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Abstract

Pre-trained vector representations in natural
language processing often inadvertently encode
undesirable social biases. Identifying and re-
moving unwanted biased information from vec-
tor representation is an evolving and significant
challenge. Our study uniquely addresses this
issue from the perspective of statistical indepen-
dence, proposing a framework for reducing bias
by transforming vector representations to an
unbiased subspace using sufficient projection.
The key to our framework lies in its generality:
it adeptly mitigates bias across both debiasing
and fairness tasks, and across various vector
representation types, including word embed-
dings and output representations of transformer
models. Importantly, we establish the connec-
tion between debiasing and fairness, offering
theoretical guarantees and elucidating our algo-
rithm’s efficacy. Through extensive evaluation
of intrinsic and extrinsic metrics, our method
achieves superior performance in bias reduc-
tion while maintaining high task performance,
and offers superior computational efficiency.

1 Introduction

Natural Language Processing (NLP) models have
made significant strides in recent years, with much
of their success attributed to representation learning
- the process of creating effective vector represen-
tations for textual data. Various research has been
conducted in this area, including static word embed-
ding (Mikolov et al., 2013; Pennington et al., 2014),
contextualized embedding (Peters et al., 2018; De-
vlin et al., 2018; Radford et al., 2019), sentence
embedding (Reimers and Gurevych, 2019) in addi-
tion to other representation methods.

However, as vector representations have been
applied in a wide range of real-life scenarios, re-
searchers have discovered that stereotypical biases
and spurious correlations can be transferred from
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human-generated corpora to vector representations
and models (Bolukbasi et al., 2016; Caliskan et al.,
2017; Vig et al., 2020). This has the potential to pro-
duce biased and unfair outcomes in various down-
stream tasks (Kurita et al., 2019) and can even lead
to serious social problems. For instance, in the
word analogy task presented in (Bolukbasi et al.,
2016), it was found that the vector representation
for

−→
she was closer to −−−→nurse than the representa-

tion for
−→
he was to

−−−→
doctor. De-Arteaga et al. (2019)

found a performance gap between different genders
in text classification tasks.

The bias and fairness issues in NLP models are
primarily caused by the unbalanced and stereotyp-
ical nature of the training corpora. Liang et al.
(2020) described this as unbalanced model behav-
ior in relation to certain socially sensitive topics
such as gender, race, and religion. To quantify
biases in NLP, two types of bias evaluation met-
rics(intrinsic and extrinsic) have been proposed.
However, recent research has shown that in most
cases, there is a weak correlation between them
(Goldfarb-Tarrant et al., 2021; Kaneko et al., 2022;
Cao et al., 2022). There remains a significant re-
search gap in understanding how to bridge these
two kinds of tasks. In our research, we employ
statistical independence to establish a theoretical
linkage between these tasks, offering insights into
the interplay between intrinsic and extrinsic biases.

Various methods have been proposed for reduc-
ing bias in NLP, but it remains a challenge to effec-
tively mitigate bias while maintaining high model
performance. Furthermore, it is particularly diffi-
cult for debiasing methods to efficiently address
both intrinsic and extrinsic biases at the same time,
as discussed in the related works section.

In this paper, we propose a general debiasing
method that can effectively mitigate bias across
both debiasing and fairness tasks. Our key contri-
butions include the following:
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• We are the first to scope the debiasing and
fairness tasks unitedly through statistical in-
dependence, providing a detailed theoretical
analysis aimed at identifying the minimal sub-
space that contains bias information. This
analysis enables us to determine the optimal
projection matrix for these tasks and bridge
the connection between them.

• Our algorithm showcases its effectiveness in
both intrinsic (bias embedding evaluation) and
extrinsic (fairness text classification) evalua-
tion metrics. It is versatile, adapting to differ-
ent embedding methods and sensitive variable
types, making it universally applicable.

• Our method improves upon existing state-of-
the-art methods while still maintaining good
task performance compared to the original
model and stands out due to its superior com-
putational efficiency.

The structure of this paper is as follows. We
begin with a comprehensive review of existing re-
search on bias evaluation and debiasing techniques
in NLP. We then introduce our methodology, in-
cluding our proposed algorithm. We present exper-
imental results on a range of gender bias evaluation
tasks, showcasing the effectiveness of our approach.
Finally, we provide a theoretical bridge and guar-
antee, and a discussion of our method.

2 Related Works

Debiasing Methods in NLP Researchers have
been focusing on reducing bias from each compo-
nent of NLP models. The most intuitive idea of
debiasing is through counterfactual data augmen-
tations (Zmigrod et al., 2019; Dinan et al., 2020;
Barikeri et al., 2021), which involves re-balancing
a corpus by swapping bias attribute words (e.g.,
he/she) in a dataset. The re-balanced corpus is
then used for further training to debias a model.
While this approach is simple and can be applied
to all tasks, it does not perform well in terms of
debiasing and requires additional computational
resources for model re-training. Another direction
is fine-tuning pre-trained transformer-based lan-
guage models using methods such as projection
(Kaneko and Bollegala, 2021), adversarial (Han
et al., 2021), contrastive (Cheng et al., 2020; Shen
et al., 2021; He et al., 2022), dropout (Webster
et al., 2020), and prompting (Schick et al., 2021;

Guo et al., 2022). These methods show effective-
ness in reducing bias in various intrinsic evaluation
tasks. However, when deploying these debiased
models to downstream tasks, especially fine-tuning
on task-specific datasets, the debiased language
model can still re-learn social bias, making these
debiasing methods less effective.

Our proposed debiasing method is based on the
controlled removal of specific information from
vector representations, which is closely related to
the task of disentangling representations (Bengio
et al., 2013). Previous research in this area includes
methods for removing bias from static embeddings,
such as projecting the word embedding into the
orthogonal space of the gender direction (

−→
he -

−→
she)

(Bolukbasi et al., 2016), re-training the entire em-
bedding using some loss functions (Kaneko and
Bollegala, 2019), and utilizing the ideas in causal
inference (Yang and Feng, 2020; Ding et al., 2022).
There are several similar projection-based methods
like Iterative Nullspace Linear Projection (INLP;
(Ravfogel et al., 2020)), RLACE (Ravfogel et al.,
2022a). We discuss the detailed comparison and
advantages of our method in Appendix A.2.

Evaluating Bias in NLP The measurement meth-
ods for evaluating bias in pre-trained word embed-
dings and language models can be broadly divided
into two categories: Intrinsic and Extrinsic eval-
uations. Intrinsic bias evaluations probe the bias
within pre-trained word embeddings and language
models. Common methods include measuring the
geometry in embedding space, such as the Word
Embedding Association Test (WEAT; (Caliskan
et al., 2017)) and Sentence Encoder Association
Test (SEAT; (May et al., 2019)). Additionally, (Ku-
rita et al., 2019; Nangia et al., 2020; Nadeem et al.,
2021) propose metrics using the likelihood score.
Furthermore, research suggests that some debiasing
methods may only hide bias, and thus additional
measurement approaches are needed (Gonen and
Goldberg, 2019).

The extrinsic bias is specific to certain down-
stream tasks. In the text classification task, De-
Arteaga et al. (2019); Blodgett et al. (2016) pro-
posed two benchmark datasets and used the equal
opportunity measure from fairness literature. Zhao
et al. (2018a) proposed the WinoBias benchmark
for Coreference resolution. As well as other bench-
marks, such as Bias-NLI (Dev et al., 2020) and
in machine translation (Stanovsky et al., 2019).
However, recent research has indicated that intrin-
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sic bias in embeddings or models typically does
not have a strong correlation with bias in down-
stream tasks(Goldfarb-Tarrant et al., 2021; Cao
et al., 2022). Kaneko et al. (2022) found out that
the debiased models re-learn the bias from the fine-
tuning datasets, showing that only debiasing up-
stream models may not be enough to eliminate bias
in downstream tasks.

In our work, we conduct comprehensive eval-
uation experiments in both intrinsic and extrinsic
tasks. Additionally, our approach avoids the issue
of re-learning bias by directly addressing the vector
representation in downstream tasks.

3 Methodology

3.1 Problem Setup
We consider the problem of removing sensitive
information inside the vector representation. Given
the representation vector X ∈ Rp1 accompanied
with the target attribute Y ∈ Rp2 and the sensitive
attribute Z ∈ Rp3 , our goal is to find a map
g : Rp1 7→ Rp1 such that:

• g(X) is uncorrelated with Z;
• g(X) maintains ability to predict Y .

In other words, the new representation X̃ = g(X)
removes the sensitive information Z contained in
the original representation while preserving other
useful information in X . The notations given
above incorporate debiasing and fairness tasks into
the same framework, which are formulated in the
following definitions:
Definition 3.1. Let X̃ = g(X) and f1 be the mech-
anism with input X̃ . Then X̃ is said to be a debi-
ased representation if f1(X̃) ⊥⊥ Z.

Definition 3.2. Let X̃ = g(X) and f2 be the mech-
anism trained by (X̃,Y ) to predict Y . Then X̃ is
said to be a fair representation if f2(X̃) ⊥⊥ Z | Y .

Our formulated definition directly aligns with
the objectives of each task. In the debiasing task,
given the input X , the mechanism f1 is biased
if the output f1(X) relies heavily on Z. There-
fore, the goal is to make Z and the output of the
mechanism f1(X) to be independent given the
representation X . Similarly, for fairness tasks, the
aim is to develop a fair mechanism f2, ensuring its
prediction is independent of sensitive information
Z conditioned on Y (Conditional Independence)
(Hardt et al., 2016).
Remark 3.3. Note that f1 or f2 represent a specific
mechanism with input X̃ , which differs in differ-
ent tasks. For instance, in the WEAT and SEAT

tasks, f1 denotes the function s(X̃, A,B), which is
a measure of association strength. In the Fairness
Text Classification, f2 is specifically used to denote
the classifier for target label Y .

3.2 Motivation

As previously discussed, our goal is to identify a
mapping g such that X̃ = g(X) possesses the
desired properties. A direct approach involves
constructing a p1 × p1 projection matrix P and
applying the linear transformation g(X) = PX .
When we restrict the transformation g into linear
projections, the original vector X can be decom-
posed into X = PX + (I − P )X , where I is the
p1×p1 identity matrix. Letting S1 and S2 represent
the spaces spanned by P and I − P respectively,
the representation space is then decomposed as
Rp1 = S1

⊕S2. For a debiased representation
X̃ = PX , S1 should be structured to minimize
the information regarding Z, while S2 should en-
capsulate as much of the information regarding Z
as possible.

Consequently, the debiasing goal transforms into
the identification of the subspaces S1 and S2. It’s
crucial to note that the majority of information re-
garding Z resides within S2. Therefore, the expres-
sion (I − P )X emerges as a potential predictor
for Z. Throughout this paper, we adhere to the
following linearity assumption,

Assumption 3.4 (Weak Linearity). Suppose Q =
I−P has rank q and orthogonal basis (β1, . . . , βq),
with each βj belonging to Rp1 . Then we assume
Z can be modeled by projecting X onto q distinct
directions:

Z = f(β⊤1 X, . . . , β
⊤
q X, ε), (1)

where f is an unknown function, which can be lin-
ear or nonlinear, and ε denotes the random effect.

Remark 3.5. Contrary to the strong linearity as-
sumption in other projection-based methods such
as (Ravfogel et al., 2020), which postulates that Z
can be expressed as Z = WX for W ∈ Rp3×p1 ,
our approach adopts a weak linearity assumption.
This assumption introduces an unknown function f ,
which can be either linear or nonlinear, thereby in-
cluding the traditional strong linearity assumption.
A toy example regrading weak and strong linearity
can be found in Appedix A.1.

Based on the discussion above, the primary
objective of this study is articulated as follows:
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initially, to identify the direction matrix B =
(β1, . . . , βq) ∈ Rp1×q ensuring thatB⊤X captures
most of the information about Z. Then given this
direction matrix, we can obtain a debiased repre-
sentation of X by projecting it onto the subspace
orthogonal to Span{B}. Note that Span{B} is
equivalent to Span{Q} = S2, and hence, its cor-
responding orthogonal subspace S1 is spanned by
P as preliminarily defined. This approach under-
pins the theoretical foundation of our proposed
algorithm, details of which will be explored in the
forthcoming sections.

3.3 Minimal Subspace
It is crucial that we want the subspace S2 with the
desired property as small as possible so that we
can retain the utility of X after projecting it on
S1. Essentially, we want to find the matrix Q with
minimum rank q. Consider the random variables
X ∈ Rp1 and Z ∈ Rp3 . If there exists a full rank
matrix B ∈ Rp1×q, such that Z⊥⊥X | B⊤X (X
is independent of Z conditioned on its projections
on B), then the column space of the matrix B, de-
noted as Span{B}, is called a sufficient dimension
reduction subspace of Z with respect to X . The in-
tersection of all the dimension reduction subspaces
is called the central subspace and denoted as SZ|X .
That is SZ|X =

⋂
B∈BXZ

Span{B}, where

BXZ =
{
B | Z⊥⊥X conditioned on B⊤X

}

The dimension of the central subspace is denoted
as dim(SZ|X). When Span{B} is the central sub-
space, we have dim(SZ|X) = dim(Span{B}) =
q. See (Cook and Li, 2002) for more details. A
toy example of minimal subspace can be found in
Appendix A.1.

If Z⊥⊥X | B⊤X , thenB⊤X are most useful to
predict Z based on X , which is exactly the case in
Model (1). Therefore, the central subspace SZ|X is
the minimal subspace processing the desired prop-
erty and serves as a promising candidate for the
expected subspace S2. We will illustrate the es-
timation procedure in the next section, which is
robust to any kind of mapping f in Model (1) and
only relies on the data set {(Xi, Zi)}ni=1.

Note that Model (1) is an ideal case based on the
linearity assumption. In real-world applications,
using only q directions might not be sufficient to
cover all the information of Z because there might
be nonlinear correlations between X and Z. How-
ever, since the q directions can cover most of the

information, it is still safe to use Model (1) in prac-
tice. Specifically, in NLP tasks, we may assume
that the sensitive attribute Z can be predicted by
the projections of the representation X onto q di-
rections with some unknown mapping f .

4 Sufficient Universal Projection (SUP)

4.1 Subspace Estimation
In this subsection, we will explain the process of es-
timating the subspace S2 = SZ|X in different sce-
narios. We will begin with the simplest case where
p3 = 1, meaning Z ∈ R is a scalar. Sliced Inverse
Regression (SIR) is a classical dimension reduc-
tion method proposed by (Li, 1991) for univariate
response Z. We provide the detailed scheme for
SIR applied on the data set {(Xi, Zi)}ni=1 in the
Appendix A.3. The main procedure of SIR is: (1)
divide the support of Z into H intervals and calcu-
late the covariance matrix of X for each interval,
(2) calculate the weighted covariance matrix based
on H intervals, (3) obtain the directions from the
weighted covariance matrix. The space spanned by
the directions B = (β1, . . . , βq) provided by SIR
is a consistent estimation of SZ|X .

For multivariate sensitive attributes, a direct
analogy of the slicing strategy in SIR no longer
works, as the number of partitions of the support
of Z = (Z1, . . . ,Zp3) ∈ Rp3 becomes Hp3 and
thus suffers the curse of dimensionality. To ad-
dress the limitation of the original SIR, the Pooled
Marginal Slicing (PMS) estimator proposed in
(Aragon, 1997) combines the subspaces SZi|X es-
timated by univariate response SIR to get the direc-
tions for the multivariate response, which is moti-
vated by the following proposition.

Proposition 4.1. Note that Z⊥⊥X | B⊤X implies
Zj⊥⊥X | B⊤X . Therefore, for j = 1, . . . , p3,
SZj |X ⊆ SZ|X .

Proof. For any B ∈ BXZ , we have B ∈ BXZj ,
thus BXZ ⊂ BXZj . Recall that SZ|X is the inter-
section of all elements in BXZ . Therefore, we have
SZj |X ⊆ SZ|X for j = 1, . . . , p3.

Proposition 4.1 indicates that SZj |X can be used
to recover SZ|X , which guarantees the theoretical
properties of PMS estimator. It also naturally lifts
the curse of dimensionality. Let Zij denote the j-th
coordinate of i-th sample. We apply SIR to data set
{(Xi, Zij)}ni=1 and obtain the estimators MSIR

i for
j = 1, . . . , p3. Then we define the weighted sum
of estimators as MPMS =

∑p3
j=1wiM

SIR
i , where
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Figure 1: The flowchart of Sufficient Universal Projec-
tion algorithm.

wi can be chosen as either equal weights or pro-
portional to the leading eigenvalues of Mi. Then
the leading q eigenvectors ψ1, . . . , ψq of MPMS

can be used to recover SZ|X . The detailed imple-
mentation of obtaining MPMS is summarized in
Algorithm 2 in the Appendix.

4.2 Algorithm Implementation

To obtain the debiased representation, we first col-
lect the original vector representation Xi and the
associated sensitive attribute Zi. Note that Zi can
be labeled by humans or learned from the training
data. Specifically, we place no restrictions on the
structure of Zi – it can be either discrete labels
Zi ∈ {1, 2, . . . , k} representing gender or race,
or a continuous variable. When Zi is a continu-
ous variable, we directly set Z̃i = Zi and han-
dle {(Xi, Z̃i)} as discussed above. If Zi is a cat-
egorical variable with choices {1, 2, . . . , k}, we
first train a classifier fcls based on the data set
{(Xi, Zi)}ni=1, whose output is the probability of
Xi belonging to each category, then denote

Z̃i = fcls(Xi) = (Z̃i1, . . . , Z̃ik) ∈ Rk,

where
∑k

j=1 Z̃ij = 1. In both scenarios, the at-
tribute Zi is converted to the vector variable with
continuous support. Then we can obtain the PMS
estimator MPMS based on {(Xi, Z̃i)}ni=1 with its
leading q eigenvectors ψ1, . . . , ψq. The projection
matrix is defined as P = I − ∑q

i=1 ψiψ
⊤
i . Intu-

itively, Q =
∑q

i=1 ψiψ
⊤
i is the estimated central

mean space regarding Z, and the space spanned
by this matrix contains most of the information we
want to eliminate. The procedure is outlined in
Algorithm 1 and in Figure 1.

It is worth emphasizing that SUP is a general
framework for bias elimination, and we have no as-
sumption on the type of representation. Therefore,
our proposed method is universally robust to both
static and contextualized embeddings with different

Algorithm 1 Sufficient Universal Projection (SUP)
Input: Data {(Xi, Zi)}ni=1, partition H and
number of dimension q;
Output: Sufficient projection P ;

1: if Zi is continuous then
2: Set Z̃i = Zi;
3: else if Zi is discrete then
4: Train a classifier fcls by {(Xi, Zi)}ni=1;
5: Set Z̃i = fcls(Xi);
6: end if
7: Obtain MPMS using {(Xi, Z̃i)}ni=1 by Algo-

rithm 2;
8: Calculate the leading eigenvectors {ψj}qj=1 of
MPMS;

9: Obtain P = Ip1 −
∑q

j=1 ψjψ
⊤
j ;

10: Return: P .

dimensions and can be applied to any downstream
tasks.

4.3 Connection with Existing Method

Assumption 3.4 guarantees that our statistical
model encompasses a wider family of models, in-
dicating that our method relies on relatively less
stringent conditions. In this subsection, we pro-
vide a brief comparison of our method to other
projection-based methods.

INLP (Ravfogel et al., 2020): Both our method
SUP and INLP employ linear projections to min-
imize the influence of the sensitive attribute Z in
the representations. INLP seeks to identify the null
space of the weight matrix W of linear classifier
Z = f(WX). This framework can be viewed as a
specific instance of the Model 1

RLACE (Ravfogel et al., 2022a): Both SUP and
RLACE operate under weak linearity assumption
as expressed in Assumption 3.4. In RLACE, the
function f in Model (1) is interpreted as the inverse
of a link function in the generalized linear model.
In contrast, our approach imposes no specific con-
straints on the form of f .

A detailed analysis and comparison with existing
methods are available in Appendix A.2.

5 Experiment and Settings

In all experiments conducted, the number of par-
titions was consistently set to 100. The optimal
number of dimensions to be removed was deter-
mined through cross-validation. Detailed insights
into the impact of the parameter q on performance
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can be found in Appendix A.8. Codes are available
at the GitHub.1

5.1 Static Word Embedding Evaluation Tasks

We begin by demonstrating our method in the con-
text of debiasing static word embeddings using
300-dimensional GloVe embeddings (Pennington
et al., 2014) pre-trained on English Wikipedia data.
We first calculate the cosine similarity between
each word embedding with the gender direction−→
he -

−→
she. From these scores, we select words in

two categories: those with the top 9000 highest
scores, representing male-associated words, and
those with the top 9000 lowest scores, representing
female-associated words. The label of each class is
the sensitive attribute Z and the projection matrix
P is calculated through Algorithm 1. For a fair
comparison, the following evaluations are based
on the methodology outlined in (Gonen and Gold-
berg, 2019; Ding et al., 2022). We compare our
results with the following baseline methods: hard-
debiasing method (Hard) (Bolukbasi et al., 2016),
gender-preserving debiasing method (GP) (Kaneko
and Bollegala, 2019), word vector learning method
(GN) (Zhao et al., 2018b), half-sibling regression
(HSR) (Yang and Feng, 2020), INLP (Ravfogel
et al., 2020) and DeSIP (Ding et al., 2022).

Clustering Gender Biased Words. Biased
words tend to cluster together, and debiased em-
beddings may not escape this phenomenon. We
use K-means clustering (K=2) to split the top 500
male-biased and top 500 female-biased words. A
visualization graph is presented in Appendix 5.2.
In Table 1 column one, we report the accuracy
in splitting the 1,000 words into male and female
clusters. Our method brings about a 50% reduction
compared with the original GloVe and about 20%
compared with the second-best method.

Correlation Using the top 50,000 most frequent
words as targets, we calculate the Pearson correla-
tion coefficient between the bias-by-projection and
bias-by-neighbor results. The latter is calculated
using the neighborhood metric, which counts the
percentage of male and female-biased words within
the 100 nearest neighbors of each target word. The
result is presented in the second column of Table 1,
and we achieve the lowest correlation coefficient.

1https://github.com/EnzeShi/Debiasing-with-Sufficient-
Projection-A-General-Theoretical-Framework-for-Vector-
Representations

Profession Words In this task, we determine the
correlation between the original bias and the num-
ber of male neighbors among the 100 nearest neigh-
bors of profession words, as listed by (Bolukbasi
et al., 2016; Zhao et al., 2018b). The correlation co-
efficient is shown in Table 1. Our method reduces
the coefficient by 20% compared with the original
GloVe and achieves the best result.

Classifcation We selected the top 2,500 biased
words for each gender and trained a support vec-
tor machine (SVM) model using 1,000 randomly
sampled words for each baseline model. We then
applied the trained classifier to the remaining 4,000
words to predict gender bias direction. The pre-
diction accuracy is shown in Table 1. Lower accu-
racy implies that the original embedding does not
contain enough gender-related information. Our
method has the least accuracy among all debias-
ing methods, indicating that it preserves the least
gender bias.

Word Embedding Association Test The WEAT
(Caliskan et al., 2017) is a permutation-based test
that measures bias in word embeddings. Refer to
Appendix A.5 for the details of WEAT. The results
are reported in terms of absolute effect sizes(d)
and p-values (p). The effect size is a normalized
measure of how separated two distributions are.
A high effect size indicates a larger bias between
the target and attribute words, and the p-value de-
notes whether the bias is statistically significant
or not. We conducted two experiments employing
the Pleasant & Unpleasant (Task 1) and Career &
Family (Task 2) word sets, with male and female
names serving as the attribute sets. As illustrated
in Table 1, the outcomes from both tasks reveal
that the p-values are not statistically significant,
suggesting an absence of significant bias. Further-
more, we observed the smallest effect sizes in both
tasks, highlighting our methodology’s effectiveness
in minimizing bias within word embeddings.

5.2 t-SNE Visualization
To visually demonstrate the effectiveness of our
proposed method in reducing gender bias, we se-
lected the top 500 male- and female-biased em-
beddings. Using t-SNE projection, we compare
the original GloVe and our debiased embeddings.
Figure 2 shows the separation of male- and female-
biased embeddings in two different colors. It can
be observed that our method has mixed the male-
and female-biased embeddings effectively.
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Clustering Correlation Profession Classify

GloVe 1.0000 0.7727 0.8200 0.9980
Hard 0.8050 0.6884 0.7161 0.9068
GP 1.0000 0.7700 0.8102 0.9978
GN 0.8560 0.7336 0.7925 0.9815
HSR 0.9410 0.6422 0.6804 0.9055
INLP 0.6336 0.5718 0.6651 0.8160
DeSIP 0.7920 0.6421 0.7060 0.8550

SUP 0.5198 0.5360 0.6515 0.7247

Task1 Task2

p (↑) d (↓) p (↑) d (↓)

GloVe 0.090 0.704 0.00∗ 1.905
Hard 0.363 0.187 0.00∗ 1.688
GP 0.055 0.832 0.00∗ 1.909
GN 0.157 0.541 0.074 0.753

HSR 0.265 0.340 0.00∗ 1.555
INLP 0.195 0.475 0.129 0.595
DeSIP 0.268 0.335 0.001∗ 1.462

SUP 0.411 0.119 0.142 0.565

Table 1: Left: Static word embedding bias evaluation tasks. A lower number in each column indicates better
debiasing performance. Baseline results are reported by (Ding et al., 2022). Our method surpasses all other methods;
Right: WEAT result. In each column of p-value, ∗ indicates statistically significant compared with α = 0.05; In
each column of d, a value closer to 0 is indicative of less bias. The best results are boldfaced.

Figure 2: t-SNE visualization.

5.3 Word Similarity Tasks

While reducing bias is our primary goal, it is cru-
cial not to destroy other semantic information en-
coded in word embeddings. We evaluate our algo-
rithm by the following word similarity tests: RG65
(Rubenstein and Goodenough, 1965), WordSim-
353 (Finkelstein et al., 2001), Rarewords (Luong
et al., 2013), MEN (Bruni et al., 2014), MTurk-287
(Radinsky et al., 2011), and MTurk-771 (Halawi
et al., 2012), SimLex-999 (Hill et al., 2015), and
SimVerb-3500 (Gerz et al., 2016). These datasets
associated with each task contain word pairs and
a corresponding human-annotated similarity score.
We calculate Spearman’s rank correlation coeffi-
cient between the two ranks. The results of our
method and the original GloVe are shown in Ta-
ble 2. We observe an overall non-decreasing per-
formance in most of the tasks, showing that the
semantic information is protected.

5.4 Sentence Embedding Association Test
(SEAT)

In addition to testing on static word embeddings,
we also test on contextualized word embeddings.

SEAT (May et al., 2019), extends the WEAT test
by leveraging simple templates such as ’This is a
<word>’ to obtain the individual word’s contextual-
ized embedding. We use the implementation results
from (Meade et al., 2022). The baseline includes
BERT base uncased, CDA and Dropout (Webster
et al., 2020), SentDebias (Liang et al., 2020), and
INLP.

To train projections for the topics of gender,
race, and religion, we used the vocabulary from
the GloVe model. All words were divided into
groups according to their cosine similarities with
pre-determined hint words: [he, she] for gender,
[black people, white people] for race, and [Chris-
tianity, Jewish, Islam] for religion. Using BERT
representations, we selected the top 75k words for
gender, 75k for race, and 30k for religion from each
group and associated them with their group labels
as the input dataset for Algorithm 1.

For a detailed list of the SEAT tests used to mea-
sure each type of bias in our work, the complete
results, we refer readers to Appendix A.6. In Table
2, we display the average effect size for each SEAT
task category evaluated. Our findings reveal supe-
rior performance in two out of the three tasks while
delivering comparable results to the INLP method
in the Gender task. Notably, our SUP method ex-
hibits enhanced performance across a variety of
bias-influenced topics.

5.5 Extrinsic: Fairness Text Classification

For the extrinsic task, we consider the fairness
text classification problem. We conduct experi-
ments over three different tasks – sentiment anal-
ysis (MOJI), biography classification (BIOS), and
toxic comment classification (Toxic). The detail of
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RG65 WS RW MEN

GloVe 0.7540 0.6199 0.3722 0.7216
SUP 0.7913 0.6617 0.3986 0.7423

MT-287 MT-771 SimLex SimVerb

GloVe 0.6480 0.6486 0.3474 0.2038
SUP 0.6349 0.6792 0.3949 0.2493

Gender(↓) Race (↓) Religion (↓)

BERT 0.620 0.620 0.492
+CDA 0.722 0.569 0.339
+Dropout 0.765 0.554 0.377
+INLP 0.204 0.639 0.460
+SentDebias 0.434 0.612 0.439

+SUP 0.218 0.432 0.261

Table 2: Left: Word similarity results. A higher value indicates a better semantic correlation; Right: SEAT average
effect sizes for debiased BERT. A lower number in each column indicates better debiasing performance. The best
results are boldfaced. Baseline results are from (Meade et al., 2022).

the datasets is described as follows:
MOJI is a sentiment classification dataset col-

lected by (Blodgett et al., 2016) that contains tweets
from either African-American English or Standard
American English. Each of the text data is labeled
with a binary ’race’ label based on the kind of En-
glish they use. The binary sentiment score is anno-
tated by the emoji contained in the tweets. We com-
pose the training data set as follows: AAE–happy
= 40%, SAE– happy = 10%, AAE–sad = 10%, and
SAE–sad = 40%. We used the train, dev, and test
splits of 100k/8k/8k instances, respectively.

BIOS dataset (De-Arteaga et al., 2019) is a per-
sonal biography classification dataset annotated by
gender and 28 classes of occupation. We follow
the same split setup for the BIOS data as in (De-
Arteaga et al., 2019), and the ratio of train:dev:test
is 65% : 10% : 25%.

Toxic dataset features text sourced from the Talk
Pages of Wikipedia, where each comment has been
categorized by human assessors as either toxic or
non-toxic. Our research employs the same divi-
sion of data as specified by (Dixon et al., 2018),
enabling us to test the efficacy of our method in
reducing discrimination against minority groups.

The fairness criterion is defined by Equality of
Opportunity (EO), i.e. a classifier is considered
fair if its prediction is independent of the sensi-
tive attribute given the true label. For BIOS and
MOJI data, it is measured by considering the gap
in the True Positive Rate (TPR) between different
sensitive attribute groups:

TPRz,y = P [Ŷ = y|Z = z, Y = y],

GAP TPR
y = TPRz,y − TPRz′,y.

The root-mean-square (RMS) gap over all
groups is GAP TPR

RMS =
√

1
|C|

∑
y∈C(GAP

TPR
y )2.

We follow the original implementation of MOJI
and BIOS that use race and gender labels as sen-
sitive attributes Z. The results are shown in Table

3. We report the Accuracy, the GAPRMS , and the
Time in seconds for BIOS and MOJI. The baselines
are from (Ravfogel et al., 2020), (Ravfogel et al.,
2022a), (Chowdhury and Chaturvedi, 2022), and
(Ravfogel et al., 2022b).

In Table 3, we implement each task using BERT
and establish it as the baseline - this represents the
results without any fairness considerations. Our
findings reveal that in the BIOS task, while the
INLP and FaRM achieve low RMS, it is accompa-
nied by a compromise in accuracy. In contrast, our
SUP method demonstrates balanced performance
on both fronts. For MOJI, our algorithm stands
out, yielding the smallest discrepancy gap among
all methods, all the while maintaining uncompro-
mised accuracy. Moreover, our algorithm benefits
from having an explicit solution, eliminating the
need for iterative calculations, and running signifi-
cantly faster than many existing baselines.

In addition, we also conduct experiments on
a more challenging dataset: the Toxic Comment
Classification (Dixon et al., 2018). Within this
dataset, each sample may belong to multiple
sensitive attribute groups, embodying intersec-
tionality in biases. For instance, a single com-
ment might simultaneously belong to ’black’ and
’gay’ sensitive groups. We adhere to the defini-
tions and gap measurements outlined by Dixon
et al. (2018), GAPtoxic =

∑
z∈Z |TPRz,0 −

meanz∈Z(TPRz,0)|, where meanz∈Z(TPRz,0)
is the average of TPR gaps of all sensitive attributes.
where meanz∈Z(TPRz,0) represents the average
of True Positive Rate (TPR) gaps across all sensi-
tive attributes. The sensitive attribute in this sce-
nario is depicted as a 50-dimensional vector, illus-
trating the relative frequency of sensitive words
within sentences.

For the original BERT model, the Area Un-
der the Curve (AUC) was 95.5, and the GAPtoxic

was 7.34. By employing our method, we man-
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BIOS MOJI

Acc.(↑) GAP(↓) Time(↓) Acc.(↑) GAP(↓) Time(↓)

BERT 79.1 14.5 - 71.6 31.0 -
+INLP 71.9 9.9 271 62.2 15.8 1003
+RLACE 76.9 13.2 4312 72.2 15.4 2456
+FaRM(unconstrained) 55 7.9 6723 63.5 14.0 4162
+Kernel(Poly) 79.9 16.8 3914 72.9 17.3 8861
+Kernel(RBF) 60.7 18.0 3487 74.1 13.3 5496

+SUP 76.4 12.7 6.76 69.1 10.5 33.04

Table 3: Left: Result of BIOS text classification. Predict using [CLS] token. Right: Result of MOJI text
classification. The best result is boldfaced.

aged to maintain the AUC at 95.0 while reducing
the GAPtoxic to 5.95, showcasing the efficacy of
our approach in mitigating biases while preserving
model performance. It is crucial to highlight that
our methodology effectively manages the intrica-
cies of intersectional biases in toxic comment clas-
sification, a complexity not adequately addressed
by other baseline algorithms. For a more detailed
discussion, please refer to Appendix A.2.

6 Bridge between Debiasing and Fairness

In this section, we provide a theoretical analysis
of how our proposed method can incorporate debi-
asing and fairness tasks into a unified framework
and handle them simultaneously. As previously
discussed, both tasks aim to achieve conditional in-
dependence with respect to certain variables. Here,
we will demonstrate how minimal subspace S2

bridges these tasks. We provide the following the-
orem to prove the effectiveness of our framework
in dealing with both debiasing and fairness tasks.
Please refer to Appendix A.7 for detailed proof.

Theorem 6.1. With the settings defined in Section 3
and linearity assumption, suppose X ⊥⊥ Z | QX ,
then X̃ = (I − Q)X is a debiased represen-
tation. Further, suppose X ⊥⊥ Y | QyX , if
Span{Qy} ⊆ Span{Q}, then X̃ = (I − Q)X
is a fair representation.

Theorem 6.1 states that the projected represen-
tation X̃ = (I −Q)X has no correlation with the
sensitive attributes Z, which achieves the goal of
debiasing task. Moreover, if the subspace spanned
by sensitive attribute Z (SZ|X ) is included in the
subspace spanned by target attribute Y (SY |X ), we
can achieve the goal of fairness task by projecting
the original representation on (I −Q).

The theoretical property is consistent with the ex-
perimental results shown above. For the debiasing

task, the matrixQ =
∑q

i=1 ψiψ
⊤
i in Algorithm 1 is

the estimated central mean space regarding Z, then
I −Q forms a sufficient projection defined in The-
orem 6.1, which shows great improvement upon
existing state-of-the-art methods. For fairness task,
the eigenvectors {ψj}qj=1 calculated in Algorithm
1 recovers the matrix Q stated in Theorem 6.1. If
we have Span{Qy} ⊆ Span{Q}, then we can set
X̃ = (I−Q)X to get the fair representation. How-
ever, in real data, this condition is usually violated,
which means Span{Qy} ⊈ Span{Q}. Therefore,
the SUP may not achieve the optimal fair represen-
tation in downstream tasks.

7 Conclusion and Future Work

In this paper, we propose a theoretically grounded
framework for reducing bias by projecting vector
representations to an unbiased subspace. It can
reduce biased information effectively in both intrin-
sic and extrinsic tasks, as well as different kinds
of representations. In addition, we provide a the-
oretical guarantee about the effectiveness of our
method in reducing biased information. Finally,
our method not only surpasses existing state-of-the-
art approaches in bias mitigation while maintaining
robust task performance but also achieves superior
computational efficiency.

While this work has demonstrated its effective-
ness in various tasks, it has the potential to be ap-
plied to other applications that rely on vector repre-
sentation. We are also interested in combining our
method with the different other notions of fairness.
We aim to explore these directions in future work.
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A Appendix

A.1 Toy example for weak linearity and
minimal subspace

Suppose X ∈ R4 and Z ∈ R, with two orthog-
onal directions β1 = (

√
2
2 ,

√
2
2 , 0, 0) and β2 =

(
√
2
2 ,−

√
2
2 , 0, 0). Consider the following two mod-

els:

Z = β⊤1 X + β⊤2 X + ε, (2)

Z = sin (β⊤1 X) + exp(−β⊤2 X) + ε. (3)

Then (2) satisfies the strong linearity assumption
and (3) satisfies the weak linearity assumption.

For model (3), denote β3 = (0, 0, 1, 0) and
β4 = (0, 0, 0, 1), then Span{β1, β2, β3, β4} =
R4, the entire representation space. Let S2 =
Span{β1, β2} and S ′

2 = Span{β1, β2, β3}, with
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their associated orthogonal subspaces S1 =
Span{β3, β4} and S ′

1 = Span{β4}. Note that both
S2 and S ′

2 contain all the directions related to Z.
But S2 has smaller dimension than S ′

2, thus we will
lose less information when we project X on S1.

Therefore, in model (3), both S2 and S ′
2 are suf-

ficient dimension reduction subspaces. The central
subspace SZ|X is equal to S2 = {β1, β2}, which
is the minimal subspace.

A.2 Comparison with other projection
methods

We conduct a comparative analysis between our
method and other projection-based methods.

INLP: Both our method SUP and INLP employ
linear projections to minimize the influence of the
sensitive attribute Z in the representations. The
underlying principle of INLP revolves around iden-
tifying the null space of the weight matrix, denoted
as W ∈ Rk×p1 , which corresponds to the param-
eters of linear classifier Z = f(WX), where f
represents the classifier function and k is the num-
ber of classes. This framework can be viewed as
a specific instance of the Model 1, where the sub-
space spanned by β1, . . . , βq exactly corresponds
to the union of row spaces of Wi during iterations.
Specifically, INLP captures k directions (rows of
weight matrix Wj) at each iteration, while SUP
finds q directions in a single run, which is more
flexible and computationally efficient.

RLACE: Both SUP and RLACE operate un-
der linearity assumption as expressed in Assump-
tion 3.4. In RLACE, the function f in Model (1)
is interpreted as the inverse of a link function in
the generalized linear model. In contrast, our ap-
proach imposes no specific constraints on the form
of f . While RLACE achieves debiasing by solving
a minimax problem to identify the projection P
that safeguards the sensitive attribute, our method
directly estimates the directions with a closed form,
offering superior computational efficiency.

Advantage of SUP: The main distinction be-
tween our proposed methodology and existing
projection-based debiasing methods pertains to the
range of tasks they can address. For instance, INLP
is principally designed for handling categorical sen-
sitive attributes. In the context of the toxic data
task, the sensitive attribute is no longer a categori-
cal variable, thereby undermining the effectiveness
of INLP. However, it is important to note that our
SUP algorithm does not violate the structure of
Model (1) under the linearity assumption. As a

result, our approach remains capable of estimat-
ing the directions β1, . . . , βq and mitigating bias
through the Algorithm 1. This highlights the ver-
satility of our SUP algorithm, showcasing its capa-
bility to adeptly manage a spectrum of uni-/multi-
variate and discrete/continuous sensitive datasets.
The capability of managing a sensitive attribute as
a continuous variable also aligns more closely with
contemporary sociological understandings. For in-
stance, consider the interpretation of gender as a
spectrum(Richards et al., 2016) rather than a binary
categorization. As such, models that can accom-
modate continuous variables for sensitive attributes
are better equipped to reflect these more nuanced
perspectives, thereby promoting fairness and inclu-
sivity in their outcomes.

A.3 Scheme for SIR Estimator

Suppose the data set {(Xi, Zi)}ni=1 is given, then
the steps for SIR are summarized as :

1. Standardizing X by the transformation X̃i =

C
−1/2
X (Xi − µX), where µX and CX are the

mean vector and covariance matrix of X .

2. Slice the range of Z into H intervals
{Jh}Hh=1. Estimate the weight ph =
(1/n)

∑n
i=1 I(Zi ∈ Jh) and compute the sam-

ple mean mh = (1/nph)
∑

Zi∈Jh X̃i on each
sliced interval.

3. Form MSIR =
∑H

h=1 phmhm
⊤
h and let ϕk be

its eigenvectors. The directions are estimated
by βk = C

−1/2
X ϕk for k = 1, . . . , q.

A.4 PMS Estimator Implementation

For multivariate variable Z ∈ Rp3 , let Zij denote
the j-th coordinate of i-th sample, the PMS esti-
mator can be achieved through the following Algo-
rithm 2.

The weights wj can be chosen as either equal
weights or proportional to the leading eigenvalues
of Mj . Then the leading q eigenvectors ψ1, . . . , ψq

of MPMS can be used to recover SZ|X .

A.5 Detail of WEAT

Let X and Y be two sets of target words of equal
size n with their embedding {xi}ni=1 and {yi}ni=1,
and A, B the two sets of attribute words with their
embedding {ai}|A|

i=1 and {bi}|B|
i=1. The WEAT uses

the difference of averaged distance to measure the
similarity of a vector w to two sets A and B. The
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Algorithm 2 PMS Estimator
Input: Data {(Xi, Zi)}ni=1, partition H , covari-
ance matrix CX and weights {wj}p3j=1;
Output: PMS estimator MPMS;

1: for j = 1, . . . , p3 do
2: Slice the support of Zj into H intervals de-

noted as {Jj,h}Hh=1

3: for h = 1, . . . ,H do
4: Estimate the weight on each interval

pj,h = 1
n

∑n
i=1 I(Zij ∈ Jj,h);

5: Compute the standardized mean on each
interval mj,h = 1

npj,h

∑
Zij∈Jj,h C

−1
X Xi;

6: end for
7: Obtain the estimator for each dimension

MSIR
j =

∑H
h=1 pj,hmj,hm

⊤
j,h;

8: end for
9: Calculate the weighted sum of estimators
MPMS =

∑p3
j=1wjM

SIR
j ;

10: Return: MPMS.

test statistic is

s(X,Y,A,B) =
∑

x∈X
s(x,A,B)−

∑

y∈Y
s(y,A,B)

where

s(w,A,B) =
1

|A|
∑

a∈A
cos(w, a)− 1

|B|
∑

b∈B
cos(w, b)

In other words, s(w,A,B) measures the asso-
ciation of the word w with the attribute, and
s(X,Y,A,B) measures the differential association
of the two sets of target words with the attribute.

Let {(Xi, Yi)}i denote all the partitions ofX∪Y
into two sets of equal size. The one-sided p-value
of the permutation test is

Pri [s (Xi, Yi, A,B) > s(X,Y,A,B)]

The effect size is

meanx∈X s(x,A,B)−meany∈Y s(y,A,B)

std-dev w∈X∪Y s(w,A,B)

It is a normalized measure of how separated the
two distributions (of associations between the tar-
get and attribute) are.

All word lists are from (Caliskan et al., 2017).
Because GloVe embeddings are uncased, we use
lowercase words.

A.6 Detail of SEAT

In this section, we provide a complete set of results
for all SEAT tests. All of the baseline results are
from (Meade et al., 2022). Also, for detailed at-
tribute word sets and the target word sets, please
refer to their GitHub repo. Table 4 are tasks for
Gender debias. Table 5 are tasks for Race debias.
Table 6 are tasks for Religion debias.

A.7 Proof of Theorem 6.1

Proof. According to the definition of conditional
independence, for any measurable function f , we
have f(X) ⊥⊥ Z | QX because the randomness of
f(X) only comes from the random variable X .

For the debias task, notice that X ⊥⊥ Z | QX ,
thus X ⊥⊥ Z | QX . It implies that Z only depends
onQX . Therefore, if we eliminate those correlated
part and denote X̃ = (I − Q)X , we have X̃ ⊥⊥
Z. It achieves the goal of the debias task defined
above.

For the fairness task, if we assume X ⊥
⊥ Y | QyX , which implies Y = f0(QyX)
for some measurable function f0. Notice that
Span{Qy} ⊂ Span{Q}, then Span{Qy} is or-
thogonal to Span{I − Q}, which implies (I −
Q)X ⊥⊥ QyX . Therefore, (I − Q)X ⊥⊥ Z | Y
since the randomness of Y comes from QyX . It
achieves the goal of the fairness task defined above
if we let X̃ = (I −Q)X .

Remark A.1. We should emphasize that in the
above theorem, the random vectors X , Y , and Z
are defined on the Euclidean space Rp1 , Rp2 and
Rp3 respectively. For each random variable, taking
X as an example, the sample space is defined as
Ω = B(Rp1), which is Borel set generated by all
open set on Rp1 , and the σ-algebra Σ is generated
by Ω, i.e. Σ = σ(Ω). In this way, for any mea-
surable function f satisfying the sample space of
f(X) is included in the sample space of X , we
have σ(f(X)) ⊂ σ(X), and thus the desired prop-
erties of conditional independence hold in the proof

A.8 Effect of q

In this section, we use MOJI data to illustrate the
impact of the dimension removed q on performance
of debiasing and task accuracy, see Figure 3 below.

It is important to note that the debiasing pro-
cedure may distort the relevant concepts or key
information, denoted by Y . Generally, as q in-
creases, both the sensitive information Z and part
of the target information Y are excluded from the
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SEAT Gender Tasks

Model SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. Effect Size (↓)

BERT 0.931 0.090 -0.124 0.937 0.783 0.858 0.620
CDA 0.846 0.186 -0.278 1.342 0.831 0.849 0.722
Dropout 1.136 0.317 0.138 1.179 0.879 0.939 0.765
INLP 0.317 -0.354 -0.258 0.105 0.187 -0.004 0.204
SentDebias 0.350 -0.298 -0.626 0.458 0.413 0.462 0.434

SUP -0.028 -0.286 -0.403 -0.255 0.213 -0.124 0.218

Table 4: SEAT effect sizes for gender debiased BERT. Effect sizes closer to 0 are indicative of less biased model
representations.

SEAT Race Tasks

Model ABW-1 ABW-2 SEAT-3 SEAT-3b SEAT-4 SEAT-5 SEAT-5b Avg. Effect Size (↓)

BERT -0.079 0.690 0.778 0.469 0.901 0.887 0.539 0.620
CDA 0.231 0.619 0.824 0.510 0.896 0.418 0.486 0.569
Dropout 0.415 0.690 0.698 0.476 0.683 0.417 0.495 0.554
INLP 0.295 0.565 0.799 0.370 0.976 1.039 0.432 0.639
SentDebias -0.067 0.684 0.776 0.451 0.902 0.891 0.513 0.612

SUP 0.019 0.428 0.542 0.193 0.611 0.716 0.514 0.432

Table 5: SEAT effect sizes for race debiased BERT. Effect sizes closer to 0 are indicative of less biased model
representations.

SEAT Religion Tasks

Model Religion-1 Religion-1b Religion-2 Religion-2b Avg. Effect Size (↓)

BERT 0.744 -0.067 1.009 -0.147 0.492
CDA 0.355 -0.104 0.424 -0.474 0.339
Dropout 0.535 0.109 0.436 -0.428 0.377
INLP 0.473 -0.301 0.787 -0.280 0.460
SentDebias 0.728 0.003 0.985 0.038 0.439

SUP 0.392 -0.066 0.492 0.092 0.261

Table 6: SEAT effect sizes for religion debiased BERT. Effect sizes closer to 0 are indicative of less biased model
representations.

Figure 3: Trends of accuracy and GAP for MOJI data
with number of dimension q removed.

debiased representation. This occurs due to the
intersection of the subspaces spanned by Z and Y .
Consequently, a rise in q leads to a simultaneous
reduction in accuracy and the gap, illustrating a del-
icate equilibrium and trade-off between targeting
and debiasing performance.

A.9 Limitations

All our result is based on the English dataset, as
there is a lack of benchmark of fairness in other lan-
guages. Also, we only consider the transformation
under a linear framework, where we aim to find the
projection matrix P . However, the estimation pro-
cedure for the central subspace SZ|X has been well
developed and can find nonlinear transformation g,
which we leave for future exploration. Also, for the
SEAT evaluation, there are some researchers point
out that SEAT sometimes not able to detect the
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bias inside the language model. But compared with
other debiasing studies that only report on SEAT,
we test our method on much more comprehensive
experiments.

A.10 Ethics Statement
Our research is fundamentally methodological in
nature, focusing on the development of strategies
to mitigate biases in NLP. We have taken careful
measures to ensure that our work adheres to recog-
nized ethical guidelines. For all evaluations related
to bias and fairness, we have strictly followed es-
tablished protocols, utilizing well-known tasks to
evaluate biases related to gender, religion, and race.
It is important to clarify that our use of these tasks
is for analytical purposes only, with the sole inten-
tion of understanding and minimizing the biases
present in AI systems. Our goal is to promote fair-
ness and inclusivity in AI, and we firmly advocate
for the respectful and unbiased treatment of all in-
dividuals, irrespective of their gender, religion, or
race.

A.11 Reproducibility
Hyperparameter tuning: For our method, the main
hyperparameter is the q: the number of directions
we want to project. We use regular grid search to
find the best hyperparameter. For classifiers men-
tioned in Algorithm 1, we use the logistic classifier
in sklearn.

Computational detail: We conduct all our ex-
periments on an Ubuntu Server with CPU AMD
Ryzen Threadripper 3990X 64-Core Processor and
256G RAM. Since our experiments do not need
many computational resources (no retraining or
fine-tuning), no GPU is needed.

Baseline results: Most of the baseline results are
from recently published papers of well-known con-
ferences. In static embedding evaluation, the INLP
results are calculated by our code using the em-
bedding they provided, which has a slightly better
result than they reported in their paper.
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