
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6206–6217

June 16-21, 2024 ©2024 Association for Computational Linguistics

Massive End-to-end Speech Recognition Models with Time Reduction

Weiran Wang Rohit Prabhavalkar Haozhe Shan Zhong Meng
Dongseong Hwang Qiujia Li Khe Chai Sim Bo Li James Qin

Xingyu Cai Adam Stooke Chengjian Zheng Yanzhang He
Tara Sainath Pedro Moreno Mengibar

{weiranwang, prabhavalkar, hzshan, zhongmeng, dongseong}@google.com

Abstract

We investigate massive end-to-end automatic
speech recognition (ASR) models with effi-
ciency improvements achieved by time reduc-
tion. The encoders of our models use the neu-
ral architecture of Google’s universal speech
model (USM), with additional funnel pool-
ing layers to significantly reduce the frame
rate and speed up training and inference. We
also explore a few practical methods to miti-
gate potential accuracy loss due to time reduc-
tion, while enjoying most efficiency gain. Our
methods are demonstrated to work with both
Connectionist Temporal Classification (CTC)
and RNN-Transducer (RNN-T), with up to 2B
model parameters, and over two domains. For
a large-scale voice search recognition task, we
perform extensive studies on vocabulary size,
time reduction strategy, and its generalization
performance on long-form test sets, and show
that a 900M RNN-T is very tolerant to severe
time reduction, with as low encoder output
frame rate as 640ms. We also provide ablation
studies on the Librispeech benchmark for im-
portant training hyperparameters and architec-
ture designs, in training 600M RNN-T models
at the frame rate of 160ms.

1 Introduction

There has been a recent focus on scaling up end-
to-end (E2E) ASR models, such as connectionist
temporal classification (CTC, Graves et al., 2006
and neural transducers (RNN-T, Graves, 2012), to
extremely large sizes (Zhang et al., 2022; Li et al.,
2022; Radford et al., 2023; Zhang et al., 2023;
Pratap et al., 2023), to unlock new levels of ac-
curacy on more challenging tasks. Many of these
models are motivated by the goal of training a sin-
gle multilingual ASR model which can perform
well across a range of languages. For example, the
Universal Speech Model (USM, Zhang et al., 2023)
is a 2B parameter full-context CTC model trained
on YouTube data from 300+ languages; Pratap et al.

(2023) train ASR systems on 1000+ languages.
The present work follows in the footsteps of

these previous works, and addresses the important
practical challenges of training massive E2E mod-
els: as model size increases, the cost of computing
the outputs of the encoders in the model (most of
the model parameters are typically in the encoder)
scales poorly in attention-based encoders such as
transformers (Vaswani et al., 2017) and conform-
ers (Gulati et al., 2020). The RNN-T model, in par-
ticular, requires additional computation and mem-
ory for the prediction and joint network, which
further compounds the problem.

In this work, we investigate the aforementioned
issues and find that encoder output frame rate re-
duction can be applied repeatedly at multiple layers
in the encoder to obtain a large output frame rate
reduction; this in turn is critical for training models
and performing inference efficiently. On a large
scale voice search task with short queries, while
past research incorporated time reduction to lower
the final frame rate to 60ms (He et al., 2019; Ding
et al., 2022), or 120ms (Cai et al., 2023) for voice
search we find that we can increase time reduc-
tion to 6x with large CTC, and all the way up to
16x with large RNN-T, of the 40ms base frame
rate with funnel pooling (Dai et al., 2020), without
sacrificing much accuracy.

We also propose a few practical techniques to
mitigate the potential accuracy loss due to time
reduction while still enjoying most efficiency im-
provements. We provide ablation studies of these
techniques on the Librispeech benchmark, for train-
ing 600M RNN-T model with a frame rate of
160ms. Our results show that time reduction is
generally useful for ASR in different domains.

2 End-to-end ASR Models

In this section, we briefly describe the E2E models
employed in this work. Interested readers can find

6206

more information in recent overview articles (Li,
2022; Prabhavalkar et al., 2023).
Notations We assume that the input audio sig-
nal has been parameterized into suitable acous-
tic feature vectors: x = [x1, . . . ,xT ′], of length
T ′, where xt ∈ Rd (128-dimensional log-mel
features, in this work). The input acoustic fea-
tures are processed using an encoder which trans-
forms the input into a higher-level representation:
h = [h1, . . . ,hT], where the length of the encoded
representation is typically shorter than the original
input length (T ≤ T ′). We assume that we have
an input transcript corresponding to each utterance:
y = [y0 = 〈s〉 , y1, . . . , yU], where each yu ∈ V ,
the set of output symbols (word-pieces (Schuster
and Nakajima, 2012), in this work), and 〈s〉 repre-
sents a special start-of-sentence symbol.

2.1 Connectionist Temporal Classification
CTC was introduced by Graves et al. (2006), as a
way to train sequence-to-sequence models which
can transduce the input sequence x, into the output
sequence y when the alignments between the two
sequences are unknown. CTC accomplishes this
by modeling the conditional distribution, P (y|x),
which marginalizes over all possible alignments
between the two sequences:

P (y|x) =
∑

a∈Bctc(y)

T∏

t=1

P (at|h) (1)

where, the Bctc(y) corresponds to the set of all valid
alignments. Specifically, an alignment a ∈ Bctc(y)
is a valid alignment if it contains |h(x)| = T sym-
bols from the set of outputs augmented with a spe-
cial blank symbol – V ∪ {〈b〉}; and if additionally,
removing consecutive repeated non-blank symbols
and then removing all 〈b〉 symbols produces the
original label sequence y. As can be seen in (1),
CTC models make a strong conditional indepen-
dence assumption – that the output labels are con-
ditionally independent given the input acoustic en-
coded features. However, these models work well
in practice (Miao et al., 2015; Karita et al., 2019),
especially with large encoders (Zhang et al., 2023).
Finally, the CTC model produces one output sym-
bol (blank, or non-blank) per encoder time step.

2.2 Neural Transducers
The recurrent neural network transducer (RNN-T)
was proposed by Graves (2012), as an improve-
ment over the CTC model, to reduce conditional

independence assumptions in the model. This is
achieved by introducing a separate prediction net-
work, which models label dependency (and thus
makes model outputs conditionally dependent on
the sequence of previous predictions).

P (y|x) =
∑

a∈Bnt(y)

T+U∏

τ=1

P (aτ |qiτ ,hτ−iτ)

where, Bnt(y) is the set of all valid alignments –
sequences of length T + U , which are identical
to y after removing all blanks (i.e., each sequence
has exactly T blank symbols); iτ represents the
number of non-blank labels in the partial alignment
a1, . . . , aτ−1; and, qj represents the output of the
prediction network after processing the first j − 1
output labels: qj = PredNetwork(yj−1, . . . , y0).
Notably, neural transducers can output multiple
(non-blank) labels at each frame; blanks corre-
spond to transitions to the next input encoder frame.

3 Massive Models with Time Reduction

In this work, we boost the ASR performance by
tremendously scaling up the size of the E2E mod-
els. Recognizing the encoder’s crucial role in E2E
speech recognition, we dramatically expand en-
coder parameters (up to 1.8B), enabling the model
to effectively leverage the vast amount of training
data and improve the recognition accuracy.

The USM encoder of our E2E model is built
on the convolution-augmented Transformer (Gu-
lati et al., 2020), or Conformer architecture. Each
Conformer block consists of a feed-forward mod-
ule (FFN), a multi-head self-attention module
(MHSA), a convolution module (CONV), and a
second feed-forward module. If the input to l-th
Conformer block is x(l), then its output (and, the
input to the next block), x(l+1), is computed as:

x̃(l) = x(l) +
1

2
FFN1

(
x(l)
)

x′(l) = x̃(l) + MHSA
(
Wqx̃

(l),Wkx̃
(l),Wvx̃

(l)
)

x′′(l) = x′(l) + CONV
(
x′(l)

)
(2)

x(l+1) = LAYERNORM
(
x′′(l) +

1

2
FFN2(x

′′(l))
)

For the standard conformer layer, the input length
and output length are the same.

3.1 Efficiency improvements
We explore two ways to reduce the computational
latency and speed up the inference.

6207

3.1.1 Encoder Frame Rate Reduction
We improve training and inference speed in our
models by reducing the sequence length of the en-
coder embeddings along time axis, relative to the
audio length. Specifically, we employ the pool-
ing technique in the MHSA module introduced in
Funnel-Transformers (Dai et al., 2020) at selected
Conformer blocks within the encoder. At a fun-
nel self-attention layer, the entire input is used to
produce the key and value sequences as usual, but
strided-average pooling is applied to the time di-
mension of the input used in producing the query
vectors. That is, we replace the MHSA module
in (2) with the following:

x̂(l) = STRIDEDPOOLING(x̃(l)), (3)

x′(l) = x̂(l) + MHSA
(
Wqx̂

(l),Wkx̃
(l),Wvx̃

(l)
)
.

The stride of pooling in (3) is the time reduction
factor in this layer. This effectively downsam-
ples the output encoder embeddings of the previ-
ous layer. In a language model (LM), this pool-
query-only method was shown to provide a slight
advantage over simply pooling the entire hidden
embedding sequence between layers (Dai et al.,
2020); likely, the higher granularity in the key and
value sequences allows the network to learn a less
lossy compression. Computational savings accrue
in all subsequent Conformer layers according to the
O(T 2D) complexity for self-attention, and linearly
for feed-forward networks. For inference, this di-
rectly shrinks the number of decoding steps which
is O(T) for CTC and O(T + U) for RNN-T, thus
significantly accelerating the decoding process.

3.1.2 Light-Weight Decoder
To reduce the computational latency for short voice
search queries, we utilize a light-weight |V |2 em-
bedding prediction network (Botros et al., 2021)
which conditions the current prediction only on the
two previous non-blanks:

Eu = We · Concat(Eu−1,Eu−2) (4)

where En is the embedding vector at decoder step
n and We is the projection matrix.

3.2 Compensation for Accuracy Loss
While time reduction benefits efficiency, it can be
detrimental for longer, acoustically and linguis-
tically rich utterances. This is because critical
information such as long-term dependencies and
prosodic cues gets inevitably compressed during

the reduction process, resulting in degraded accu-
racy. We propose methods to mitigate the potential
accuracy loss caused by time reduction, which are
effective for different tasks in our experiments.

3.2.1 Rotary Positional Embeddings
Maintaining positional information, in the pres-
ence of pooling, is useful especially for long audio.
We apply rotary positional embeddings (RoPE, Su
et al., 2023) to the MHSA module at each con-
former layer. Compared to the similar relative po-
sitional embeddings (RPE, Dai et al., 2019), RoPE
has the advantage of not requiring additional train-
able parameters nor longer training latency. In
layers where the sequence length is shortened by a
factor of 2, keys and values have their usual posi-
tional indices (0, 1, 2, 3, 4, 5, ...) while the short-
ened query sequence uses (1, 3, 5,...) to maintain
consistent positional information despite shorten-
ing. Similarly, in upsampling layers the lengthened
sequence uses (0, 0, 1, 1, 2, 2...) as indices.

3.2.2 Larger Batch Size
We find that increasing the number of utterances in
a training mini-batch, namely batch size, can be ef-
fective at offsetting the WER degradation resulted
from time reduction. In funnel encoders where the
input sequence is downsampled by a factor of 4,
the number of tokens per batch is similarly reduced.
To maintain the usual tokens per batch, a larger
batch size may be required.

3.2.3 Encoder Frame Upsampling
To alleviate the information loss caused by funnel
pooling in early encoder layers, we propose up-
sampling the encoder embeddings at later encoder
layers. This injects additional information back
into the sequence, and allow learning to recover
lost details and improve model performance (Ron-
neberger et al., 2015; Dai et al., 2020).

The total upsampling rate at higher layers should
be lower than the total reduction rate at lower lay-
ers to ensure an effective decimation of encoder
output frames and decoding steps. Note that, our
method still enjoys the decrease of encoder compu-
tation even if the encoder embeddings are upsam-
pled back to the original frame rate at the input.

3.2.4 Language Model Fusion
LM fusion (Gulcehre et al., 2015; Chorowski and
Jaitly, 2017) is a simple yet effective way of inject-
ing text information, potentially learned on large
amounts of unpaired text-only data, into E2E ASR

6208

systems. With the much smaller number of output
frames and on-TPU/GPU beam search, shallow fu-
sion with a neural LM becomes a viable candidate
for enhancing model accuracy.

To achieve best accuracy with LM fusion, we
make use of the notion of an internal language
model (ILM), PILM(y), which represents the LM
learned by the E2E model based on the training
data; the ILM can thus be subtracted out from the
posterior distribution, before fusion with an ex-
ternal LM, PEXT(y), during decoding, by adding
tunable hyperparameters α, and β which can be set
based on a development set to produce the most
likely hypothesis (Morgan and Bourlard, 1990; Var-
iani et al., 2015; Kanda et al., 2017; McDermott
et al., 2019; Variani et al., 2020; Meng et al., 2021):

y∗ = argmax
y

logPE2E(y|x)
− α logPILM(y) + β logPEXT(y).

ILMs can be estimated for CTC (Sak et al., 2015;
Li et al., 2019), RNN-T (Meng et al., 2021) and
the hybrid autoregressive transducer (HAT, Variani
et al., 2020) variant of RNN-T.

4 Related Work in Time Reduction

Time reduction has been a useful technique for
achieving a balance between input and output
lengths for ASR, and has evolved over time with the
choice of neural architecture and modeling units.
In Vanhoucke et al. (2013); Miao et al. (2016), the
lower frame rates were achieved by concatenating
input frames and striding, for DNN or LSTM mod-
els predicting context-dependent HMM states. Hihi
and Bengio (1996); Koutnik et al. (2014); Chan
et al. (2016) proposed to use hierarchical/pyramidal
RNNs where outputs of consecutive steps are com-
bined before feeding to the next layer. After the
community switched to end-to-end systems and
word-piece type modeling units, a popular frame
rate is 40ms as achieved by convolutional subsam-
pling, and is adopted by widely-used open-source
libraries (Watanabe et al., 2018). In this work, we
also use such a configuration for the input to our
encoder, and perform funnel pooling atop.

With the similar intuition of reducing se-
quence lengths at encoder layers, Efficient Con-
former (Burchi and Vielzeuf, 2021) used convo-
lution and strided attention to produce shortened
sequences in a progressive manner. Squeeze-
former (Kim et al., 2022) applied progressive down-
sampling in the decoder and included upsampling

at the end to recover the original sequence length
with a U-net-like design; a similar idea was studied
in Andrusenko et al. (2023). Compared to these
prior work, we investigate the use of time reduction
with much larger model sizes and more extreme
reduction rates, on multiple datasets from differ-
ent domains, and explore additional techniques to
make up potential accuracy loss. Prabhavalkar
et al. (2024) explore extreme encoder output reduc-
tion rates for RNN-T on a large-scale voice search
task with as low frame rate as 2.56 secs, by using
funnel pooling at later encoder layers.

Another line of work (Tian et al., 2021; Wang
et al., 2023; Yang et al., 2023) proposed to use CTC
to (irregularly) select encoder output frames (or to
skip confident blank frames) for RNN-T modeling,
effectively reducing the frame rate for the decoder.
However, such a CTC-based encoder output selec-
tion does not save computations in the encoder,
but only reduces the computation in downstream
modules. Our goal in this work is to aggressively
reduce the sequence length early in the architecture
for computational savings.

5 Experiments on Voice Search Queries

Our first set of experiments focus on a short voice
search task with in-house datasets.

5.1 Datasets

For a majority of the experiments, we use 520M
utterances of voice search queries for training; the
total amount of audio is 490K hours and the aver-
age duration per utterance is 3.4 seconds. A small
percentage of the training data is human transcribed
while the rest is pseudo-labeled by a 600M bidirec-
tional RNN-T teacher (Hwang et al., 2022). We
tokenize training transcripts with word-piece mod-
els (Schuster and Nakajima, 2012).

We use both real audio and TTS-generated data
for evaluation. The real audio utterances are rep-
resentative of typical voice search traffic, with an
average duration of 3.9 seconds. Our development
set consists of 9K real audio utterances (denoted
as VS-dev); we use a separate held-out test set
consisting of 5K utterances for testing (denoted as
VS-test). The TTS sets contain rare proper nouns
(RPN) appearing fewer than 5 times in the training
set. Each TTS set contains 10K utterances and cov-
ers one of five domains: Maps (denoted as RPNM),
News (RPNN), Play (RPNP), Search query logs
(RPNS), and Youtube (RPNY); they have average

6209

durations of 5.9, 10.1, 5.3, 5.4, and 5.8 seconds
respectively. We use VS-dev, RPNM and RPNN
for tuning the model architecture and other hyper-
parameters and report final WERs on the rest sets.

To improve model accuracy on rare words, we
fuse CTC and RNN-T with neural LMs. We train
transformer LMs of 128M and 1B parameters with
word-pieces compatible with those of E2E mod-
els. The LM training data consists of transcripts
of ASR training data, and text-only data contain-
ing textual search queries from the five domains of
RPN sets (Huang et al., 2022). All acoustic and text
training data is anonymized and adheres to Google
AI Principles (Google).

5.2 Model Architectures
We use the 128-dimensional log Mel-filterbank en-
ergies (extracted from 32ms window and 10ms
shift) as the frontend features. After two 2D-
convolution layers, both with strides (2,2), the re-
sulting feature sequence has a frame rate of 40ms
and becomes the input to our Conformer architec-
ture. This architecture mimics that of Google’s
universal speech model (USM, Zhang et al., 2023).
The number of attention heads used in Conformer
blocks is 8, and the intermediate dimension of the
FFNs is 4 times the model dimension. The Con-
former blocks use local self-attention with a large
attention span, and the encoder output has a large
enough receptive field to cover the entire utterance.

We explore two different encoder configurations
for CTC, with different sizes: the smaller encoder
configuration consists of 24 Conformer layers of
dimension 768, leading to a total of 340M param-
eters; the larger encoder has 32 Conformer layers
of dimension 1536, leading to a total of 1.8B pa-
rameters. For RNN-T, the encoder consists of 16
Conformer layers of dimension 1536, resulting in
a total of 870M parameters. We use a |V |2 em-
bedding decoder (Botros et al., 2021), i.e., the pre-
diction network computes LM features based on
two previous non-blank tokens, which works well
on voice search data. The RNN-T model output
uses the HAT factorization (Variani et al., 2020) to
benefit external LM integration.

Following Ding et al. (2022), we start funnel
pooling at layer 4 (layer index is zero-based), and
apply pooling in subsequent layers to achieve the
desired factor of time reduction. As an example,
if we perform pooling at layers 4 and 5, each with
the reduction factor 2, we achieve a total reduc-
tion factor 4 for layers 6 and onwards, i.e., the

sequence length after layer 6 is 1/4 of the original
input length and the frame rate at the encoder out-
put is 160ms, which is also the frame rate at which
the decoder operates. Note that (Ding et al., 2022)
used funnel pooling for on-device modeling with
stringent latency requirements, whereas here we
use funnel pooling for the full-context model to
speed up training and inference. We observe that
the ASR accuracy turns out to be more tolerant of
time reduction.

Each model is trained with the Adafactor opti-
mizer (Shazeer and Stern, 2018) with a batch size
of 4096 utterances. We train CTC models to 500K
steps and RNN-T models to 300K steps, by which
point WERs on development sets have stabilized.

For inference, we perform beam search (with
path merging) with a beam size of 8. For LM fu-
sion, two types of prior probabilities were used for
CTC: the uniform prior over non-blanks as imple-
mented by the blank probability downscaling tech-
nique (Sak et al., 2015), versus the uni-gram prior
based on the model posteriors on training set (Li
et al., 2019). We perform internal LM score sub-
traction for fusion with HAT (Variani et al., 2020).

5.3 CTC Results
Intuitively, with a larger vocabulary, the label se-
quences are shorter and we can afford more time
reduction. The hard constraint for CTC is that,
since it emits only one token (blank or non-blank)
at each encoder output frame, the encoder output
sequence length must remain longer than the label
sequence length (RNN-T however is not subject
to this constraint). During CTC training, we dis-
card utterances that violate this constraint, although
such cases are uncommon in the VS sets.

We report WERs of a selection of CTC models in
Table 1. As baselines, we report the WERs with 4K
vocabulary at a 40ms frame rate, a setup closely fol-
lowing that of the USM architecture (Zhang et al.,
2023). We match these baselines on VS with the
16K vocabulary size and much lower frame rates
of 160ms and 240ms: for 340M CTC, we obtain an
improvement from 4.7% to 4.5% on VS-dev, while
for 1.8B CTC, we match the 4.2% obtained with
40ms frame rate. For supervised training with 1.8B
CTC, we observe a 4x speedup in training time on
TPU with a 160ms frame rate, and a 4.5x speedup
with a 240ms frame rate compared to the 40ms
model (despite the use of a more costly softmax
operation due to larger vocabulary). We observe
that with a 320ms frame rate, the WER on VS-dev

6210

Model size (FR) VS-dev RPNM RPNN
baselines: no pooling, vocab size=4096

340M (40ms) 4.7 15.1 12.4
1.8B (40ms) 4.2 14.2 10.4

with funnel pooling, vocab size=16384
340M (160ms) 4.5 15.3 16.6
340M (240ms) 4.5 14.9 21.6
1.8B (40ms) 4.2 14.8 10.5
1.8B (160ms) 4.3 13.7 12.7
1.8B (240ms) 4.2 13.8 17.3
1.8B (320ms) 5.0 14.0 26.4

1.8B (40ms) + 128M LM fusion
blank downscaling 3.8 11.1 8.8
model-based prior 3.8 10.8 8.6

1.8B (160ms) + 128M LM fusion
blank downscaling 3.8 10.7 11.0
model-based prior 3.8 10.5 10.8

1.8B (160ms) + 1B LM fusion
blank downscaling 3.8 10.1 10.4
model-based prior 3.8 9.8 10.1

Table 1: WERs (%) on dev sets by CTC, with differ-
ent architectures, vocabulary sizes, and encoder output
frame rates (FR). Funnel pooling is employed at layers
4 and 5, with factors 2,2 for 160ms frame rate and 3,2
for a 240 frame rate.

significantly degrades to 5.0%, and this could not
be alleviated by increasing the vocabulary size to
32K. This suggests that a too coarse time resolu-
tion does not work well with the CTC loss and its
underlying independence assumptions.

The trend of WER on RPNM is similar to that
of VS-dev. However, we do observe worse degra-
dation on RPNN as we apply heavier time reduc-
tion. As mentioned in Sec 5.1, the transcriptions of
RPNN come from the News domain which has dif-
ferent linguistic characteristics from voice search,
and the audio length is quite longer (10 secs on
average) than the VS set (4 secs on average). We
hypothesize that models with lower frame rates
may not generalize well to unseen audio length,
and further investigate this issue in Sec 5.5.

We then perform LM fusion with 1.8B CTC
models with frame rates 40ms and 160ms. The
results we present in Table 1 uses LM weights that
achieve a good balance between VS-dev and RPN
sets. We observe a significant WER reduction from
4.2% to 3.8% with a smaller 128M LM already on
the in-domain VS-dev set, and a reduction from
13.7% to ∼11% on RPNM. Among the two prior

Frame rate (factors) VS-dev RPNM RPNN

vocab size=4096, decoder size=10M
40ms 3.8 12.1 11.0
240ms (3x2) 3.8 12.6 12.1
320ms (2x2x2) 3.8 12.9 14.2

vocab size=16384, decoder size=33M
160ms (2x2) 3.7 12.3 12.8
240ms (3x2) 3.8 12.5 12.2
320ms (2x2x2) 3.8 12.5 13.6
400ms (5x2) 3.8 12.7 15.6
480ms (3x2x2) 3.9 12.6 19.5
640ms (2x2x2x2) 3.9 12.9 28.7

vocab size=32768, decoder size=65M
320ms (2x2x2) 3.8 12.9 14.8
640ms (2x2x2x2) 3.9 12.7 25.9

Table 2: Dev set WERs (%) by RNN-T with various
vocabulary sizes and encoder output frame rates (FR).
The encoder contains 870M parameters. Funnel pool-
ing starts at layer 4 and applies to adjacent layers. In
parenthesis, we use the notation “3x2” to indicate that
layer 4 has a reduction factor of 3, and layer 5 has a
factor of 2, leading to the final frame rate of 240ms.

estimation methods, model-based prior (Li et al.,
2019) consistently outperforms blank probability
downscaling (Sak et al., 2015) over different WER
operating points. When increasing the external LM
size to 1B, we could not further improve on VS-
dev but achieve sizeable gains on in-domain rare
word test sets, e.g., with model-based prior, WER
is reduced from 10.5% to 9.8% for RPNM.

5.4 RNN-T Results

We conduct a similar set of time reduction exper-
iments with RNN-T, and the results are shown in
Table 2. Overall RNN-T is quite robust to differ-
ent vocabulary sizes. With the 16K vocabulary,
we have studied the most time reduction settings,
and observed only small WER degradations from
40ms frame rate all the way to 640ms frame rate
on VS-dev and RPNM.

Comparing the models at the same frame rate
of 160ms and vocabulary size 16K, RNN-T has a
WER of 3.7% on VS-dev, outperforming the 4.2%
by CTC by a large margin. This demonstrates the
benefit of having a learnable decoder feature for
modeling label dependency in end-to-end ASR.

When fusing the best RNN-T model with a
128M LM, we observe interestingly that it tends
to significantly degrade RPNN (with heavy dele-
tion errors) and the WERs are quite sensitive to

6211

Frame rate VS-dev RPNM RPNN
Voice search training

40ms 3.8 12.1 11.0
240ms 3.8 12.5 12.2
640ms 3.9 12.9 28.7

Multi-domain training
40ms 3.6 13.3 6.8
240ms 3.6 13.6 6.9
640ms 3.8 12.6 9.5

+ 128M LM fusion
40ms 3.6 11.4 6.7
240ms 3.7 11.5 7.1

Table 3: Dev set WERs (%) by 900M RNN-T with dif-
ferent frame rates trained on multi-domain data. The
40ms model uses a vocabulary of 4096 while the others
use a vocabulary of 16384. First three rows are taken
from Table 2.

internal and external LM weights. We hypothesize
this is partly due to the bias of the internal LM of
HAT learned purely on short utterances. In the next
section, we provide further evidence for this, by
demonstrating that training on length-diverse data
improves the robustness to shallow fusion.

5.5 Adding Long-Form Training Data

To verify that the poor performance of end-to-
end models on RPNN was due to the lack of
longer training audio, we repeat several RNN-T
experiments with additional multi-domain training
data (Narayanan et al., 2019). Most notably, we
include segmented YouTube audio data containing
220M utterances with an average duration of 9.8
seconds, giving us a total of 600K hours of data.

The comparisons between RNN-T models
trained on voice search data and multi-domain data
are presented in Table 3. For vastly different frame
rates 40ms, 240ms and 640ms, the additional long-
form training data improves the WERs on both
VS-dev and RPNN significantly. With only voice
search training data, the WER gap on RPNN be-
tween the two frame rates used to be very large
(12.2% vs 28.7%), whereas with multi-domain
training, the gap is significantly reduced (6.9% vs
9.5%) with much improved absolute WERs.

When performing shallow fusion for the multi-
domain 240ms frame rate model with the 128M
LM, we achieve a better balance between in-
domain and out-of-domain test sets, improving
RPNM from 13.6% to 11.5% and without affecting

VS-test RPNP RPNS RPNY
1.8B CTC, 160ms frame rate

4.9 39.8 23.1 26.0
+ Multi-domain training data

4.8 38.2 22.3 24.8
+ 128M LM fusion with model prior

4.5 32.6 15.8 19.4
900M RNN-T, 40ms frame rate

4.5 37.0 20.0 22.7
+ Multi-domain training data

4.4 36.5 20.1 22.7
+ 128M LM fusion with ILM

4.4 34.0 16.9 20.4
900M RNN-T, 240ms frame rate

4.5 37.8 20.6 23.3
+ Multi-domain training data

4.4 36.4 19.9 22.3
+ 128M LM fusion with ILM

4.4 33.9 16.9 20.2
Multi-domain 120M RNN-T (Ding et al., 2022)

60ms frame rate, 0.9s look-ahead
5.0 35.9 19.2 23.2

Table 4: Test set WERs (%) by CTC and RNN-T.

RPNN much.

5.6 Final Evaluation

Finally, we compare the best configurations from
both CTC and RNN-T on the test sets, namely VS-
test, RPNP, RPNS, and RPNY. Taking into account
both in-domain and out-of-domain performance,
we choose the 1.8B CTC model with 160ms frame
rate, the 900M RNN-T model with 40ms frame rate,
and the 900M RNN-T model with 240ms frame
rate. The results are shown in Table 4. Relative mer-
its between methods are consistent with the perfor-
mance on development sets. That is, with the same
voice search training data, the 900M RNN-T out-
performs the 1.8B CTC on all test sets, and by 8.0%
relative margin for the in-domain VS-test set (4.5%
vs 4.9%). After fusing the multi-domain models
with neural LMs, we observe improvements on all
test sets, and that the performance gap between
CTC and RNN-T is largely removed. As a refer-
ence, we provide results of another small RNN-T
model trained on the same multi-domain data, with
a 60ms frame rate and a limited right context of
0.9s, from previous work (Ding et al., 2022).

6212

Encoder (870M)
Output Frame Rate (ms) Runtime (ms)

40 153
80 107

160 70
240 67
320 63
640 63

Per-step Decoder Runtime
V2 Decoder (10M params) 1.2

V2 + 128M LM Fusion 6.3

Table 5: Runtime of 900M RNN-T. Vocabulary size is
4096. Inference beam size is 8.

5.7 Inference Benchmark

To verify that our method leads to much faster infer-
ence, we benchmark the runtime of the components
of the 900M RNN-T model on TPU v3 (tpu). We
measure the running times for processing a batch
of 8 utterances with the duration of 15 seconds, and
the results are shown in Table 5.

We observe a 60% reduction of encoder runtime
(from 153ms to 53ms), with 8x funnel reduction.
Note the number of decoder steps we need to run
for RNN-T is the encoder output length + label
sequence length. And 8x funnel pooling would
reduce the encoder output length by a factor of 8.
Given the average audio length for voice search
traffic is around 4 seconds, with an average label
length of 12 tokens, our method significantly re-
duces the number of decoding steps and therefore
decoder runtime. External LM fusion does increase
the decoder model size and therefore per-step run-
time (1.2ms -> 6.3ms), although the cost is not
prohibitively expensive (considering also that mod-
ern chips can be quite faster).

6 Experiments on Librispeech

We now turn to the Librispeech benchmark (Panay-
otov et al., 2015) and provide ablation studies for
other techniques that mitigate accuracy loss.

We train offline RNN-T models and evaluate
them on the testsets of the Librispeech corpus.
The Librispeech corpus contains utterances of au-
dio books, with an average duration of 12.3 sec-
onds, and an maximum duration of around 30 sec-
onds (Moritz et al., 2021). We train the models
with both the Librispeech training set which con-
tains 960 hours of speech, and the Speechstew
dataset (Chan et al., 2021) which contains 5140

Funnel ROPE
dev dev test test test

clean other clean other avg.
None N 1.95 4.51 2.10 4.59 3.35
None Y 1.88 4.30 2.11 4.54 3.33

4x N 2.03 4.68 2.19 4.98 3.59
4x Y 2.14 4.40 2.23 4.72 3.48

Table 6: WER (%) on Librispeech with and without
RoPE. Training is performed on the Librispeech train-
ing set with a batch size of 4096 utterances.

hours of speech.
All the encoders we considered have the same

number of trainable parameters (626.6M), with 24
layers, encoder dimension 1024, and convolution
kernel size of 5. The attention module has a left
context of 129 tokens and a right context of 128
tokens. For funnel encoders, we used a total of
4x reduction, done through a 2x reduction in layer
4 and another in layer 5. For encoders with up-
sampling, a 2x or 4x upsampling is done in the
last layer. We focus on RNN-T models in this sec-
tion which are equipped with a single-layer LSTM
decoder, with an output vocabulary size of 1024.

6.1 Positional embeddings
In Table 6, we provide ablation studies for using
RoPE in models with and without funnel pooling.
RoPE provides a 2% relative improvement to aver-
aged test WER in the case of 4x pooling, and we
use it in experiments of following sections.

6.2 Training batch size
We study the effects of varying the global batch size
during training, with results shown in Table 7. We
found that larger batch sizes consistently led to sig-
nificant WER gains for the funnel encoders while
having a much smaller effect for non-funnel en-
coders. For example, with the Speechstew training
set, doubling the training batch size from 2048 to
4096 improves the averaged test WER from 3.30%
to 2.97% for the model with 4x time reduction.

With properly tuned batch sizes, the models with
160ms frame rate achieves only slightly worse ac-
curacies than those with 40ms frame rate: averaged
test WERs are 3.48% vs 3.31% for Librispeech
training, and 2.97% vs 2.90% for Speechstew train-
ing. To our knowledge, these are the best WERs
on Librispeech at the low frame rate of 160ms, un-
der the same training setups. We would like to
also mention that we could not push the frame rate
to 320ms without clear WER degradation on Lib-

6213

Funnel
(FR)

batch dev dev test test test
size clean other clean other avg.

Librispeech training

None
(40ms)

512 1.91 4.32 2.01 4.56 3.29
1024 1.97 4.26 2.07 4.59 3.33
2048 1.88 4.30 2.11 4.54 3.33
4096 1.93 4.32 2.04 4.58 3.31

4x
(160ms)

512 2.01 4.84 2.21 5.14 3.68
1024 1.97 4.61 2.23 4.78 3.51
2048 2.14 4.40 2.23 4.72 3.48
4096 2.08 4.64 2.22 4.73 3.48

Speechstew training
None

(40ms)
2048 1.75 4.02 1.93 3.97 2.95
4096 1.76 3.70 1.88 3.91 2.90

4x
(160ms)

2048 1.93 4.49 2.09 4.51 3.30
4096 1.79 4.01 1.93 4.01 2.97

Table 7: Librispeech WERs (%) of funnel RNN-T with
varying batch sizes.

rispeech (as we could for voice search queries), and
it is future work to understand the limiting factor.

6.3 Upsampling

Given that funnel pooling early in the architec-
ture does cause WER degradation, we investigate
whether we can compensate the loss by upsampling
the sequence at a later layer. We perform funnel
upsampling at the last encoder layer (layer 23) to
keep as much efficiency improvements as possible.

Since the downsampling factor in our encoder is
4, upsampling by a factor of 2 returns sequences
half the length of encoder inputs; upsampling by
a factor of 4 recovers the original length. We pro-
vide the results in Table 8. We observe a noticable
improvement for Librispeech-trained models: the
averaged test WER improves from 3.48% to 3.34%
with 4x upsampling, which is close to the 3.31%
achieved by the model without funnel pooling. On
the other hand, upsampling appears to be less use-
ful for Speechstew-trained models.

7 Conclusions

In this paper, we have investigated the use of time
reduction by funnel pooling with massive E2E ASR
models. Our experiments on a large-scale voice
search task demonstrate its effectiveness with two
major E2E ASR models, CTC and RNN-T, and
show that for large models, funnel pooling signifi-
cantly reduces inference and training costs without
sacrificing much accuracy, achieving encoder out-

Funnel dev dev test test test
size clean other clean other avg.

Librispeech training
4x 2.14 4.40 2.23 4.72 3.48

4x-2x 1.91 4.46 2.14 4.69 3.42
4x-4x 1.99 4.38 2.17 4.50 3.34

Speechstew training
4x 1.79 4.01 1.93 4.01 2.97

4x-2x 1.92 3.86 1.99 4.05 3.02
4x-4x 1.91 4.01 2.01 3.94 2.98

Table 8: Librispeech WER (%) of funnel RNN-T
with upsampling. The notation “4x-2x” indicates 4
times downsampling combined with 2 times upsam-
pling. Batch size is 4096.

put frame rate as low as 640ms. We have similar
success on the Librispeech benchmark with a re-
duced frame rate of 160ms, given proper training
hyperparameters and carefully designed architec-
tures. We believe our techniques are generally use-
ful for speech recognition and will further extend
their usage to much longer audio.

8 Limitations

Our results cover both an important industrial use
case and a widely used public benchmark, and
demonstrate that time reduction shall be a generally
useful technique and our simple algorithm sets the
baseline for future development in this direction.
Our preliminary results on YouTube transcription
(not presented in the current paper) show similar
successes, for RNN-T models with the frame rate
of 320ms. However, we could not possibly cover
all use cases of end-to-end ASR. Another limita-
tion is that our study is performed exclusively on
English datasets, and it is interesting to understand
how the method behaves on other languages.

References
System architecture. https://cloud.google.com/
tpu/docs/system-architecture-tpu-vm#tpu_
v3. Accessed: 2024-03-01.

Andrei Andrusenko, Rauf Nasretdinov, and Aleksei
Romanenko. 2023. Uconv-conformer: High reduc-
tion of input sequence length for end-to-end speech
recognition. In ICASSP.

Rami Botros, Tara N. Sainath, Robert David, Em-
manuel Guzman, Wei Li, and Yanzhang He. 2021.
Tied & reduced RNN-T decoder. In Interspeech.

6214

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3

Maxime Burchi and Valentin Vielzeuf. 2021. Effi-
cient conformer: Progressive downsampling and
grouped attention for automatic speech recognition.
In ASRU.

Xingyu Cai, David Qiu, Shaojin Ding, Dongseong
Hwang, Weiran Wang Antoine Bruguier, Rohit Prab-
havalkar, Tara Sainath, and Yanzhang He. 2023. Ef-
ficient cascaded streaming asr system via frame rate
reduction. In ASRU.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In ICASSP.

William Chan, Daniel Park, Chris Lee, Yu Zhang, Quoc
Le, and Mohammad Norouzi. 2021. Speechstew:
Simply mix all available speech recognition data
to train one large neural network. arXiv preprint
arXiv:2104.02133.

Jan Chorowski and Navdeep Jaitly. 2017. Towards bet-
ter decoding and language model integration in se-
quence to sequence models. In Interspeech.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-Transformer: Filtering out sequen-
tial redundancy for efficient language processing. In
NeurIPS.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Shaojin Ding, Weiran Wang, Ding Zhao, Tara N.
Sainath, Yanzhang He, Robert David, Rami Botros,
Xin Wang, Rina Panigrahy, Qiao Liang, Dongseong
Hwang, Ian McGraw, Rohit Prabhavalkar, and
Trevor Strohman. 2022. A unified cascaded en-
coder ASR model for dynamic model sizes. In In-
terspeech.

Google. Artificial Intelligence at Google: Our Princi-
ples.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. In ICML Workshop on Repre-
sentation Learning.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks. In
ICML.

Anmol Gulati, James Qin, Chung-Cheng Chiu, et al.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. In Interspeech.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv:1503.03535.

Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Ry-
bach, Anjuli Kannan, Yonghui Wu, Ruoming Pang,
Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li,
Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-
yiin Chang, Kanishka Rao, and Alexander Gruen-
stein. 2019. Streaming end-to-end speech recogni-
tion for mobile devices. In ICASSP.

Salah Hihi and Yoshua Bengio. 1996. Hierarchical re-
current neural networks for long-term dependencies.
In NeurIPS.

W. Ronny Huang, Cal Peyser, Tara N. Sainath, Ruom-
ing Pang, Trevor Strohman, and Shankar Kumar.
2022. Sentence-select: Large-scale language model
data selection for rare-word speech recognition. In
Interspeech.

Dongseong Hwang, Khe Chai Sim, Zhouyuan Huo,
and Trevor Strohman. 2022. Pseudo label is better
than human label. In Interspeech.

Naoyuki Kanda, Xugang Lu, and Hisashi Kawai. 2017.
Minimum Bayes risk training of CTC acoustic mod-
els in maximum a posteriori based decoding frame-
work. In ICASSP.

Shigeki Karita, Nelson Enrique Yalta Soplin, Shinji
Watanabe, Marc Delcroix, Atsunori Ogawa, and To-
mohiro Nakatani. 2019. Improving Transformer-
based end-to-end speech recognition with connec-
tionist temporal classification and language model
integration. In Interspeech.

Sehoon Kim, Amir Gholami, Albert Shaw, Nicholas
Lee, Karttikeya Mangalam, Jitendra Malik,
Michael W Mahoney, and Kurt Keutzer. 2022.
Squeezeformer: An efficient transformer for
automatic speech recognition. NeurIPS.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juer-
gen Schmidhuber. 2014. A clockwork RNN. In
ICML.

Bo Li, Ruoming Pang, Yu Zhang, Tara N. Sainath,
Trevor Strohman, Parisa Haghani, Yun Zhu, Brian
Farris, Neeraj Gaur, and Manasa Prasad. 2022. Mas-
sively multilingual ASR: A lifelong learning solu-
tion. In ICASSP.

Jinyu Li. 2022. Recent advances in end-to-end auto-
matic speech recognition. APSIPA Transactions on
Signal and Information Processing, 11(1).

Qiujia Li, Chao Zhang, and Philip C. Woodland.
2019. Integrating source-channel and attention-
based sequence-to-sequence models for speech
recognition. In ASRU.

Erik McDermott, Hasim Sak, and Ehsan Variani. 2019.
A density ratio approach to language model fusion in
end-to-end automatic speech recognition. In ASRU.

6215

https://ai.google/principles/
https://ai.google/principles/
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP43922.2022.9746594
https://doi.org/10.1109/ICASSP43922.2022.9746594
https://doi.org/10.1109/ICASSP43922.2022.9746594

Zhong Meng, Sarangarajan Parthasarathy, Eric Sun,
Yashesh Gaur, Naoyuki Kanda, Liang Lu, Xie Chen,
Rui Zhao, Jinyu Li, and Yifan Gong. 2021. Internal
language model estimation for domain-adaptive end-
to-end speech recognition. In 2021 IEEE Spoken
Language Technology Workshop (SLT), pages 243–
250. IEEE.

Yajie Miao, Mohammad Gowayyed, and Florian Metze.
2015. EESEN: End-to-end speech recognition using
deep RNN models and WFST-based decoding. In
ASRU.

Yajie Miao, Jinyu Li, Yongqiang Wang, Shi-Xiong
Zhang, and Yifan Gong. 2016. Simplifying long
short-term memory acoustic models for fast training
and decoding. In ICASSP.

Nelson Morgan and Hervé Bourlard. 1990. Continu-
ous speech recognition using multilayer perceptrons
with hidden Markov models. In ICASSP.

Niko Moritz, Takaaki Hori, and Jonathan Le Roux.
2021. Capturing multi-resolution context by dilated
self-attention. In ICASSP.

Arun Narayanan, Rohit Prabhavalkar, Chung-Cheng
Chiu, David Rybach, Tara Sainath, and Trevor
Strohman. 2019. Recognizing long-form speech us-
ing streaming end-to-end models. In ASRU.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
ICASSP.

Rohit Prabhavalkar, Takaaki Hori, Tara N Sainath,
Ralf Schlüter, and Shinji Watanabe. 2023. End-to-
end speech recognition: A survey. arXiv preprint
arXiv:2303.03329.

Rohit Prabhavalkar, Zhong Meng, Weiran Wang, Adam
Stooke, Xingyu Cai, Yanzhang He, Arun Narayanan,
Dongseong Hwang, Tara N Sainath, and Pedro J
Moreno. 2024. Extreme encoder output frame rate
reduction: Improving computational latencies of
large end-to-end models. In ICASSP.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2023. Scaling speech technology to 1,000+ lan-
guages. arXiv preprint arXiv:2305.13516.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In ICML.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedi-
cal image segmentation. In Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI
2015, pages 234–241.

Hasim Sak, Andrew W. Senior, Kanishka Rao, Ozan
Irsoy, Alex Graves, Françoise Beaufays, and Johan
Schalkwyk. 2015. Learning acoustic frame label-
ing for speech recognition with recurrent neural net-
works. In ICASSP.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In ICASSP.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, page 127063.

Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao,
Shuai Zhang, and Zhengqi Wen. 2021. Fsr: Ac-
celerating the inference process of transducer-based
models by applying fast-skip regularization. arXiv
preprint arXiv:2104.02882.

Vincent Vanhoucke, Matthieu Devin, and Georg
Heigold. 2013. Multiframe deep neural networks for
acoustic modeling. In ICASSP.

Ehsan Variani, Erik McDermott, and Georg Heigold.
2015. A Gaussian mixture model layer jointly op-
timized with discriminative features within a deep
neural network architecture. In ICASSP.

Ehsan Variani, David Rybach, Cyril Allauzen, and
Michael Riley. 2020. Hybrid autoregressive trans-
ducer (HAT). In ICASSP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Yongqiang Wang, Zhehuai Chen, Chengjian Zheng,
Yu Zhang, Wei Han, and Parisa Haghani. 2023. Ac-
celerating RNN-T training and inference using CTC
guidance. In ICASSP.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wies-
ner, Nanxin Chen, Adithya Renduchintala, and
Tsubasa Ochiai. 2018. ESPnet: End-to-end speech
processing toolkit. In Interspeech.

Yifan Yang, Xiaoyu Yang, Liyong Guo, Zengwei Yao,
Wei Kang, Fangjun Kuang, Long Lin, Xie Chen,
and Daniel Povey. 2023. Blank-regularized ctc for
frame skipping in neural transducer. arXiv preprint
arXiv:2305.11558.

Yu Zhang, Wei Han, James Qin, Yongqiang Wang,
Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li,
Vera Axelrod, Gary Wang, et al. 2023. Google USM:
Scaling automatic speech recognition beyond 100
languages. arXiv preprint arXiv:2303.01037.

6216

https://doi.org/10.1109/ICASSP.2016.7472084
https://doi.org/10.1109/ICASSP.2016.7472084
https://doi.org/10.1109/ICASSP.2016.7472084
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP49357.2023.10096065
https://doi.org/10.1109/ICASSP49357.2023.10096065
https://doi.org/10.1109/ICASSP49357.2023.10096065

Yu Zhang, Daniel S Park, Wei Han, James Qin, Anmol
Gulati, Joel Shor, Aren Jansen, Yuanzhong Xu, Yan-
ping Huang, Shibo Wang, et al. 2022. Bigssl: Ex-
ploring the frontier of large-scale semi-supervised
learning for automatic speech recognition. IEEE
Journal of Selected Topics in Signal Processing,
16(6):1519–1532.

6217

