,778,048 56,289,280
5 Ours 10 2 6 – 2 2 194,079,744 56,289,280

Table 7: Model configuration for En-centric evaluation. Each column represents as follows: Enc #: The number of
encoder layers; Encs#: The number of layers in Encs module; Encall #: The number of layers in Encall module;
Encg #: The number of layers in Encg module; Enct #: The number of layers in Enct module; Dec #: The number
of decoder layers; ; Train Param. #: The total number of parameters of all encoder/decoder modules involved during
the training; Infer. Param. #: The number of parameters used during inference.

ID Model Enc # Encs # Encall # Encg # Enct # Dec # Train Param. # Infer. Param. #
1 Johnson et al. (2017) Piv. 10 – – – – 2 56,289,280 56,289,280
2 Liao et al. (2021) E.10 D.2 10 4 6 – – 2 194,079,744 56,289,280
3 Ours w/ DBAE(H1) 10 2 6 – 2 2 194,079,744 56,289,280
4 Ours w/ DAE(H1) 10 2 6 – 2 2 194,079,744 56,289,280

Table 8: Model configuration for the zero-shot evaluation.

ID Model Enc # Encs # Encall # Enct′ # Enct′′ # Enct Dec # Train Param. # Infer. Param. #
1 Liao et al. (2021) E.12 D.2 12 4 8 – – – 2 200,380,416 62,589,952
2 Ours w/ DBAE(H1) 10 2 6 – – 2 2 194,079,744 56,289,280
3 Ours w/ DBAE(H2) 10 2 6 2 2 – 2 194,079,744 62,590,976

Table 9: Model configuration for the zero-shot inference hypotheses (H1,H2) evaluation.

En–>Any
Enc # Encs # Encall # Enct # Dec # 1:1:1 1:2:4 1:5:50

10 2 6 2 2 47.7 48.1 47.5
10 3 6 1 2 46.8 47.5 46.8
10 1 6 3 2 47.9 48.4 47.9

Table 10: Ablation study of the number of layers in the encoder module under En–>Any evaluation.

Any–>En
Enc # Encs # Encall # Enct # Dec # 1:1:1 1:2:4 1:5:50

10 2 6 2 2 50.3 51.1 50.5
10 3 6 1 2 50.3 50.9 50.7
10 1 6 3 2 51.1 51.9 50.4

Table 11: Ablation study of the number of layers in the encoder module under Any–>En evaluation.

5895



Zero-shot Inference
Enc # Encs # Encall # Enct # Dec # 1:1:1 1:2:4 1:5:50

10 2 6 2 2 35.8 36.3 34.0
10 3 6 1 2 36.0 35.9 34.0
10 1 6 3 2 35.7 36.1 34.6

Table 12: Ablation study of the number of layers in the encoder module under the zero-shot evaluation.

1:1:1 1:2:4 1:5:50
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

En-Fr 39.5 43.4 42.9 43.1 44.2 40.2 44.6 44.4 44.2 45.7 41.6 45.9 45.3 45.5 47.2
En-Ru 35.0 38.4 38.6 39.1 40.9 35.3 39.2 39.9 39.4 42.1 35.6 39.8 39.3 39.5 41.6
En-Es 51.3 53.9 54.0 54.5 56.6 51.8 55.0 55.9 55.4 58.1 53.4 55.8 55.6 55.8 58.3
En-Zh 47.4 53.7 53.2 53.0 53.8 47.5 53.9 53.5 53.6 54.2 46.3 50.2 49.3 49.8 49.8
En-Ar 35.8 38.9 38.9 39.3 42.4 35.3 38.8 39.2 39.1 42.5 32.6 32.1 32.4 32.3 35.1

Average 41.8 45.7 45.5 45.8 47.6 42.0 46.3 46.6 46.3 48.5 41.9 44.8 44.4 44.6 46.4

Table 13: A full list of the BLEU score of Table 1. 1 : Johnson et al. (2017); 2 : Lyu et al. (2020); 3 : Liao et al.
(2021); 4 : Purason and Tättar (2022); 5 : Ours

1:1:1 1:2:4 1:5:50
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Fr-En 41.6 46.8 47.4 47.8 48.3 42.1 48.9 48.9 48.9 49.3 42.9 50.6 49.9 50.1 50.1
Ru-En 43.7 48.6 48.7 48.3 48.8 44.0 49.7 49.6 49.5 49.8 44.4 50.4 50.0 50.2 50.4
Es-En 50.8 58.0 57.3 57.1 57.6 51.3 58.7 58.7 58.4 58.7 51.5 59.7 59.2 59.1 59.5
Zh-En 43.4 49.0 48.0 47.9 47.8 43.6 49.7 47.9 48.1 48.5 42.4 44.0 43.3 43.8 44.2
Ar-En 48.4 55.8 54.6 54.3 54.2 47.8 55.6 54.7 54.5 54.6 45.9 47.3 48.9 48.6 49.6

Average 43.7 51.6 51.2 51.1 51.3 45.8 52.5 51.9 51.9 52.2 45.4 50.4 50.3 50.4 50.7

Table 14: A full list of the BLEU score of Table 2. 1 : Johnson et al. (2017); 2 : Lyu et al. (2020); 3 : Liao et al.
(2021); 4 : Purason and Tättar (2022); 5 : Ours
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1:1:1 1:2:4 1:5:50
1 2 3 1 2 3 1 2 3

Fr-Es 42.7 43.9 43.2 43.4 44.5 43.8 44.2 44.7 44.0
Fr-Zh 38.8 42.5 40.02 38.8 42.8 40.3 39.1 40.9 37.3
Fr-Ar 26.4 29.1 27.6 27.2 28.9 27.7 25.6 26.8 25.2
Fr-Ru 30.4 31.4 30.63 31.0 31.3 30.6 30.9 32.1 30.9
Es-Fr 40.7 43.0 42.1 40.6 43.0 42.4 40.1 43.6 42.4
Es-Zh 41.9 47.1 44.1 41.7 47.1 44.4 42.0 44.8 40.7
Es-Ar 30.4 34.3 32.6 30.9 34.1 32.6 28.2 31.1 29.4
Es-Ru 33.5 35.7 34.6 34.1 35.8 34.6 33.9 36.3 34.9
Zh-Fr 28.2 28.3 28.4 27.9 28.2 28.3 25.6 27.1 27.0
Zh-Es 33.3 35.3 35.3 34.2 34.7 35.1 32.7 33.2 33.2
Zh-Ar 24.3 25.6 24.6 24.2 25.4 24.4 20.7 21.4 21.2
Zh-Ru 26.5 26.1 26.2 26.7 25.9 25.9 24.7 24.5 24.8
Ar-Fr 35.5 37.1 36.5 35.8 37.2 37.0 33.8 35.0 34.6
Ar-Es 43.0 44.2 43.8 43.4 44.6 44.2 41.3 41.6 41.4
Ar-Zh 40.5 44.4 41.6 40.2 44.2 42.1 37.6 39.0 35.5
Ar-Ru 32.1 32.7 32.3 32.1 32.3 32.0 30.6 30.6 30.1
Ru-Fr 34.5 35.0 34.3 35.0 35.3 34.4 34.4 36.6 35.9
Ru-Es 40.6 40.8 39.9 41.6 41.2 40.6 41.8 42.8 42.2
Ru-Zh 39.9 43.0 40.2 40.0 43.7 40.4 39.3 41.4 38.1
Ru-Ar 27.6 28.8 27.4 27.9 28.7 26.9 25.0 26.6 25.2

Average 34.5 36.4 35.3 34.8 36.5 35.4 33.6 35.0 33.7

Table 15: A full list of the BLEU score of Table 3. 1 : Liao et al. (2021) E.12 D.2; 2 : Ours DBAE (H1); 3 : Ours
DBAE (H2)
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1:1:1 1:2:4 1:5:50
1 2 3 4 1 2 3 4 1 2 3 4

Fr-Es 39.0 42.7 43.9 42.4 39.9 42.2 44.5 43.2 40.8 43.6 44.7 45.0
Fr-Zh 37.0 38.4 42.5 41.3 37.8 39.2 42.8 42.6 37.1 39.2 40.9 41.6
Fr-Ar 25.2 26.7 29.1 27.9 25.7 26.4 28.9 28.5 24.4 25.4 26.8 26.9
Fr-Ru 27.1 29.8 31.4 31.2 27.7 29.5 31.3 31.2 27.8 30.0 32.1 31.2
Es-Fr 36.6 39.5 43.0 40.8 37.8 40.1 43.0 41.4 38.3 40.4 43.6 41.9
Es-Zh 41.3 41.9 47.1 44.9 41.9 42.4 47.1 46.6 40.9 41.4 44.8 44.9
Es-Ar 29.4 30.4 34.3 31.8 29.7 29.9 34.1 32.8 27.5 28.5 31.1 30.3
Es-Ru 30.5 32.9 35.7 35.1 31.2 32.6 35.8 35.1 31.0 32.8 36.3 34.9
Zh-Fr 31.3 26.6 28.3 27.9 32.1 27.9 28.2 28.6 31.9 25.9 27.1 25.5
Zh-Es 38.1 33.1 35.3 33.2 38.9 33.1 34.7 35.0 38.8 31.7 33.2 31.8
Zh-Ar 26.8 23.6 25.6 24.5 27.1 23.3 25.4 25.1 24.7 20.5 21.4 20.7
Zh-Ru 27.8 25.8 26.1 25.3 28.3 25.7 25.9 25.8 27.4 24.1 24.5 23.4
Ar-Fr 33.9 34.3 37.1 34.8 34.7 34.7 37.2 36.1 34.4 33.2 35.0 34.4
Ar-Es 41.4 42.3 44.2 41.6 42.4 41.5 44.6 43.6 41.5 40.3 41.6 41.8
Ar-Zh 41.5 39.6 44.4 41.3 41.9 40.5 44.2 44.1 39.7 36.7 39.0 39.7
Ar-Ru 30.2 31.1 32.7 31.3 30.4 30.0 32.3 32.2 29.6 29.1 30.6 30.1
Ru-Fr 32.6 33.7 35.0 35.3 33.5 34.6 35.3 34.4 34.2 34.6 36.6 33.9
Ru-Es 39.2 40.4 40.8 41.0 40.2 40.3 41.2 40.6 40.7 41.0 42.8 40.5
Ru-Zh 39.4 39.5 43.0 42.1 40.0 40.1 43.7 43.2 38.9 39.4 41.4 40.2
Ru-Ar 26.8 27.2 28.8 28.4 27.2 26.6 28.7 28.1 25.3 24.6 26.6 24.7

Average 33.3 34.0 36.4 35.1 33.4 34.0 36.5 35.9 33.1 33.1 35.0 34.2

Table 16: A full list of the BLEU score of Table 4. 1 : Johnson et al. (2017) Piv.; 2 : Liao et al. (2021); 3 : Ours
DBAE(H1); 4 : Ours DAE(H1)
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1:1:1 1:2:4 1:5:50
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Fr-Es 45.1 43.9 43.9 44.6 43.9 44.6 45.2 44.5 45.4 44.6 46.1 44.3 44.7 45.8 44.9
Fr-Zh 41.5 42.4 42.5 42.8 42.2 42.9 43.5 42.8 43.4 43.4 40.0 41.4 40.9 41.4 41.9
Fr-Ar 29.3 29.2 29.1 29.2 29.3 29.3 29.7 28.9 29.7 29.4 26.6 27.3 26.8 26.8 27.3
Fr-Ru 32.2 31.6 31.4 32.1 30.9 31.7 32.1 31.3 32.1 32.4 31.9 31.8 32.1 32.8 32.7
Es-Fr 42.9 42.8 43.0 41.7 41.0 42.7 42.6 43.0 42.6 41.7 43.3 42 43.6 43.3 42.8
Es-Zh 45.7 47.1 47.1 45.8 46.3 46.8 47.2 47.1 47.1 47 43.0 45.1 44.8 44.8 44.9
Es-Ar 33.8 34.3 34.3 33.5 33.3 33.7 33.3 34.1 33.4 33.2 30.6 31.2 31.1 30.2 30.2
Es-Ru 36.1 35.8 35.7 35.6 34.4 35.3 35.5 35.8 35.5 35.9 35.4 35.4 36.3 36.0 35.8
Zh-Fr 25.3 27.7 28.3 28.3 26.7 27.9 28.0 28.2 28.6 27.9 23.8 26.2 27.1 26.2 27.5
Zh-Es 32.6 33.6 35.3 34.5 33.8 33.1 33.8 34.7 34.8 34.5 30.9 31.4 33.2 31.8 31.8
Zh-Ar 22.9 25.3 25.6 25.3 24.8 25.2 24.8 25.4 25.3 24.9 19.2 20.8 21.4 20.3 20.5
Zh-Ru 24.3 25.9 26.1 25.8 25.3 25.4 25.3 25.9 26.0 26.0 22.1 24.3 24.5 23.1 24.2
Ar-Fr 35.5 35.8 37.1 36.6 36.2 37.3 36.1 37.2 35.5 36.7 35.2 35.5 35.0 34.6 35.2
Ar-Es 42.8 43.1 44.2 43.8 43.4 43.9 43.2 44.6 43.0 43.8 42.7 42.5 41.6 41.2 40.9
Ar-Zh 42.1 44.1 44.4 44.1 44.0 44.0 43.8 44.2 43.9 44.6 37.7 39.7 39.0 39.6 40.4
Ar-Ru 31.8 31.9 32.7 33.3 32.5 31.8 31.8 32.3 32.3 33.3 30.6 31.2 30.6 30.3 30.9
Ru-Fr 36.5 35.1 35.0 35.90 34.2 35.5 35.7 35.3 36.2 36.3 35.7 36.3 36.6 36.7 37.2
Ru-Es 42.3 41.0 40.8 41.7 40.2 42.2 41.4 41.2 42.9 41.9 41.3 42.7 42.8 42.8 42.1
Ru-Zh 43.0 43.3 43.0 43.0 43.0 43.2 43.3 43.7 44.5 44.4 39.1 42.3 41.4 42.0 42.0
Ru-Ar 29.7 29.0 28.8 30.2 28.8 29.0 28.7 28.7 29.7 29.8 25.1 27.1 26.6 25.6 26.6

Average 34.4 34.8 35.2 35.1 34.5 35.1 35.0 35.2 35.3 35.3 32.7 33.6 33.7 33.5 33.6

Table 17: A full list of the BLEU score of Table 5. 1 : DBAE(H1) alph. 0.8.; 2 : DBAE(H1) alph. 0.6; 3 :
DBAE(H1) alph. 0.5; 4 : DBAE(H1) alph. 0.4; 5 : DBAE(H1) alph. 0.2
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