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Abstract

Accurate uncertainty quantification is crucial
for the safe deployment of machine learning
models, and prior research has demonstrated
improvements in the calibration of modern lan-
guage models (LMs). We study in-context
learning (ICL), a prevalent method for adapt-
ing static LMs through tailored prompts, and
examine the balance between performance and
calibration across a broad spectrum of natural
language understanding and reasoning tasks.
Through comprehensive experiments, we ob-
serve that, with an increasing number of ICL
examples, models initially exhibit increased
miscalibration before achieving better calibra-
tion and miscalibration tends to arise in low-
shot settings. Moreover, we find that meth-
ods aimed at improving usability, such as fine-
tuning and chain-of-thought (CoT) prompting,
can lead to miscalibration and unreliable nat-
ural language explanations. Furthermore, we
explore recalibration techniques and find that
a scaling-binning calibrator can reduce calibra-
tion errors consistently.

1 Introduction

Language models (LMs) that encompass
transformer-based architectures (Brown et al.,
2020; Chowdhery et al., 2023; OpenAI, 2023) can
generate coherent and contextually relevant texts
for various use cases. Despite their impressive
performance, these models occasionally produce
erroneous or overconfident outputs, leading to
concerns about their calibration (Dawid, 1982;
DeGroot and Fienberg, 1983) which measures how
faithful a model’s prediction uncertainty is. Such a
problem is pressing when users adapt them using a
recent paradigm called in-context learning (Brown
et al., 2020) to construct performant predictors,
especially for applications in safety-critical
domains (Bhatt et al., 2021; Pan et al., 2023).

We provide an in-depth evaluation and analysis
of how well these models are calibrated - that is, the

alignment between the model’s confidence in its
predictions and the actual correctness of those pre-
dictions. This token-level calibration assessment
enables us to measure the discrepancy between the
model’s perceived and actual performance to as-
sess its accuracy and reliability through a Bayesian
uncertainty lens.

We find that LM such as LLaMA (Touvron et al.,
2023a) is poorly calibrated in performant settings
and there exists a calibration-accuracy trade-off
(Fig.1) for low-shot settings (k < 4): as we in-
crease the amount of in-context samples, both
prediction accuracy and calibration error increase.
Such a trade-off can be improved using more ICL
examples (k = 8) and larger models. Crucially, this
calibration degradation worsens when fine-tuning
occurs using specialized data to improve usability,
such as curated instructions (Dubois et al., 2023),
dialogues (Zheng et al., 2023), or human preference
data (Ziegler et al., 2019). Though previous com-
mon practice suggests recalibrating models’ logits
via temperature scaling (Guo et al., 2017), we show
that in contrast to classic regimes, the miscalibra-
tion issue in ICL can not be easily addressed us-
ing such well-established scaling approaches (Platt
et al., 1999). Thus we propose to use scaling-
binning (Kumar et al., 2019), which fits a scaling
function, bins its outputs, and then outputs the av-
erage of the function values in that bin, to reduce
the expected calibration error below 0.1.

Furthermore, we study the trade-off in reasoning
tasks that involve generation of explanations (Cam-
buru et al., 2018; Nye et al., 2021; Wei et al., 2022)
before the answer, showing that the model can pro-
duce confidently wrong answers (using confidence
histograms and reliability plots) when prompted
with explanations on Strategy QA (Geva et al.,
2021), Commonsense QA (Talmor et al., 2018),
OpenBook QA (Mihaylov et al., 2018), World Tree
(Jansen et al., 2018). We carefully design our hu-
man evaluation and observe that, with the increase
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(b) The accuracy and calibration of LLaMA-7B

Figure 1: The accuracy-calibration trade-off of in-context learning. (a) ICL concerns taking task-specific
examples as the prompt to adapt a frozen LLM to predict the answer. (b) Classification accuracy and expected
calibration error of ICL. As the number of ICL samples increases, the prediction accuracy improves (Left); at the
same time, the calibration first worsens (k < 3) and then becomes better (Right).

in model sizes and the quantity of ICL examples,
there is a corresponding rise in the proportion of
confidently predicted examples among those incor-
rectly forecasted. Moreover, we find that a high pro-
portion of wrong predictions are of high confidence
and showcase those typical confidently wrong ex-
amples of LMs.

Moreover, we find that choosing ICL samples
from the validation set does not naturally lead to
calibrated predictions, showing that ICL learns in
a fairly different way than stochastic gradient de-
scent, a common prototype previous works hypoth-
esize (Von Oswald et al., 2023). Motivated by this
difficulty, we design controlled experiments to illus-
trate that when examples in the prompt are sampled
from the same task instead of repeating a given ex-
ample in various ways, the learning performance
would be improved.

2 Related Work

Calibration of language models. Calibration is
a safety property to measure the faithfulness of
machine learning models’ uncertainty, especially
for error-prone tasks using LMs. Previous works
find that pre-training (Desai and Durrett, 2020) and
explanation (Zhang et al., 2020; González et al.,
2021) improves calibration. Models can be very
poorly calibrated when we prompt LMs (Jiang
et al., 2021), while calibration can also depend
on model size (Kadavath et al., 2022). (Braverman
et al., 2020) assesses the long-term dependencies in
a language model’s generations compared to those
of the underlying language and finds that entropy
drifts as models such as when GPT-2 generates
text. The intricacy of explanations on complemen-
tary team performance poses additional challenges
due to the overreliance on explanations of users

regardless of their correctness (Bansal et al., 2021).
(Mielke et al., 2022) gives a framework for lin-
guistic calibration, a concept that emphasizes the
alignment of a model’s expressed confidence or
doubt with the actual accuracy of its responses.
The process involves annotating generations with
<DK>, <LO>, <HI> for confidence levels, then train-
ing the confidence-controlled model by appending
the control token <DK/LO/HI> at the start of the
output, followed by training a calibrator to predict
these confidence levels, and finally predicting confi-
dence when generating new examples. (Tian et al.,
2023) finds that asking LMs for their probabilities
can be better than using conditional probabilities
in a traditional way. LHTS (Shih et al., 2023) is a
simple amortized inference trick for temperature-
scaled sampling from LMs and diffusion models.
To aggregate log probabilities across semantically
equivalent outputs, Kuhn et al. (2023) utilize bidi-
rectional entailment through a model to identify
outputs that are semantically similar, thereby refin-
ing the uncertainty estimation process. (Cole et al.,
2023) identifies the calibration challenge in am-
biguous QA and distinguishes uncertainty about the
answer (epistemic uncertainty) from uncertainty
about the meaning of the question (denotational un-
certainty), proposing sampling and self-verification
methods. Kamath et al. (2020) trains a calibrator
to identify inputs on which the QA model errs and
abstains when it predicts an error is likely. Zhao
et al. (2023) proposes the Pareto optimal learning
assessed risk score for calibration and error cor-
rection but requires additional training. Kalai and
Vempala (2023) show the trade-off between cali-
bration and hallucination but they didn’t study it in
a realistic setting and how the predicted answer’s
accuracy would impact those two safety aspects.
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In-context learning. Large models such as GPT-3
(Brown et al., 2020) have demonstrated the po-
tential of in-context learning, a method where the
model infers the task at hand from the context pro-
vided in the input, without requiring explicit retrain-
ing or fine-tuning for each new task. Some recent
works attempt to understand ICL through meta-
learning (Von Oswald et al., 2023), Bayesian infer-
ence (Xie et al., 2021), mechanistic interpretability
(Olsson et al., 2022), algorithm selection (Bai et al.,
2023), synthetic data and simple function classes
(Garg et al., 2022; Akyürek et al., 2022; Raven-
tós et al., 2023). Notably, unlike previous works
(Zhao et al., 2021; Han et al., 2023; Fei et al., 2023;
Zhou et al., 2023a) that focus on improving task
accuracy using the same “calibration” terminology,
we study the uncertainty of ICL and measure its
trade-off with accuracy.

3 Background

Setting. Given a pre-trained language model
Pθ(wt|w<t), we seek to adapt it using the prompt
w0 = [x1, y1, x2, y2, . . . , xn−1, yn−1, xn] to
generate a predicted answer yn = Pθ(w0). In
the context of reasoning, a popular approach is
to hand-craft some explanations/rationales/chain-
of-thoughts e in the prompt w0 =
[x1, e1, y1, x2, e2, y2, . . . , xn−1, en−1, yn−1, xn]
to generate explanation en and answer yn, for the

test sample:
en︷ ︸︸ ︷

w1, w2, . . . , wk, yn = Pθ(w0).
We extract answer token probabilities of LMs,

e.g. for binary classification tasks, we filter and ex-
tract probabilities P (“Yes”) and P (“No”), based
on which we calculate the following statistics for
studying the confidence and calibration of LMs:
Confidence and feature norm. We record the
maximum probability of the answer token as its
confidence Conf = Pθ(yn|w<n) and the feature
norm zn as the intermediate hidden state before the
linear prediction layer.
Entropy rate. We denote the entropy of
a token wt at position t as H(wt|w<t) =
−Ewt∼Pθ(·|w<t)[logPθ(wt|w<t)]. We typically
measure it based on the answer token via setting
wt = yn. Note that auto-regressive LMs are trained
via maximizing the negative log-likelihood objec-
tive L = −Et[logPθ (wt|w<t)] on massive cor-
pora.
Empirical estimate of the expected calibration
error (ECE) In the realm of probabilistic classi-
fiers, calibration is a crucial concept. A classi-

fier, denoted as Pθ with parameters θ and oper-
ating over C classes, is said to be "canonically
calibrated" (Kull and Flach, 2015) when, for every
probability distribution p over the C classes and
for every label y, the probability that the label is
y given the classifier’s prediction is p matches the
component of p corresponding to y. This is mathe-
matically represented as, ∀p ∈ ∆C−1, ∀y ∈ Y :

P (Y = y | Pθ(X) = p) = py. (1)

Here, ∆C−1 symbolizes the (C − 1)-dimensional
simplex, which encompasses all potential probabil-
ity distributions over the C classes.

A simpler calibration criterion is the "confidence
calibration." In this case, a classifier is deemed cali-
brated if, for every top predicted probability p∗, the
probability that the true label belongs to the class
with the highest predicted probability, given that
this maximum predicted probability is p∗, equals
p∗. Formally: ∀p∗ ∈ [0, 1],

P (Y = c(X) | maxPθ(X) = p∗) = p∗, (2)

where c(X) = argmax p and ties are broken ar-
bitrarily. To gauge the calibration of a model, we
adopt Expected Calibration Error (ECE (Guo et al.,
2017)) defined as:

E [|p∗ − E [Y = c(X) | maxPθ(X) = p∗]|] . (3)

In real-world applications, this quantity cannot
be computed without quantization. So, the ECE is
approximated by segmenting predicted confidences
into M distinct bins, B1, . . . , BM . The approxima-
tion is then computed as:

ÊCE =

M∑

m=1

|Bm|
n
|acc (Bm)− conf (Bm)| .

Here, acc (Bm) is the accuracy within bin Bm,
and conf (Bm) is the average confidence of pre-
dictions in bin Bm. The total number of samples
is represented by n, and the dataset consists of n
independent and identically distributed samples,
{(xi, yi)}ni=1. In our work, we use this estimator
to approximate the ECE.

4 Experiments

We briefly summarize our results and findings be-
fore explaining the experimental settings.
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Dataset
LLaMA-30B

0-shot 1-shot 2-shot 3-shot 4-shot 8-shot
ECE Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE Acc

Text Classification
AGNews 0.261 0.37 0.043 0.830 0.049 0.817 0.067 0.810 0.049 0.821 0.047 0.855

RTE 0.023 0.672 0.051 0.742 0.060 0.747 0.050 0.738 0.048 0.748 0.058 0.752
CB 0.069 0.500 0.312 0.696 0.216 0.789 0.217 0.834 0.192 0.814 0.181 0.796

SST-2 0.083 0.607 0.163 0.930 0.139 0.940 0.126 0.961 0.112 0.964 0.080 0.964
Reasoning with Scratchpad

Strategy QA 0.204 0.450 0.154 0.619 0.174 0.654 0.172 0.660 0.161 0.672 0.152 0.665
Commonsense QA 0.048 0.356 0.232 0.589 0.290 0.608 0.253 0.675 0.283 0.644 0.289 0.653

World Tree 0.112 0.534 0.211 0.570 0.251 0.621 0.185 0.680 0.206 0.646 - -
OpenBook QA 0.036 0.386 0.231 0.561 0.255 0.604 0.207 0.644 0.206 0.648 0.191 0.662

Table 1: Accuracy and Calibration of LLaMA-30B model with across four text classification datasets and four
reasoning datasets. Results are excluded when the data exceeds the context length limit.
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Figure 2: Reliability plots and confidence histograms of LLaMA models on 4-shot learning tasks. Results of
different sizes 7B (left), 13B (middle), and 30B (right) are plotted.

• For the base LMs we considered, they are cali-
brated when prompting with a sufficient amount
of ICL examples to get non-trivial performance.

• As we increase the number of ICL examples,
models tend to be first more miscalibrated and
then calibrated. In low-shot settings (k < 4),
models can be mis-calibrated, in part due to poor
data (aleatoric) uncertainty.

• Interventions that improve usability such as fine-
tuning, and chain-of-thought (CoT) prompting
would lead to miscalibration. The generated ex-
planations from CoT can improve predictive re-
sults but may not be reliable by human evalua-
tion.

4.1 Experimental Settings

Models. We study decoder-only autoregressive
LMs involving LLaMA (Touvron et al., 2023a),
ranging from 7B to 30B, and its variants fine-
tuned with instruction, dialog, or RLHF like Al-
paca (Dubois et al., 2023), Vicuna (Zheng et al.,
2023), and LLaMA2-Chat (Touvron et al., 2023b).
Datasets and tasks. We used both traditional
NLU tasks such as AGNews (Zhang et al., 2015),
TREC (Voorhees and Tice, 2000), CB (Schick and
Schütze, 2021), SST-2 (Socher et al., 2013), DBPe-
dia (Zhang et al., 2015), as well as reasoning ques-
tion answering tasks like Strategy QA (Geva et al.,
2021), Commonsense QA (Talmor et al., 2018),
OpenBook QA (Mihaylov et al., 2018), World Tree
(Jansen et al., 2018). Notably, the reasoning task
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performance can be greatly improved in general
via prompting methods like scratchpad (Nye et al.,
2021; Wei et al., 2022) that enables models to gen-
erate natural language explanations before predict-
ing an answer.
In-context learning settings. For k-shot learning,
we prompt the model via sampling k examples
from the training set for each test example. Each
experiment is repeated 10 times to reduce variance
and we report the mean results. We use M = 10
bins for calculating calibration errors.

4.2 Numerical Results

Model performance and calibration. We record
the performance and calibration errors for k-shot
learning (k = 0, 1, 2, 3, 4, 8), characterizing the
calibration-accuracy trade-off in both classic and
realistic settings (Tab. 1). Our findings are two-
fold: as more in-context examples are included,
we observe a concurrent rise in both accuracy and
calibration error across most low-shot situations.
Especially, when k = 0 increases to k = 1, there
is a marked boost in both accuracy and calibration
error, demonstrating the importance of in-context
examples in learning performance while one sin-
gle example may not be able to reduce aleatoric
uncertainty. In particular, for reasoning tasks, we
explore prompting approaches that explicitly in-
clude explanations in reasoning tasks, i.e. scratch-
pad (Nye et al., 2021) or chain-of-thought (Wei
et al., 2022), showing that calibration significantly
degrades after generating a long context for reason-
ing and explaining the final answer. We also note
that having more ICL examples does not necessar-
ily lead to better calibration though the predictive
performance can generally improve (e.g., k = 8
for CB in Tab.1). This may stem from the intrinsic
limitations of transformers in effectively modeling
long-term dependencies.
Post-hoc recalibraiton. We conducted experi-
ments with three strategies (Algorithm 1) to address
miscalibration using temperature scaling (Guo
et al., 2017) and scaling-binning (Kumar et al.,
2019) with learnable parameter w:

1. (0-shot) Learning w from the training split
and applying it to all test samples with differ-
ent shot numbers.

2. (k-shot) Learning w for each k-shot ICL;
in other words, different temperatures are
learned for different shot numbers in ICL.

3. (Fix w) Fixing the prompt for each experi-
ment and learning w corresponding to the
fixed prompt. In other words, w is learned
for calibration for every possible ICL prompt.

In Appendix Alg. 1, we introduce the recali-
bration algorithm employing temperature scaling.
Additionally, we utilize the scaling-binning cali-
brator (Kumar et al., 2019), which fits a calibra-
tion function w ∈ W to the recalibration dataset:
argminw

∑
(xi,yi)

ℓ(w ·Pθ(xi), yi), where ℓ is log-
loss. Subsequently, the input space is partitioned
into bins, ensuring an equal number of inputs in
each bin (defaulting to 10 bins). Within each bin,
the average of the w values is computed and out-
putted for recalibration.

Upon examination of Table 3 and Table 4, it
is evident that none of the aforementioned strate-
gies utilizing temperature scaling achieves satis-
factory calibration performance. This finding con-
trasts with the well-established success of scaling
confidence scores in the supervised learning set-
ting, where it effectively reduces calibration errors
(Guo et al., 2017). The fact that applying a post-
processing calibration method, such as temperature
scaling, cannot directly resolve the miscalibration
issue suggests that ICL might have different prop-
erties compared to predictions from classical su-
pervised learning models. On the other hand, the
scaling-binning method demonstrates superior per-
formance in our experiments, which successfully
reduces calibration errors below 0.1.
The effect of fine-tuning. We show that vicuna, al-
paca, and LLaMA2-Chat are all more accurate but
less calibrated than their LLaMA counterpart back-
bones (Fig. 3), the margin is especially large for
reasoning tasks and vicuna. Our finding indicates
that fine-tuning might significantly degrade calibra-
tion, corroborating the evidence reported in GPT-
4 (OpenAI, 2023), albeit it can greatly improve
the reasoning accuracy. Our results provide evi-
dence that though fine-tuning on carefully curated
datasets can greatly improve question-answering
performance, especially for hard tasks like reason-
ing problems, attention may need to be paid when
assessing the calibration of those models’ predic-
tions. Moreover, we include results of Mistral-7B
(Jiang et al., 2023), a sparse Mixture of Experts
(MoEs) architecture with sliding window attention.
As a base model, it shows similar performance and
calibration compared with LLaMA2-7B, indicat-
ing that our conclusion still holds for the model
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1-shot 2-shot 4-shot 8-shot
Avg Acc Avg ECE

ACC ECE ACC ECE ACC ECE ACC ECE
Vanilla 0.740 0.098 0.877 0.132 0.917 0.108 0.954 0.064 0.872 0.100

Repeat prompt 0.740 0.098 0.693 0.155 0.801 0.117 0.820 0.111 0.764 0.120
Repeat context 0.740 0.098 0.668 0.208 0.657 0.220 0.607 0.219 0.668 0.186

Table 2: Acc and ECE of LLaMA-7B model on SST-2 with different prompt repetition strategies.
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Figure 3: Accuracy and calibration errors of base models LLaMA and Mistral, as well as fine-tuned variants.
Reported Acc and ECE results are averaged across experiments conducted with {0, 1, 2, 4, 8} shots.

Dataset Strategy 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot Avg

SST-2

None 0.043 0.223 0.119 0.101 0.060 0.049 0.099
0-shot 0.043 0.216 0.082 0.074 0.047 0.057 0.087
k-shot 0.034 0.197 0.101 0.079 0.041 0.038 0.139
Fix w 0.035 0.176 0.086 0.073 0.047 0.043 0.077

CB

None 0.125 0.316 0.177 0.202 0.221 0.210 0.203
0-shot 0.015 0.252 0.162 0.217 0.217 0.199 0.209
k-shot 0.015 0.357 0.187 0.188 0.212 0.216 0.214
Fix w 0.015 0.217 0.159 0.173 0.182 0.210 0.190

RTE

None 0.108 0.110 0.142 0.122 0.128 0.120 0.122
0-shot 0.107 0.112 0.143 0.114 0.125 0.116 0.119
k-shot 0.108 0.115 0.136 0.112 0.126 0.125 0.120
Fix w 0.101 0.082 0.097 0.068 0.076 0.097 0.088

AGNews

None 0.089 0.057 0.071 0.121 0.085 0.123 0.090
0-shot 0.067 0.087 0.098 0.160 0.107 0.130 0.114
k-shot 0.083 0.074 0.059 0.109 0.073 0.082 0.079
Fix w 0.080 0.074 0.080 0.091 0.073 0.080 0.080

Table 3: ECE for different calibration strategies us-
ing temperature scaling (Guo et al., 2017) of base
models LLaMA-2-7B across various shot settings.

Dataset Strategy 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot Avg

SST-2

None 0.043 0.223 0.119 0.101 0.060 0.049 0.099
0-shot 0.015 0.062 0.055 0.060 0.062 0.057 0.052
k-shot 0.022 0.007 0.008 0.013 0.004 0.008 0.010
Fix w 0.021 0.004 0.008 0.010 0.005 0.009 0.010

CB

None 0.125 0.316 0.177 0.202 0.221 0.210 0.203
0-shot 0.122 0.130 0.121 0.086 0.083 0.119 0.110
k-shot 0.119 0.109 0.100 0.109 0.101 0.049 0.094
Fix w 0.119 0.088 0.085 0.110 0.121 0.069 0.099

RTE

None 0.108 0.110 0.142 0.122 0.128 0.120 0.122
0-shot 0.078 0.083 0.090 0.100 0.102 0.115 0.093
k-shot 0.089 0.084 0.089 0.095 0.101 0.112 0.096
Fix w 0.077 0.086 0.092 0.100 0.108 0.117 0.099

AGNews

None 0.089 0.057 0.071 0.121 0.085 0.123 0.090
0-shot 0.007 0.013 0.011 0.014 0.013 0.014 0.013
k-shot 0.001 0.009 0.015 0.018 0.005 0.005 0.009
Fix w 0.015 0.019 0.019 0.005 0.008 0.017 0.013

Table 4: ECE for different calibration strategies us-
ing scaling-binning (Kumar et al., 2019) calibrator of
base models LLaMA-2-7B across various shot settings.

pre-trained with significantly different data and ar-
chitecture. Comprehensive results and variance
across different configurations are elaborated in
Appendix Table 11.
The effect of prompt formats. In our study, we
explore the effects of different prompt strategies
using three distinct methods. We consider pre-
dicting the label yn of test example xn. First,
the Repeat-context approach involves construct-
ing prompts as w0 = [x1, x1, ..., x1, y1, xn], where
the context x1 is repeated n-1 times, but the la-
bel y1 is not included in the repetition. Next, the
Repeat-prompt strategy shapes the prompt as w0 =
[x1, y1, ..., x1, y1, xn], where both the context x1
and the label y1 are repeated n-1 times. Finally,
the Normal involves constructing the prompt as
w0 = [x1, y1, x2, y2, ..., xn−1, yn−1, xn], system-
atically incorporating distinct context-label pairs.

The findings, as detailed in Tab. 2, reveal certain
insights: firstly, integrating labels within prompts
significantly decreases uncertainty and enhances
learning performance. The reason may be that it
aids the model in understanding the label space,
which leads to better classification outcomes. In
contrast, simply repeating the context without la-
bels does not lead to better outcomes. Secondly,
the diversity of ICL examples in the prompt greatly
affects performance, a potential explanation is it
promotes better task learning (Pan, 2023). Those
observations corroborate that ICL is performant
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Figure 4: Illustration of confidence distribution. The number of samples whose confidence is greater than a
threshold on Commonsense QA.
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Figure 5: The number of wrongly classified examples whose confidence is above a threshold with different numbers
of shots on Commonsense QA.

when the number of ICL examples is large and
they demonstrate consistent task properties. Impor-
tantly, the trade-off persists for different controlled
scenarios, i.e. as we increase the number of ICL ex-
amples, models tend to be first more miscalibrated
and then calibrated.

4.3 Qualitative Results

Reliability diagram and confidence histogram.
A reliability diagram is a graphical tool used to
evaluate the calibration of probabilistic predictions
of a model across multiple classes; it compares
the predicted probabilities of each class against
the actual outcomes, with a perfectly calibrated
model having its values lie on the diagonal y = x
line. A confidence histogram, on the other hand,
displays the distribution of the model’s prediction
confidences across all classes, showing how often
the model predicts certain probabilities.

Recall that we found significant miscalibration
for reasoning with CoT settings, therefore we
closely examine the poorly calibrated reasoning
cases using the above plots (Fig. 2 and Fig. 6).
Our results on 4-shot settings show that for the rea-
soning problems (Strategy QA, Commonsense QA,
OpenBook QA, World Tree) we consider, models
are consistently over-confident with ECEs above
0.15. Larger models are better both in both ACC
and ECE but for OpenBook QA, calibration wors-

ens as the model size increases. Moreover, it’s
observed that confidence scores tend to concentrate
on high values as we enlarge the model size. Es-
pecially in Commonsense QA and OpenBook QA,
the confidence level of nearly all predictions of 13B
and 30B models predominantly exceeds 0.8.

4.4 Ablation Studies

For case studies, we research how miscalibration
can impact the selective classification of LMs,
where models are supposed to abstain from un-
certain predictions in high-stakes settings.
Ablation with model sizes. As we enlarge the
size of models, they become more confident (as
measured by the confidence histogram) and accu-
rate (Fig. 2). Moreover, the ECE first increases
and then decreases. In some settings like SST-2
and OpenBookQA, calibration errors may have a
negative correlation with model sizes (Appendix
Tab.9).
Examine the hidden state and confidence score.
To better understand the miscalibration issue of
ICL, we conduct fined-grained experiments to ex-
amine ICL properties: we measure the norm of
the representation vectors1 for different numbers
of shots in ICL. Meanwhile, we also measure the
confidence and entropy of the prediction for yn,

1The representation vector refers to the intermediate repre-
sentation before the linear prediction layer.
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Dataset
LLaMA-30B

Norm Entropy Confidence
0-shot 1-shot 4-shot 8-shot 0-shot 1-shot 4-shot 8-shot 0-shot 1-shot 4-shot 8-shot

AGNews 78.8 92.3 92.1 92.2 3.920 0.650 0.595 0.444 0.214 0.821 0.819 0.865
CB 88.4 91.7 89.2 87.9 3.857 1.266 0.935 0.823 0.193 0.566 0.629 0.577

DBPdia 77.9 89.5 91.0 90.1 4.105 1.438 0.848 0.718 0.078 0.578 0.705 0.671

Table 5: Norm of representation, entropy, and confidence of LLaMA-30B across three text classification datasets.

Dataset Case Reasoning ŷ p

Commonsense

Question: What would you do if you have curiosity but are blind and paralyzed?
Options: A) hear news, B) analyse, C) go somewhere, D) examine thing, E) see favorite show

Ground Truth: B
7B If you have curiosity but are blind and paralyzed, you would

go somewhere to see things. You cannot hear news, analyse,
go somewhere, examine thing or see favorite show.

C 0.5046

13B If you are blind and paralyzed, you can’t see anything. So, you
can’t go somewhere. You can’t examine thing. You can’t see
favorite show. You can’t analyse. So, you can hear news.

A 0.8684

30B If you are blind and paralyzed, you cannot see your favorite
show. You cannot hear news as you are blind. You cannot
examine thing as you are paralyzed. You can go somewhere to
see things.

C 0.9720

Open Book

Question: What would you do if you have curiosity but are blind and paralyzed?
Options: A) hear news, B) analyse, C) go somewhere, D) examine thing, E) see favorite show

Ground Truth: B
7B A girl and her mom have the same hair length. D 0.6365
13B A girl and her mom have the same date of birth. A 0.9782
30B A girl and her mom have the same genes. A 0.9831

Table 6: Qualitative Results of LLaMA on Commonsense and OpenBook

and the results are summarized in Tab. 5. When
switching from 0-shot to 1-shot, all three measure-
ments (representation norm, entropy, and confi-
dence) drastically change; on the other hand, when
k increases (1→ 4→ 8), the change of measures
would become smoother. Our discovery shows
that adding in-context examples can substantially
impact model behaviors while the model behaves
relatively similarly for various shots once the task
is specified (k ̸= 0). Meanwhile, more ICL sam-
ples lead to smaller entropy and higher confidence
in most cases. Considering the alterations in fea-
ture representation, which can manifest in either
an augmentation of the representation’s norm or a
shift in direction, quantifying changes in feature
direction poses challenges. Thus, we have chosen
to examine changes in the norm as a surrogate mea-
sure, suggesting that as the number of ICL samples
increases, there is a systematic alteration in the
model’s features.

Confidence and wrongly classified reasoning ex-
amples. To inspect the failure modes of LMs,
we randomly sample 100 reasoning examples of
LLaMA and plot the distribution of wrongly pre-

dicted samples and the confidence scores via thresh-
olding. Similar to previous observations, as model
sizes and the number of ICL examples scale up,
LMs would generate more confident samples (Fig.
4 (c, d)). We observe behaviors where models with
larger sizes may be more error-prone and tend to
generate more confidently wrong explanatory sam-
ples (Fig. 5).

Examples of hallucinated explanations for
highly confident predictions. Next, we show-
case in Tab. 6 that models generate both wrong
explanations and incorrect predictions with high
confidence. We also observe that most of the wrong
predictions are highly confident, thus we manually
examine the correctness of explanations on com-
monsense QA, and found its high correlations with
predicted answer accuracy, which is the opposite
of token-level explainability that tends to get worse
when the accuracy improves. For additional qual-
itative examination of LLaMA’s performance on
Strategy QA and WorldTree, please refer to Table
12.
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5 Discussion and Concluding Remarks

In our investigation of the token-level calibration of
in-context learning in contemporary language mod-
els, we illustrate the intricate trade-off between ICL
performance and calibration. Our findings under-
score the importance of being circumspect in model
deployment, as maximizing ICL performance does
not invariably translate to improved calibration for
low-shot and reasoning settings. As LMs continue
to evolve and gain more capabilities such as having
long enough context windows that can include the
whole training set as in-context examples for some
downstream tasks, our result can be pedagogical
when users would like to examine their uncertainty
through prediction probabilities. Moreover, the
work suggests the following future directions:

Calibration beyond classification regimes. Our
findings indicate that in multi-choice or multi-class
classification tasks, even though the calibration of
answer tokens may deteriorate in high-performance
settings, there may be a positive correlation be-
tween accuracy and the correctness of explanations
in reasoning tasks. This suggests potential avenues
for future research in exploring strategies such as
the use of hedging words to express uncertainty
and examining their relationship with predictive
performance.

Implications in assessing beliefs of LMs. Previ-
ous works show that the expected calibration error
would decrease monotonically as the number of
ICL examples increases (Kadavath et al., 2022)
when querying LMs for answer probabilities. How-
ever, we find that zero-shot performance might be
weak for models less than 30B, and in low-shot
settings, calibration errors can sometimes be even
worse than zero-shot. This implies that a close
examination and careful control of epistemic un-
certainty and aleatoric uncertainty can be needed
before deriving conclusions in truthfulness (Liu
et al., 2023; Azaria and Mitchell, 2023) for low-
shot settings.
Limitations. We acknowledge the need to ex-
pand our evaluation, which is primarily focused
on QA and classification tasks, beyond existing
open-sourced language models and datasets. More-
over, we didn’t consider nuances such as inherent
disagreement about labels (Baan et al., 2022) and
adaptive calibration error measures (Nixon et al.,
2019) that might be important in certain use cases:
it’s worth noting that situations may arise where

multiple labels share the highest predicted proba-
bility. In such instances, the definition (Eq. (2))
doesn’t automatically become false; instead, we
opt for the first maximal probability. These cases
are less likely to occur in most of our experimen-
tal setups, where a substantial margin consistently
exists between different labels.
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A Extended Related Work

Uncertainty quantification in NLP. Uncertainty quantification in NLP, which often adopts the Bayesian
principle to sophisticated methods tailored for neural networks, aims to enhance the reliability of model
predictions. This may involve non-trivial designs as directly interpreting language model predictions via
probabilities (Kadavath et al., 2022) and linguistic expressions (Lin et al., 2022; Mielke et al., 2022; Zhou
et al., 2023b) may inadvertently lead to over-reliance on the model’s uncertainties (Si et al., 2023), thus
complicating the establishment of trustworthy common ground between humans and models (Buçinca
et al., 2021). Notable recent advancements include employing model confidence as a critical factor in
various applications like dialogue generation (Mielke et al., 2022), cascading prediction (Schuster et al.,
2021), open-domain QA (Fisch et al., 2020; Angelopoulos et al., 2022), summarization (Laban et al.,
2022), language modeling (Schuster et al., 2022), image captioning (Petryk et al., 2023).

B Additional Experimental Details

We provide prompts we adopt for experiments in Tab.7. Additional reliability plots are shown in Fig. 6.
Moreover, we provide extra results that extend those in the main text. Our implementation is open-sourced
at https://github.com/hlzhang109/icl-calibration. The greatest accuracy and ECE values are
highlighted in bold and red, respectively. Extremely poor performance due to length truncation is omitted.
Model performance and calibration. We present experimental results considering different model sizes
for text classification and reasoning in Tables 8 and 9, respectively. With the increase in model sizes, we
observed overall improvements in model performance across most datasets. However, the calibration error
(ECE) did not decrease immediately: for low-shot settings where k < 4, models tend to have an ECE
larger than 0.1. On the other hand, ECE can decrease given more ICL examples (k = 8) if context length
is adequate. Overall, zero-shot ICL can lead to good calibration results though the predictive performance
is substantially weaker. Interestingly, for some benchmarks like SST-2 and OpenBook QA, the ECE of
the 30B model even surpassed that of the 7B model. Moreover, the ECE curves of the 7B and 13B models
exhibited similar patterns to the 30B results as the number of ICL samples increased, as shown in the
main Tab. (1).
The effect of fine-tuning. We provide full results of all finetuned LLMs in Table 11, complementing
Fig. (3). We reach a similar conclusion as we explain in the main text: with an increasing number of
ICL examples, accuracy generally improves but ECE first increases then decreases and miscalibration is
widespread; an MoE model can also have the same accuracy-calibration trade-off; fine-tuning substantially
improves accuracy but hurts calibration by a large margin.
Results reliability. Furthermore, as prompting is susceptible to various forms of biases and noises
(Zhao et al., 2021; Han et al., 2023; Fei et al., 2023; Zhou et al., 2023a), to provide a comprehensive
understanding of the experimental outcomes, we delve into the variance across all experimental repetitions.
Table 10 provides a detailed analysis of the variance metrics, affirming the stability and reliability of our
experimental findings.
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Figure 6: Reliability plots and confidence histograms of LLaMA models on 4-shot reasoning tasks. Results of
different sizes 7B (left), 13B (middle), and 30B (right) are plotted.

Algorithm 1: Pseudocode for temperature scaling
Data: Pθ(w): Original output of the classification model, D: Training dataset, τ : Temperature

parameter, k: we use k-shot experimental settings, where during test the ICL prompts will
consist of k (sample, label) pairs.

Result: Adjusted probabilities after temperature scaling;

// Training process
// 0-shot: (wi, yi) is every training samples and corresponding label.
// k-shot: wi = {x1, y1, ..., xk, yk, xi} uses k prompt pairs.
// Fix w: the prompt in wi = {x1, y1, ..., xk, yk, xi} will be used for all training

instances and used during inference.
for each training sample (wi, yi) ∈ D do

Compute the original output: zi = Pθ(wi; θ);
Compute the cross-entropy loss: Li = CrossEntropy(zi, yi);

end
Compute the gradient of the loss to the temperature parameter: ∇τL = 1

|D|
∑|D|

i=1∇τLi;
Update the temperature parameter using gradient descent: τ ← τ − η∇τL;

// Test time
for each test sample xj do

Compute the original output with prompt: zj = Pθ(xj ; θ);
Compute the adjusted output: ẑj =

zj
τ ;

Compute the softmax probabilities: p̂j = Softmax(ẑj);
end
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Dataset Prompt Label

SST-2

Review: it may not be a great piece of filmmaking, but its power comes from its soul’s - eye view of how
well-meaning patronizing masked a social injustice, at least as represented by this case .
Sentiment: Positive

Review: smith’s point is simple and obvious – people’s homes are extensions of themselves,
and particularly eccentric people have particularly eccentric living spaces – but his subjects are charmers .
Sentiment:

Negative, Positive

CB

A: No, not really. I spend a lot of time with our income tax, though. especially, this year and last year.
Um, I have been married for just a few years, so I’ve had to really switch around from the EZ form to the,
uh, B: Schedule A. A: Right. B: Well, yeah. A: All the deductions and all that. B: Did you notice that
when they passed the new simplified tax act, it seemed like it made everything harder?
question: when they passed the new simplified tax act it seemed like it made everything harder. true, false,
or neither?
answer: true

There was a group of curious onlookers... Marie felt her legs give way beneath her, she sat
down on the edge of the pavement, feet in the gutter, doubled-up, sick and winded as if someone had
punched her in the stomach. She lifted up her head and looked again. She had watched scenes like this so
often in detective films and police series on television that she could hardly believe that this was real life.
question: this was real life. true, false, or neither?
answer:

True, False, Neither

RTE

The main institutionalised forms of recognition for those who have made a significant contribution in
the fields of physics, chemistry, medicine, literature, as well as for those working for peace (and more
recently in the area of economics), are the Nobel prizes.
question: Nobel Peace Prize candidates have been chosen. True or False?
answer: False

Egypt on Thursday strongly criticized Israeli new Foreign Minister Avigdor Lieberman for his
remarks that he refused to recognize the peace efforts initiated in 2007 in the U.S. city of Annapolis to
restore the peace talks with the Palestinians, reported the state MENA news agency. Liebermanś remarks
is "regrettable," Egyptian Foreign Ministry spokesman Hossam Zaki was quoted as saying, adding "his
remarks are the first blow to the peace efforts to come from the Israeli new government."
question: Hossam Zaki is the new Foreign Minister of Israel. True or False?
answer:

True, False

Strategy QA

Question: Can spiders help eggplant farmers control parasites? Choose the answer from True and False.
Answer: The potato tuber moth is a parasite that targets the plant family Solanaceae, including eggplant
Selenops radiatus is a spider genus in South Africa that effectively controls the potato tuber moth So, the
answer is: True

Question: Is the voice of Genie from Disney’s Aladdin still alive? Choose the answer from
True and False.
Answer:

True, False

Commonsense QA

"Question: Dan was a farmer with just one heifer. But that was okay, he only kept her for milk, and he
didn’t think he’d find good farmland in a place as cold as where?
A arizona
B farm yard
C michigan
D german field
E dairy farm
Answer: Michigan is a state in the us where it precipitates throughout the year and areas, where it
precipitates throughout the year, are generally cold. So the farmer thought he’d not find a good farmland
in a place as cold as michigan. Enslaving heifers or other animals for their milk is wrong as they want to
live free. All the places in the other options may not be cold. So, the answer is: C

Question: From where does a snowflake form?
A cloud
B snow storm
C billow
D air
E snowstorm
Answer:"

A, B, C, D, E

Table 7: Prompts used for text classification and reasoning tasks, with a single training example showcased per
task for illustrative purposes. The right column displays corresponding labels. The prompting formats and labels for
WorldTree and OpenBookQA are the same as those of the CommonsenseQA dataset.
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Metric Dataset Model Size 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot

ECE

AGNews
7B 0.067 0.105 0.225 0.158 0.086 0.075
13B 0.093 0.084 0.069 0.121 0.103 0.045
30B 0.261 0.043 0.049 0.067 0.049 0.047

CB
7B 0.133 0.218 0.172 0.197 0.202 0.215
13B 0.029 0.257 0.282 0.221 0.263 0.216
30B 0.069 0.312 0.216 0.217 0.192 0.181

RTE
7B 0.068 0.075 0.098 0.112 0.091 0.064
13B 0.042 0.104 0.048 0.048 0.049 0.050
30B 0.023 0.051 0.060 0.050 0.048 0.058

SST-2
7B 0.038 0.142 0.132 0.121 0.108 0.064
13B 0.051 0.134 0.108 0.084 0.073 0.053
30B 0.083 0.163 0.139 0.126 0.112 0.080

ACC

AGNews
7B 0.447 0.629 0.563 0.630 0.777 0.833
13B 0.490 0.812 0.773 0.720 0.775 0.847
30B 0.370 0.830 0.817 0.810 0.821 0.855

CB
7B 0.482 0.596 0.675 0.696 0.691 0.729
13B 0.554 0.627 0.659 0.691 0.611 0.709
30B 0.500 0.696 0.789 0.834 0.814 0.796

RTE
7B 0.552 0.668 0.653 0.646 0.653 0.698
13B 0.679 0.673 0.708 0.723 0.723 0.746
30B 0.672 0.742 0.747 0.738 0.748 0.752

SST-2
7B 0.483 0.799 0.877 0.908 0.917 0.954
13B 0.483 0.918 0.943 0.955 0.962 0.969
30B 0.607 0.930 0.940 0.961 0.964 0.964

Table 8: Accuracy and Calibration of LLaMA model with three sizes across four text classification datasets.
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Metric Dataset Model Size 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot

ECE

Commonsense QA
7B 0.070 0.155 0.237 0.227 0.238 -

13B 0.066 0.161 0.282 0.292 0.310 -
30B 0.048 0.232 0.290 0.253 0.283 -

OpenBook QA
7B 0.040 0.241 0.270 0.184 0.130 0.121

13B 0.031 0.132 0.217 0.209 0.191 0.175
30B 0.048 0.232 0.290 0.253 0.283 -

Strategy QA
7B 0.133 0.275 0.206 0.243 0.242 0.227

13B 0.051 0.154 0.170 0.192 0.188 0.190
30B 0.204 0.154 0.174 0.172 0.161 0.193

World Tree
13B 0.065 0.113 0.226 0.250 0.284 -
30B 0.112 0.211 0.251 0.185 0.206 -
7B 0.074 0.124 0.198 0.179 0.203 -

ACC

Commonsense QA
7B 0.224 0.292 0.388 0.421 0.406 -

13B 0.320 0.478 0.549 0.574 0.562 -
30B 0.356 0.589 0.608 0.675 0.644 -

OpenBook QA
7B 0.308 0.298 0.376 0.417 0.454 0.480

13B 0.362 0.454 0.509 0.551 0.580 0.611
30B 0.386 0.561 0.604 0.644 0.648 0.662

Strategy QA
7B 0.566 0.488 0.554 0.550 0.562 0.575
13B 0.554 0.598 0.621 0.595 0.618 0.612
30B 0.450 0.619 0.654 0.660 0.672 0.662

World Tree
7B 0.302 0.298 0.326 0.384 0.362 -

13B 0.444 0.437 0.495 0.519 0.492 -
30B 0.534 0.570 0.621 0.680 0.646 -

Table 9: Accuracy and Calibration of LLaMA models across three sizes on four reasoning datasets.

Dataset Metric 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot

CB
ACC 0.500±0.000 0.696±0.304 0.789±0.138 0.834±0.068 0.814±0.068 0.796±0.110

ECE 0.143±0.000 0.409±0.041 0.216±0.061 0.217±0.057 0.376±0.053 0.359±0.071

RTE
ACC 0.672±0.000 0.742±0.018 0.747±0.032 0.738±0.044 0.748±0.043 0.752±0.039

ECE 0.023±0.000 0.051±0.020 0.060±0.021 0.050±0.023 0.048±0.017 0.058±0.022

SST-2
ACC 0.607±0.000 0.930±0.025 0.940±0.066 0.961±0.017 0.964±0.012 0.964±0.011

ECE 0.106±0.000 0.339±0.026 0.139±0.058 0.126±0.053 0.310±0.022 0.287±0.014

AGnews
ACC 0.370±0.000 0.830±0.015 0.817±0.017 0.810±0.056 0.821±0.029 0.855±0.017

ECE 0.261±0.000 0.043±0.009 0.049±0.016 0.067±0.029 0.049±0.017 0.047±0.018

OpenBook QA
ACC 0.386±0.000 0.561±0.028 0.604±0.027 0.644±0.016 0.648±0.018 0.662±0.031

ECE 0.036±0.000 0.231±0.049 0.255±0.050 0.207±0.041 0.206±0.019 0.191±0.022

CommonSense QA
ACC 0.356±0.000 0.586±0.028 0.608±0.013 0.675±0.027 0.644±0.034 0.653±0.090

ECE 0.048±0.000 0.232±0.102 0.290±0.022 0.253±0.028 0.283±0.045 0.289±0.140

Strategy QA
ACC 0.450±0.000 0.619±0.030 0.654±0.033 0.660±0.022 0.672±0.015 -
ECE 0.204±0.000 0.154±0.029 0.174±0.070 0.172±0.025 0.161±0.008 -

World Tree
ACC 0.554±0.000 0.570±0.056 0.621±0.109 0.680±0.072 0.504±0.074 -
ECE 0.112±0.000 0.211±0.042 0.251±0.101 0.185±0.048 0.144±0.051 -

Table 10: The full results (mean and standard deviation) for various experimental configurations extending Table. 1.
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Dataset Metric 0-shot 1-shot 2-shot 3-shot 4-shot 8-shot
CB

Alpaca-7B
ACC 0.552±0.000 0.668±0.032 0.653±0.079 0.646±0.086 0.653±0.067 0.698±0.028

ECE 0.016±0.000 0.119±0.018 0.123±0.044 0.122±0.031 0.115±0.017 0.127±0.020

LLama2-Chat-7B
ACC 0.375±0.000 0.566±0.129 0.643±0.107 0.670±0.126 0.677±0.113 0.677±0.111

ECE 0.287±0.000 0.223±0.078 0.170±0.062 0.153±0.054 0.154±0.054 0.170±0.054

LLama2-7B
ACC 0.339±0.000 0.464±0.193 0.511±0.163 0.538±0.113 0.534±0.109 0.575±0.059

ECE 0.125±0.000 0.222±0.190 0.174±0.029 0.206±0.066 0.226±0.071 0.222±0.058

Mistral-7B-v0.1
ACC 0.500±0.000 0.643±0.264 0.725±0.198 0.827±0.067 0.793±0.063 0.793±0.121

ECE 0.063±0.000 0.330±0.118 0.228±0.094 0.244±0.036 0.193±0.048 0.144±0.028

vicuna-7b-v1.5
ACC 0.571±0.000 0.668±0.049 0.663±0.052 0.668±0.058 0.675±0.061 0.648±0.073

ECE 0.051±0.000 0.176±0.034 0.172±0.047 0.169±0.054 0.170±0.047 0.181±0.052

AGNews

Alpaca-7B
ACC 0.810±0.000 0.793±0.041 0.710±0.110 0.715±0.111 0.782±0.079 0.832±0.029

ECE 0.043±0.000 0.123±0.033 0.190±0.095 0.167±0.093 0.112±0.057 0.065±0.019

LLama2-Chat-7B
ACC 0.793±0.000 0.809±0.031 0.823±0.046 0.829±0.035 0.829±0.028 0.843±0.019

ECE 0.164±0.000 0.162±0.030 0.143±0.039 0.138±0.033 0.138±0.024 0.127±0.013

LLama2-7B
ACC 0.573±0.000 0.832±0.022 0.789±0.112 0.801±0.108 0.849±0.057 0.868±0.009

ECE 0.102±0.000 0.037±0.012 0.074±0.083 0.078±0.082 0.052±0.024 0.053±0.011

Mistral-7B-v0.1
ACC 0.780±0.000 0.847±0.017 0.842±0.028 0.820±0.056 0.808±0.085 0.867±0.004

ECE 0.193±0.000 0.059±0.012 0.044±0.010 0.052±0.022 0.077±0.049 0.043±0.010

vicuna-7b-v1.5
ACC 0.740±0.000 0.803±0.013 0.834±0.031 0.824±0.054 0.835±0.030 0.832±0.036

ECE 0.063±0.000 0.139±0.012 0.108±0.025 0.116±0.034 0.114±0.014 0.109±0.034

RTE

Alpaca-7B
ACC 0.672±0.000 0.644±0.015 0.687±0.019 0.696±0.020 0.703±0.015 0.690±0.035

ECE 0.175±0.000 0.270±0.018 0.212±0.034 0.197±0.028 0.184±0.026 0.193±0.025

LLama2-Chat-7B
ACC 0.729±0.000 0.685±0.042 0.687±0.048 0.699±0.040 0.709±0.034 0.731±0.033

ECE 0.165±0.000 0.218±0.031 0.205±0.033 0.198±0.033 0.184±0.030 0.172±0.020

LLama2-7B
ACC 0.682±0.000 0.684±0.034 0.698±0.049 0.676±0.058 0.689±0.068 0.685±0.050

ECE 0.044±0.000 0.076±0.021 0.084±0.029 0.085±0.034 0.105±0.031 0.083±0.032

Mistral-7B-v0.1
ACC 0.686±0.000 0.731±0.025 0.756±0.015 0.768±0.019 0.776±0.016 0.773±0.025

ECE 0.054±0.000 0.121±0.047 0.080±0.042 0.084±0.033 0.087±0.025 0.085±0.035

vicuna-7b-v1.5
ACC 0.610±0.000 0.731±0.015 0.756±0.011 0.762±0.013 0.765±0.019 0.770±0.026

ECE 0.234±0.000 0.101±0.021 0.073±0.028 0.067±0.016 0.057±0.015 0.052±0.015

SST-2

Alpaca-7B
ACC 0.730±0.000 0.868±0.088 0.939±0.018 0.949±0.015 0.955±0.012 0.952±0.014

ECE 0.139±0.000 0.068±0.048 0.025±0.009 0.021±0.006 0.020±0.009 0.026±0.010

LLama2-Chat-7B
ACC 0.867±0.000 0.951±0.008 0.942±0.018 0.953±0.012 0.952±0.016 0.952±0.015

ECE 0.039±0.000 0.033±0.006 0.044±0.015 0.032±0.012 0.035±0.014 0.037±0.014

LLama2-7B
ACC 0.530±0.000 0.754±0.140 0.829±0.121 0.874±0.105 0.904±0.062 0.925±0.045

ECE 0.018±0.000 0.180±0.058 0.119±0.076 0.085±0.072 0.062±0.027 0.040±0.012

Mistral-7B-v0.1
ACC 0.563±0.000 0.958±0.007 0.941±0.058 0.956±0.030 0.961±0.022 0.969±0.006

ECE 0.058±0.000 0.133±0.029 0.086±0.033 0.078±0.032 0.072±0.032 0.052±0.020

vicuna-7b-v1.5
ACC 0.893±0.000 0.946±0.011 0.956±0.008 0.961±0.012 0.964±0.008 0.968±0.009

ECE 0.041±0.000 0.032±0.009 0.025±0.008 0.026±0.006 0.023±0.005 0.021±0.005

Table 11: The full results (mean and standard deviation) for various experimental configurations extending Figure 3.
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Dataset Case Reasoning ŷ p

Strategy QA

Question: Is the voice of the Genie from Disney’s Aladdin still alive? Choose the answer from True and False
Options: A) True, B) False

Ground Truth: A
7B The voice of the Genie from Disney’s Aladdin is still alive. B 0.6249
13B The voice of the Genie from Disney’s Aladdin is Robin Williams.

Robin Williams died on August 11, 2014.
B 0.7654

30B Robin Williams was the voice of the Genie in Disney’s Aladdin.
He died on August 11, 2014.

B 0.8471

World Tree

Question: A bird eats a brightly-colored insect that tastes bad.
The bird avoids preying on this type of insect again. This example is best described as ?

Options: A) a physical characteristic, B) a learned behavior, C) an inherited behavior, D) an adaptation
Ground Truth: B

7B ing the juice from fruit is a kind of physical change. A physi-
cal change is a change in the physical state of a substance. A
physical change is not a change in the chemical composition of
a substance. A physical change is not a change in the chemical
composition of a substance.

D 0.5249

13B An adaptation is a change in an organism that makes it better
suited to its environment.

D 0.7651

30B Adaptation means a change in the body of an organism that helps
it survive in its environment. Adaptation is a kind of behavior.

D 0.8764

Table 12: Qualitative Results of LLaMA on Strategy QA and WorldTree
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